1501 lines
40 KiB
C
1501 lines
40 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* Common code for Intel Running Average Power Limit (RAPL) support.
|
||
|
* Copyright (c) 2019, Intel Corporation.
|
||
|
*/
|
||
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/list.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/device.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/log2.h>
|
||
|
#include <linux/bitmap.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/sysfs.h>
|
||
|
#include <linux/cpu.h>
|
||
|
#include <linux/powercap.h>
|
||
|
#include <linux/suspend.h>
|
||
|
#include <linux/intel_rapl.h>
|
||
|
#include <linux/processor.h>
|
||
|
#include <linux/platform_device.h>
|
||
|
|
||
|
#include <asm/iosf_mbi.h>
|
||
|
#include <asm/cpu_device_id.h>
|
||
|
#include <asm/intel-family.h>
|
||
|
|
||
|
/* bitmasks for RAPL MSRs, used by primitive access functions */
|
||
|
#define ENERGY_STATUS_MASK 0xffffffff
|
||
|
|
||
|
#define POWER_LIMIT1_MASK 0x7FFF
|
||
|
#define POWER_LIMIT1_ENABLE BIT(15)
|
||
|
#define POWER_LIMIT1_CLAMP BIT(16)
|
||
|
|
||
|
#define POWER_LIMIT2_MASK (0x7FFFULL<<32)
|
||
|
#define POWER_LIMIT2_ENABLE BIT_ULL(47)
|
||
|
#define POWER_LIMIT2_CLAMP BIT_ULL(48)
|
||
|
#define POWER_HIGH_LOCK BIT_ULL(63)
|
||
|
#define POWER_LOW_LOCK BIT(31)
|
||
|
|
||
|
#define POWER_LIMIT4_MASK 0x1FFF
|
||
|
|
||
|
#define TIME_WINDOW1_MASK (0x7FULL<<17)
|
||
|
#define TIME_WINDOW2_MASK (0x7FULL<<49)
|
||
|
|
||
|
#define POWER_UNIT_OFFSET 0
|
||
|
#define POWER_UNIT_MASK 0x0F
|
||
|
|
||
|
#define ENERGY_UNIT_OFFSET 0x08
|
||
|
#define ENERGY_UNIT_MASK 0x1F00
|
||
|
|
||
|
#define TIME_UNIT_OFFSET 0x10
|
||
|
#define TIME_UNIT_MASK 0xF0000
|
||
|
|
||
|
#define POWER_INFO_MAX_MASK (0x7fffULL<<32)
|
||
|
#define POWER_INFO_MIN_MASK (0x7fffULL<<16)
|
||
|
#define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
|
||
|
#define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
|
||
|
|
||
|
#define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
|
||
|
#define PP_POLICY_MASK 0x1F
|
||
|
|
||
|
/* Non HW constants */
|
||
|
#define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
|
||
|
#define RAPL_PRIMITIVE_DUMMY BIT(2)
|
||
|
|
||
|
#define TIME_WINDOW_MAX_MSEC 40000
|
||
|
#define TIME_WINDOW_MIN_MSEC 250
|
||
|
#define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
|
||
|
enum unit_type {
|
||
|
ARBITRARY_UNIT, /* no translation */
|
||
|
POWER_UNIT,
|
||
|
ENERGY_UNIT,
|
||
|
TIME_UNIT,
|
||
|
};
|
||
|
|
||
|
/* per domain data, some are optional */
|
||
|
#define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
|
||
|
|
||
|
#define DOMAIN_STATE_INACTIVE BIT(0)
|
||
|
#define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
|
||
|
#define DOMAIN_STATE_BIOS_LOCKED BIT(2)
|
||
|
|
||
|
static const char pl1_name[] = "long_term";
|
||
|
static const char pl2_name[] = "short_term";
|
||
|
static const char pl4_name[] = "peak_power";
|
||
|
|
||
|
#define power_zone_to_rapl_domain(_zone) \
|
||
|
container_of(_zone, struct rapl_domain, power_zone)
|
||
|
|
||
|
struct rapl_defaults {
|
||
|
u8 floor_freq_reg_addr;
|
||
|
int (*check_unit)(struct rapl_package *rp, int cpu);
|
||
|
void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
|
||
|
u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
|
||
|
bool to_raw);
|
||
|
unsigned int dram_domain_energy_unit;
|
||
|
unsigned int psys_domain_energy_unit;
|
||
|
};
|
||
|
static struct rapl_defaults *rapl_defaults;
|
||
|
|
||
|
/* Sideband MBI registers */
|
||
|
#define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
|
||
|
#define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
|
||
|
|
||
|
#define PACKAGE_PLN_INT_SAVED BIT(0)
|
||
|
#define MAX_PRIM_NAME (32)
|
||
|
|
||
|
/* per domain data. used to describe individual knobs such that access function
|
||
|
* can be consolidated into one instead of many inline functions.
|
||
|
*/
|
||
|
struct rapl_primitive_info {
|
||
|
const char *name;
|
||
|
u64 mask;
|
||
|
int shift;
|
||
|
enum rapl_domain_reg_id id;
|
||
|
enum unit_type unit;
|
||
|
u32 flag;
|
||
|
};
|
||
|
|
||
|
#define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
|
||
|
.name = #p, \
|
||
|
.mask = m, \
|
||
|
.shift = s, \
|
||
|
.id = i, \
|
||
|
.unit = u, \
|
||
|
.flag = f \
|
||
|
}
|
||
|
|
||
|
static void rapl_init_domains(struct rapl_package *rp);
|
||
|
static int rapl_read_data_raw(struct rapl_domain *rd,
|
||
|
enum rapl_primitives prim,
|
||
|
bool xlate, u64 *data);
|
||
|
static int rapl_write_data_raw(struct rapl_domain *rd,
|
||
|
enum rapl_primitives prim,
|
||
|
unsigned long long value);
|
||
|
static u64 rapl_unit_xlate(struct rapl_domain *rd,
|
||
|
enum unit_type type, u64 value, int to_raw);
|
||
|
static void package_power_limit_irq_save(struct rapl_package *rp);
|
||
|
|
||
|
static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
|
||
|
|
||
|
static const char *const rapl_domain_names[] = {
|
||
|
"package",
|
||
|
"core",
|
||
|
"uncore",
|
||
|
"dram",
|
||
|
"psys",
|
||
|
};
|
||
|
|
||
|
static int get_energy_counter(struct powercap_zone *power_zone,
|
||
|
u64 *energy_raw)
|
||
|
{
|
||
|
struct rapl_domain *rd;
|
||
|
u64 energy_now;
|
||
|
|
||
|
/* prevent CPU hotplug, make sure the RAPL domain does not go
|
||
|
* away while reading the counter.
|
||
|
*/
|
||
|
cpus_read_lock();
|
||
|
rd = power_zone_to_rapl_domain(power_zone);
|
||
|
|
||
|
if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
|
||
|
*energy_raw = energy_now;
|
||
|
cpus_read_unlock();
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
cpus_read_unlock();
|
||
|
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
|
||
|
{
|
||
|
struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
|
||
|
|
||
|
*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int release_zone(struct powercap_zone *power_zone)
|
||
|
{
|
||
|
struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
|
||
|
struct rapl_package *rp = rd->rp;
|
||
|
|
||
|
/* package zone is the last zone of a package, we can free
|
||
|
* memory here since all children has been unregistered.
|
||
|
*/
|
||
|
if (rd->id == RAPL_DOMAIN_PACKAGE) {
|
||
|
kfree(rd);
|
||
|
rp->domains = NULL;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
}
|
||
|
|
||
|
static int find_nr_power_limit(struct rapl_domain *rd)
|
||
|
{
|
||
|
int i, nr_pl = 0;
|
||
|
|
||
|
for (i = 0; i < NR_POWER_LIMITS; i++) {
|
||
|
if (rd->rpl[i].name)
|
||
|
nr_pl++;
|
||
|
}
|
||
|
|
||
|
return nr_pl;
|
||
|
}
|
||
|
|
||
|
static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
|
||
|
{
|
||
|
struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
|
||
|
|
||
|
if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
|
||
|
return -EACCES;
|
||
|
|
||
|
cpus_read_lock();
|
||
|
rapl_write_data_raw(rd, PL1_ENABLE, mode);
|
||
|
if (rapl_defaults->set_floor_freq)
|
||
|
rapl_defaults->set_floor_freq(rd, mode);
|
||
|
cpus_read_unlock();
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
|
||
|
{
|
||
|
struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
|
||
|
u64 val;
|
||
|
|
||
|
if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
|
||
|
*mode = false;
|
||
|
return 0;
|
||
|
}
|
||
|
cpus_read_lock();
|
||
|
if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
|
||
|
cpus_read_unlock();
|
||
|
return -EIO;
|
||
|
}
|
||
|
*mode = val;
|
||
|
cpus_read_unlock();
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* per RAPL domain ops, in the order of rapl_domain_type */
|
||
|
static const struct powercap_zone_ops zone_ops[] = {
|
||
|
/* RAPL_DOMAIN_PACKAGE */
|
||
|
{
|
||
|
.get_energy_uj = get_energy_counter,
|
||
|
.get_max_energy_range_uj = get_max_energy_counter,
|
||
|
.release = release_zone,
|
||
|
.set_enable = set_domain_enable,
|
||
|
.get_enable = get_domain_enable,
|
||
|
},
|
||
|
/* RAPL_DOMAIN_PP0 */
|
||
|
{
|
||
|
.get_energy_uj = get_energy_counter,
|
||
|
.get_max_energy_range_uj = get_max_energy_counter,
|
||
|
.release = release_zone,
|
||
|
.set_enable = set_domain_enable,
|
||
|
.get_enable = get_domain_enable,
|
||
|
},
|
||
|
/* RAPL_DOMAIN_PP1 */
|
||
|
{
|
||
|
.get_energy_uj = get_energy_counter,
|
||
|
.get_max_energy_range_uj = get_max_energy_counter,
|
||
|
.release = release_zone,
|
||
|
.set_enable = set_domain_enable,
|
||
|
.get_enable = get_domain_enable,
|
||
|
},
|
||
|
/* RAPL_DOMAIN_DRAM */
|
||
|
{
|
||
|
.get_energy_uj = get_energy_counter,
|
||
|
.get_max_energy_range_uj = get_max_energy_counter,
|
||
|
.release = release_zone,
|
||
|
.set_enable = set_domain_enable,
|
||
|
.get_enable = get_domain_enable,
|
||
|
},
|
||
|
/* RAPL_DOMAIN_PLATFORM */
|
||
|
{
|
||
|
.get_energy_uj = get_energy_counter,
|
||
|
.get_max_energy_range_uj = get_max_energy_counter,
|
||
|
.release = release_zone,
|
||
|
.set_enable = set_domain_enable,
|
||
|
.get_enable = get_domain_enable,
|
||
|
},
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Constraint index used by powercap can be different than power limit (PL)
|
||
|
* index in that some PLs maybe missing due to non-existent MSRs. So we
|
||
|
* need to convert here by finding the valid PLs only (name populated).
|
||
|
*/
|
||
|
static int contraint_to_pl(struct rapl_domain *rd, int cid)
|
||
|
{
|
||
|
int i, j;
|
||
|
|
||
|
for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
|
||
|
if ((rd->rpl[i].name) && j++ == cid) {
|
||
|
pr_debug("%s: index %d\n", __func__, i);
|
||
|
return i;
|
||
|
}
|
||
|
}
|
||
|
pr_err("Cannot find matching power limit for constraint %d\n", cid);
|
||
|
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
static int set_power_limit(struct powercap_zone *power_zone, int cid,
|
||
|
u64 power_limit)
|
||
|
{
|
||
|
struct rapl_domain *rd;
|
||
|
struct rapl_package *rp;
|
||
|
int ret = 0;
|
||
|
int id;
|
||
|
|
||
|
cpus_read_lock();
|
||
|
rd = power_zone_to_rapl_domain(power_zone);
|
||
|
id = contraint_to_pl(rd, cid);
|
||
|
if (id < 0) {
|
||
|
ret = id;
|
||
|
goto set_exit;
|
||
|
}
|
||
|
|
||
|
rp = rd->rp;
|
||
|
|
||
|
if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
|
||
|
dev_warn(&power_zone->dev,
|
||
|
"%s locked by BIOS, monitoring only\n", rd->name);
|
||
|
ret = -EACCES;
|
||
|
goto set_exit;
|
||
|
}
|
||
|
|
||
|
switch (rd->rpl[id].prim_id) {
|
||
|
case PL1_ENABLE:
|
||
|
rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
|
||
|
break;
|
||
|
case PL2_ENABLE:
|
||
|
rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
|
||
|
break;
|
||
|
case PL4_ENABLE:
|
||
|
rapl_write_data_raw(rd, POWER_LIMIT4, power_limit);
|
||
|
break;
|
||
|
default:
|
||
|
ret = -EINVAL;
|
||
|
}
|
||
|
if (!ret)
|
||
|
package_power_limit_irq_save(rp);
|
||
|
set_exit:
|
||
|
cpus_read_unlock();
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
|
||
|
u64 *data)
|
||
|
{
|
||
|
struct rapl_domain *rd;
|
||
|
u64 val;
|
||
|
int prim;
|
||
|
int ret = 0;
|
||
|
int id;
|
||
|
|
||
|
cpus_read_lock();
|
||
|
rd = power_zone_to_rapl_domain(power_zone);
|
||
|
id = contraint_to_pl(rd, cid);
|
||
|
if (id < 0) {
|
||
|
ret = id;
|
||
|
goto get_exit;
|
||
|
}
|
||
|
|
||
|
switch (rd->rpl[id].prim_id) {
|
||
|
case PL1_ENABLE:
|
||
|
prim = POWER_LIMIT1;
|
||
|
break;
|
||
|
case PL2_ENABLE:
|
||
|
prim = POWER_LIMIT2;
|
||
|
break;
|
||
|
case PL4_ENABLE:
|
||
|
prim = POWER_LIMIT4;
|
||
|
break;
|
||
|
default:
|
||
|
cpus_read_unlock();
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
if (rapl_read_data_raw(rd, prim, true, &val))
|
||
|
ret = -EIO;
|
||
|
else
|
||
|
*data = val;
|
||
|
|
||
|
get_exit:
|
||
|
cpus_read_unlock();
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int set_time_window(struct powercap_zone *power_zone, int cid,
|
||
|
u64 window)
|
||
|
{
|
||
|
struct rapl_domain *rd;
|
||
|
int ret = 0;
|
||
|
int id;
|
||
|
|
||
|
cpus_read_lock();
|
||
|
rd = power_zone_to_rapl_domain(power_zone);
|
||
|
id = contraint_to_pl(rd, cid);
|
||
|
if (id < 0) {
|
||
|
ret = id;
|
||
|
goto set_time_exit;
|
||
|
}
|
||
|
|
||
|
switch (rd->rpl[id].prim_id) {
|
||
|
case PL1_ENABLE:
|
||
|
rapl_write_data_raw(rd, TIME_WINDOW1, window);
|
||
|
break;
|
||
|
case PL2_ENABLE:
|
||
|
rapl_write_data_raw(rd, TIME_WINDOW2, window);
|
||
|
break;
|
||
|
default:
|
||
|
ret = -EINVAL;
|
||
|
}
|
||
|
|
||
|
set_time_exit:
|
||
|
cpus_read_unlock();
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int get_time_window(struct powercap_zone *power_zone, int cid,
|
||
|
u64 *data)
|
||
|
{
|
||
|
struct rapl_domain *rd;
|
||
|
u64 val;
|
||
|
int ret = 0;
|
||
|
int id;
|
||
|
|
||
|
cpus_read_lock();
|
||
|
rd = power_zone_to_rapl_domain(power_zone);
|
||
|
id = contraint_to_pl(rd, cid);
|
||
|
if (id < 0) {
|
||
|
ret = id;
|
||
|
goto get_time_exit;
|
||
|
}
|
||
|
|
||
|
switch (rd->rpl[id].prim_id) {
|
||
|
case PL1_ENABLE:
|
||
|
ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
|
||
|
break;
|
||
|
case PL2_ENABLE:
|
||
|
ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
|
||
|
break;
|
||
|
case PL4_ENABLE:
|
||
|
/*
|
||
|
* Time window parameter is not applicable for PL4 entry
|
||
|
* so assigining '0' as default value.
|
||
|
*/
|
||
|
val = 0;
|
||
|
break;
|
||
|
default:
|
||
|
cpus_read_unlock();
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
if (!ret)
|
||
|
*data = val;
|
||
|
|
||
|
get_time_exit:
|
||
|
cpus_read_unlock();
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static const char *get_constraint_name(struct powercap_zone *power_zone,
|
||
|
int cid)
|
||
|
{
|
||
|
struct rapl_domain *rd;
|
||
|
int id;
|
||
|
|
||
|
rd = power_zone_to_rapl_domain(power_zone);
|
||
|
id = contraint_to_pl(rd, cid);
|
||
|
if (id >= 0)
|
||
|
return rd->rpl[id].name;
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static int get_max_power(struct powercap_zone *power_zone, int id, u64 *data)
|
||
|
{
|
||
|
struct rapl_domain *rd;
|
||
|
u64 val;
|
||
|
int prim;
|
||
|
int ret = 0;
|
||
|
|
||
|
cpus_read_lock();
|
||
|
rd = power_zone_to_rapl_domain(power_zone);
|
||
|
switch (rd->rpl[id].prim_id) {
|
||
|
case PL1_ENABLE:
|
||
|
prim = THERMAL_SPEC_POWER;
|
||
|
break;
|
||
|
case PL2_ENABLE:
|
||
|
prim = MAX_POWER;
|
||
|
break;
|
||
|
case PL4_ENABLE:
|
||
|
prim = MAX_POWER;
|
||
|
break;
|
||
|
default:
|
||
|
cpus_read_unlock();
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
if (rapl_read_data_raw(rd, prim, true, &val))
|
||
|
ret = -EIO;
|
||
|
else
|
||
|
*data = val;
|
||
|
|
||
|
/* As a generalization rule, PL4 would be around two times PL2. */
|
||
|
if (rd->rpl[id].prim_id == PL4_ENABLE)
|
||
|
*data = *data * 2;
|
||
|
|
||
|
cpus_read_unlock();
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static const struct powercap_zone_constraint_ops constraint_ops = {
|
||
|
.set_power_limit_uw = set_power_limit,
|
||
|
.get_power_limit_uw = get_current_power_limit,
|
||
|
.set_time_window_us = set_time_window,
|
||
|
.get_time_window_us = get_time_window,
|
||
|
.get_max_power_uw = get_max_power,
|
||
|
.get_name = get_constraint_name,
|
||
|
};
|
||
|
|
||
|
/* called after domain detection and package level data are set */
|
||
|
static void rapl_init_domains(struct rapl_package *rp)
|
||
|
{
|
||
|
enum rapl_domain_type i;
|
||
|
enum rapl_domain_reg_id j;
|
||
|
struct rapl_domain *rd = rp->domains;
|
||
|
|
||
|
for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
|
||
|
unsigned int mask = rp->domain_map & (1 << i);
|
||
|
|
||
|
if (!mask)
|
||
|
continue;
|
||
|
|
||
|
rd->rp = rp;
|
||
|
|
||
|
if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
|
||
|
snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
|
||
|
topology_physical_package_id(rp->lead_cpu));
|
||
|
} else
|
||
|
snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
|
||
|
rapl_domain_names[i]);
|
||
|
|
||
|
rd->id = i;
|
||
|
rd->rpl[0].prim_id = PL1_ENABLE;
|
||
|
rd->rpl[0].name = pl1_name;
|
||
|
|
||
|
/*
|
||
|
* The PL2 power domain is applicable for limits two
|
||
|
* and limits three
|
||
|
*/
|
||
|
if (rp->priv->limits[i] >= 2) {
|
||
|
rd->rpl[1].prim_id = PL2_ENABLE;
|
||
|
rd->rpl[1].name = pl2_name;
|
||
|
}
|
||
|
|
||
|
/* Enable PL4 domain if the total power limits are three */
|
||
|
if (rp->priv->limits[i] == 3) {
|
||
|
rd->rpl[2].prim_id = PL4_ENABLE;
|
||
|
rd->rpl[2].name = pl4_name;
|
||
|
}
|
||
|
|
||
|
for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
|
||
|
rd->regs[j] = rp->priv->regs[i][j];
|
||
|
|
||
|
switch (i) {
|
||
|
case RAPL_DOMAIN_DRAM:
|
||
|
rd->domain_energy_unit =
|
||
|
rapl_defaults->dram_domain_energy_unit;
|
||
|
if (rd->domain_energy_unit)
|
||
|
pr_info("DRAM domain energy unit %dpj\n",
|
||
|
rd->domain_energy_unit);
|
||
|
break;
|
||
|
case RAPL_DOMAIN_PLATFORM:
|
||
|
rd->domain_energy_unit =
|
||
|
rapl_defaults->psys_domain_energy_unit;
|
||
|
if (rd->domain_energy_unit)
|
||
|
pr_info("Platform domain energy unit %dpj\n",
|
||
|
rd->domain_energy_unit);
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
rd++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
|
||
|
u64 value, int to_raw)
|
||
|
{
|
||
|
u64 units = 1;
|
||
|
struct rapl_package *rp = rd->rp;
|
||
|
u64 scale = 1;
|
||
|
|
||
|
switch (type) {
|
||
|
case POWER_UNIT:
|
||
|
units = rp->power_unit;
|
||
|
break;
|
||
|
case ENERGY_UNIT:
|
||
|
scale = ENERGY_UNIT_SCALE;
|
||
|
/* per domain unit takes precedence */
|
||
|
if (rd->domain_energy_unit)
|
||
|
units = rd->domain_energy_unit;
|
||
|
else
|
||
|
units = rp->energy_unit;
|
||
|
break;
|
||
|
case TIME_UNIT:
|
||
|
return rapl_defaults->compute_time_window(rp, value, to_raw);
|
||
|
case ARBITRARY_UNIT:
|
||
|
default:
|
||
|
return value;
|
||
|
}
|
||
|
|
||
|
if (to_raw)
|
||
|
return div64_u64(value, units) * scale;
|
||
|
|
||
|
value *= units;
|
||
|
|
||
|
return div64_u64(value, scale);
|
||
|
}
|
||
|
|
||
|
/* in the order of enum rapl_primitives */
|
||
|
static struct rapl_primitive_info rpi[] = {
|
||
|
/* name, mask, shift, msr index, unit divisor */
|
||
|
PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
|
||
|
RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
|
||
|
PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
|
||
|
RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
|
||
|
PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
|
||
|
RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
|
||
|
PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
|
||
|
RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
|
||
|
PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
|
||
|
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
|
||
|
PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
|
||
|
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
|
||
|
PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
|
||
|
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
|
||
|
PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
|
||
|
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
|
||
|
PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
|
||
|
RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
|
||
|
PRIMITIVE_INFO_INIT(PL4_ENABLE, POWER_LIMIT4_MASK, 0,
|
||
|
RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
|
||
|
PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
|
||
|
RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
|
||
|
PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
|
||
|
RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
|
||
|
PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
|
||
|
0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
|
||
|
PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
|
||
|
RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
|
||
|
PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
|
||
|
RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
|
||
|
PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
|
||
|
RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
|
||
|
PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
|
||
|
RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
|
||
|
PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
|
||
|
RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
|
||
|
/* non-hardware */
|
||
|
PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
|
||
|
RAPL_PRIMITIVE_DERIVED),
|
||
|
{NULL, 0, 0, 0},
|
||
|
};
|
||
|
|
||
|
/* Read primitive data based on its related struct rapl_primitive_info.
|
||
|
* if xlate flag is set, return translated data based on data units, i.e.
|
||
|
* time, energy, and power.
|
||
|
* RAPL MSRs are non-architectual and are laid out not consistently across
|
||
|
* domains. Here we use primitive info to allow writing consolidated access
|
||
|
* functions.
|
||
|
* For a given primitive, it is processed by MSR mask and shift. Unit conversion
|
||
|
* is pre-assigned based on RAPL unit MSRs read at init time.
|
||
|
* 63-------------------------- 31--------------------------- 0
|
||
|
* | xxxxx (mask) |
|
||
|
* | |<- shift ----------------|
|
||
|
* 63-------------------------- 31--------------------------- 0
|
||
|
*/
|
||
|
static int rapl_read_data_raw(struct rapl_domain *rd,
|
||
|
enum rapl_primitives prim, bool xlate, u64 *data)
|
||
|
{
|
||
|
u64 value;
|
||
|
struct rapl_primitive_info *rp = &rpi[prim];
|
||
|
struct reg_action ra;
|
||
|
int cpu;
|
||
|
|
||
|
if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
|
||
|
return -EINVAL;
|
||
|
|
||
|
ra.reg = rd->regs[rp->id];
|
||
|
if (!ra.reg)
|
||
|
return -EINVAL;
|
||
|
|
||
|
cpu = rd->rp->lead_cpu;
|
||
|
|
||
|
/* domain with 2 limits has different bit */
|
||
|
if (prim == FW_LOCK && rd->rp->priv->limits[rd->id] == 2) {
|
||
|
rp->mask = POWER_HIGH_LOCK;
|
||
|
rp->shift = 63;
|
||
|
}
|
||
|
/* non-hardware data are collected by the polling thread */
|
||
|
if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
|
||
|
*data = rd->rdd.primitives[prim];
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
ra.mask = rp->mask;
|
||
|
|
||
|
if (rd->rp->priv->read_raw(cpu, &ra)) {
|
||
|
pr_debug("failed to read reg 0x%llx on cpu %d\n", ra.reg, cpu);
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
value = ra.value >> rp->shift;
|
||
|
|
||
|
if (xlate)
|
||
|
*data = rapl_unit_xlate(rd, rp->unit, value, 0);
|
||
|
else
|
||
|
*data = value;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Similar use of primitive info in the read counterpart */
|
||
|
static int rapl_write_data_raw(struct rapl_domain *rd,
|
||
|
enum rapl_primitives prim,
|
||
|
unsigned long long value)
|
||
|
{
|
||
|
struct rapl_primitive_info *rp = &rpi[prim];
|
||
|
int cpu;
|
||
|
u64 bits;
|
||
|
struct reg_action ra;
|
||
|
int ret;
|
||
|
|
||
|
cpu = rd->rp->lead_cpu;
|
||
|
bits = rapl_unit_xlate(rd, rp->unit, value, 1);
|
||
|
bits <<= rp->shift;
|
||
|
bits &= rp->mask;
|
||
|
|
||
|
memset(&ra, 0, sizeof(ra));
|
||
|
|
||
|
ra.reg = rd->regs[rp->id];
|
||
|
ra.mask = rp->mask;
|
||
|
ra.value = bits;
|
||
|
|
||
|
ret = rd->rp->priv->write_raw(cpu, &ra);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Raw RAPL data stored in MSRs are in certain scales. We need to
|
||
|
* convert them into standard units based on the units reported in
|
||
|
* the RAPL unit MSRs. This is specific to CPUs as the method to
|
||
|
* calculate units differ on different CPUs.
|
||
|
* We convert the units to below format based on CPUs.
|
||
|
* i.e.
|
||
|
* energy unit: picoJoules : Represented in picoJoules by default
|
||
|
* power unit : microWatts : Represented in milliWatts by default
|
||
|
* time unit : microseconds: Represented in seconds by default
|
||
|
*/
|
||
|
static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
|
||
|
{
|
||
|
struct reg_action ra;
|
||
|
u32 value;
|
||
|
|
||
|
ra.reg = rp->priv->reg_unit;
|
||
|
ra.mask = ~0;
|
||
|
if (rp->priv->read_raw(cpu, &ra)) {
|
||
|
pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
|
||
|
rp->priv->reg_unit, cpu);
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
|
||
|
rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
|
||
|
|
||
|
value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
|
||
|
rp->power_unit = 1000000 / (1 << value);
|
||
|
|
||
|
value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
|
||
|
rp->time_unit = 1000000 / (1 << value);
|
||
|
|
||
|
pr_debug("Core CPU %s energy=%dpJ, time=%dus, power=%duW\n",
|
||
|
rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
|
||
|
{
|
||
|
struct reg_action ra;
|
||
|
u32 value;
|
||
|
|
||
|
ra.reg = rp->priv->reg_unit;
|
||
|
ra.mask = ~0;
|
||
|
if (rp->priv->read_raw(cpu, &ra)) {
|
||
|
pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
|
||
|
rp->priv->reg_unit, cpu);
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
|
||
|
rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
|
||
|
|
||
|
value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
|
||
|
rp->power_unit = (1 << value) * 1000;
|
||
|
|
||
|
value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
|
||
|
rp->time_unit = 1000000 / (1 << value);
|
||
|
|
||
|
pr_debug("Atom %s energy=%dpJ, time=%dus, power=%duW\n",
|
||
|
rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void power_limit_irq_save_cpu(void *info)
|
||
|
{
|
||
|
u32 l, h = 0;
|
||
|
struct rapl_package *rp = (struct rapl_package *)info;
|
||
|
|
||
|
/* save the state of PLN irq mask bit before disabling it */
|
||
|
rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
|
||
|
if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
|
||
|
rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
|
||
|
rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
|
||
|
}
|
||
|
l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
|
||
|
wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
|
||
|
}
|
||
|
|
||
|
/* REVISIT:
|
||
|
* When package power limit is set artificially low by RAPL, LVT
|
||
|
* thermal interrupt for package power limit should be ignored
|
||
|
* since we are not really exceeding the real limit. The intention
|
||
|
* is to avoid excessive interrupts while we are trying to save power.
|
||
|
* A useful feature might be routing the package_power_limit interrupt
|
||
|
* to userspace via eventfd. once we have a usecase, this is simple
|
||
|
* to do by adding an atomic notifier.
|
||
|
*/
|
||
|
|
||
|
static void package_power_limit_irq_save(struct rapl_package *rp)
|
||
|
{
|
||
|
if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
|
||
|
return;
|
||
|
|
||
|
smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Restore per package power limit interrupt enable state. Called from cpu
|
||
|
* hotplug code on package removal.
|
||
|
*/
|
||
|
static void package_power_limit_irq_restore(struct rapl_package *rp)
|
||
|
{
|
||
|
u32 l, h;
|
||
|
|
||
|
if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
|
||
|
return;
|
||
|
|
||
|
/* irq enable state not saved, nothing to restore */
|
||
|
if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
|
||
|
return;
|
||
|
|
||
|
rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
|
||
|
|
||
|
if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
|
||
|
l |= PACKAGE_THERM_INT_PLN_ENABLE;
|
||
|
else
|
||
|
l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
|
||
|
|
||
|
wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
|
||
|
}
|
||
|
|
||
|
static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
|
||
|
{
|
||
|
int nr_powerlimit = find_nr_power_limit(rd);
|
||
|
|
||
|
/* always enable clamp such that p-state can go below OS requested
|
||
|
* range. power capping priority over guranteed frequency.
|
||
|
*/
|
||
|
rapl_write_data_raw(rd, PL1_CLAMP, mode);
|
||
|
|
||
|
/* some domains have pl2 */
|
||
|
if (nr_powerlimit > 1) {
|
||
|
rapl_write_data_raw(rd, PL2_ENABLE, mode);
|
||
|
rapl_write_data_raw(rd, PL2_CLAMP, mode);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
|
||
|
{
|
||
|
static u32 power_ctrl_orig_val;
|
||
|
u32 mdata;
|
||
|
|
||
|
if (!rapl_defaults->floor_freq_reg_addr) {
|
||
|
pr_err("Invalid floor frequency config register\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (!power_ctrl_orig_val)
|
||
|
iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
|
||
|
rapl_defaults->floor_freq_reg_addr,
|
||
|
&power_ctrl_orig_val);
|
||
|
mdata = power_ctrl_orig_val;
|
||
|
if (enable) {
|
||
|
mdata &= ~(0x7f << 8);
|
||
|
mdata |= 1 << 8;
|
||
|
}
|
||
|
iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
|
||
|
rapl_defaults->floor_freq_reg_addr, mdata);
|
||
|
}
|
||
|
|
||
|
static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
|
||
|
bool to_raw)
|
||
|
{
|
||
|
u64 f, y; /* fraction and exp. used for time unit */
|
||
|
|
||
|
/*
|
||
|
* Special processing based on 2^Y*(1+F/4), refer
|
||
|
* to Intel Software Developer's manual Vol.3B: CH 14.9.3.
|
||
|
*/
|
||
|
if (!to_raw) {
|
||
|
f = (value & 0x60) >> 5;
|
||
|
y = value & 0x1f;
|
||
|
value = (1 << y) * (4 + f) * rp->time_unit / 4;
|
||
|
} else {
|
||
|
if (value < rp->time_unit)
|
||
|
return 0;
|
||
|
|
||
|
do_div(value, rp->time_unit);
|
||
|
y = ilog2(value);
|
||
|
f = div64_u64(4 * (value - (1 << y)), 1 << y);
|
||
|
value = (y & 0x1f) | ((f & 0x3) << 5);
|
||
|
}
|
||
|
return value;
|
||
|
}
|
||
|
|
||
|
static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
|
||
|
bool to_raw)
|
||
|
{
|
||
|
/*
|
||
|
* Atom time unit encoding is straight forward val * time_unit,
|
||
|
* where time_unit is default to 1 sec. Never 0.
|
||
|
*/
|
||
|
if (!to_raw)
|
||
|
return (value) ? value *= rp->time_unit : rp->time_unit;
|
||
|
|
||
|
value = div64_u64(value, rp->time_unit);
|
||
|
|
||
|
return value;
|
||
|
}
|
||
|
|
||
|
static const struct rapl_defaults rapl_defaults_core = {
|
||
|
.floor_freq_reg_addr = 0,
|
||
|
.check_unit = rapl_check_unit_core,
|
||
|
.set_floor_freq = set_floor_freq_default,
|
||
|
.compute_time_window = rapl_compute_time_window_core,
|
||
|
};
|
||
|
|
||
|
static const struct rapl_defaults rapl_defaults_hsw_server = {
|
||
|
.check_unit = rapl_check_unit_core,
|
||
|
.set_floor_freq = set_floor_freq_default,
|
||
|
.compute_time_window = rapl_compute_time_window_core,
|
||
|
.dram_domain_energy_unit = 15300,
|
||
|
};
|
||
|
|
||
|
static const struct rapl_defaults rapl_defaults_spr_server = {
|
||
|
.check_unit = rapl_check_unit_core,
|
||
|
.set_floor_freq = set_floor_freq_default,
|
||
|
.compute_time_window = rapl_compute_time_window_core,
|
||
|
.psys_domain_energy_unit = 1000000000,
|
||
|
};
|
||
|
|
||
|
static const struct rapl_defaults rapl_defaults_byt = {
|
||
|
.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
|
||
|
.check_unit = rapl_check_unit_atom,
|
||
|
.set_floor_freq = set_floor_freq_atom,
|
||
|
.compute_time_window = rapl_compute_time_window_atom,
|
||
|
};
|
||
|
|
||
|
static const struct rapl_defaults rapl_defaults_tng = {
|
||
|
.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
|
||
|
.check_unit = rapl_check_unit_atom,
|
||
|
.set_floor_freq = set_floor_freq_atom,
|
||
|
.compute_time_window = rapl_compute_time_window_atom,
|
||
|
};
|
||
|
|
||
|
static const struct rapl_defaults rapl_defaults_ann = {
|
||
|
.floor_freq_reg_addr = 0,
|
||
|
.check_unit = rapl_check_unit_atom,
|
||
|
.set_floor_freq = NULL,
|
||
|
.compute_time_window = rapl_compute_time_window_atom,
|
||
|
};
|
||
|
|
||
|
static const struct rapl_defaults rapl_defaults_cht = {
|
||
|
.floor_freq_reg_addr = 0,
|
||
|
.check_unit = rapl_check_unit_atom,
|
||
|
.set_floor_freq = NULL,
|
||
|
.compute_time_window = rapl_compute_time_window_atom,
|
||
|
};
|
||
|
|
||
|
static const struct rapl_defaults rapl_defaults_amd = {
|
||
|
.check_unit = rapl_check_unit_core,
|
||
|
};
|
||
|
|
||
|
static const struct x86_cpu_id rapl_ids[] __initconst = {
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &rapl_defaults_core),
|
||
|
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &rapl_defaults_core),
|
||
|
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(HASWELL, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &rapl_defaults_hsw_server),
|
||
|
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &rapl_defaults_hsw_server),
|
||
|
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &rapl_defaults_hsw_server),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &rapl_defaults_hsw_server),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &rapl_defaults_hsw_server),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &rapl_defaults_spr_server),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(LAKEFIELD, &rapl_defaults_core),
|
||
|
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, &rapl_defaults_byt),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, &rapl_defaults_cht),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID, &rapl_defaults_tng),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID, &rapl_defaults_ann),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, &rapl_defaults_core),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, &rapl_defaults_core),
|
||
|
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &rapl_defaults_hsw_server),
|
||
|
X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &rapl_defaults_hsw_server),
|
||
|
|
||
|
X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
|
||
|
X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
|
||
|
X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
|
||
|
{}
|
||
|
};
|
||
|
MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
|
||
|
|
||
|
/* Read once for all raw primitive data for domains */
|
||
|
static void rapl_update_domain_data(struct rapl_package *rp)
|
||
|
{
|
||
|
int dmn, prim;
|
||
|
u64 val;
|
||
|
|
||
|
for (dmn = 0; dmn < rp->nr_domains; dmn++) {
|
||
|
pr_debug("update %s domain %s data\n", rp->name,
|
||
|
rp->domains[dmn].name);
|
||
|
/* exclude non-raw primitives */
|
||
|
for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
|
||
|
if (!rapl_read_data_raw(&rp->domains[dmn], prim,
|
||
|
rpi[prim].unit, &val))
|
||
|
rp->domains[dmn].rdd.primitives[prim] = val;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
static int rapl_package_register_powercap(struct rapl_package *rp)
|
||
|
{
|
||
|
struct rapl_domain *rd;
|
||
|
struct powercap_zone *power_zone = NULL;
|
||
|
int nr_pl, ret;
|
||
|
|
||
|
/* Update the domain data of the new package */
|
||
|
rapl_update_domain_data(rp);
|
||
|
|
||
|
/* first we register package domain as the parent zone */
|
||
|
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
|
||
|
if (rd->id == RAPL_DOMAIN_PACKAGE) {
|
||
|
nr_pl = find_nr_power_limit(rd);
|
||
|
pr_debug("register package domain %s\n", rp->name);
|
||
|
power_zone = powercap_register_zone(&rd->power_zone,
|
||
|
rp->priv->control_type, rp->name,
|
||
|
NULL, &zone_ops[rd->id], nr_pl,
|
||
|
&constraint_ops);
|
||
|
if (IS_ERR(power_zone)) {
|
||
|
pr_debug("failed to register power zone %s\n",
|
||
|
rp->name);
|
||
|
return PTR_ERR(power_zone);
|
||
|
}
|
||
|
/* track parent zone in per package/socket data */
|
||
|
rp->power_zone = power_zone;
|
||
|
/* done, only one package domain per socket */
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (!power_zone) {
|
||
|
pr_err("no package domain found, unknown topology!\n");
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
/* now register domains as children of the socket/package */
|
||
|
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
|
||
|
struct powercap_zone *parent = rp->power_zone;
|
||
|
|
||
|
if (rd->id == RAPL_DOMAIN_PACKAGE)
|
||
|
continue;
|
||
|
if (rd->id == RAPL_DOMAIN_PLATFORM)
|
||
|
parent = NULL;
|
||
|
/* number of power limits per domain varies */
|
||
|
nr_pl = find_nr_power_limit(rd);
|
||
|
power_zone = powercap_register_zone(&rd->power_zone,
|
||
|
rp->priv->control_type,
|
||
|
rd->name, parent,
|
||
|
&zone_ops[rd->id], nr_pl,
|
||
|
&constraint_ops);
|
||
|
|
||
|
if (IS_ERR(power_zone)) {
|
||
|
pr_debug("failed to register power_zone, %s:%s\n",
|
||
|
rp->name, rd->name);
|
||
|
ret = PTR_ERR(power_zone);
|
||
|
goto err_cleanup;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
|
||
|
err_cleanup:
|
||
|
/*
|
||
|
* Clean up previously initialized domains within the package if we
|
||
|
* failed after the first domain setup.
|
||
|
*/
|
||
|
while (--rd >= rp->domains) {
|
||
|
pr_debug("unregister %s domain %s\n", rp->name, rd->name);
|
||
|
powercap_unregister_zone(rp->priv->control_type,
|
||
|
&rd->power_zone);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int rapl_check_domain(int cpu, int domain, struct rapl_package *rp)
|
||
|
{
|
||
|
struct reg_action ra;
|
||
|
|
||
|
switch (domain) {
|
||
|
case RAPL_DOMAIN_PACKAGE:
|
||
|
case RAPL_DOMAIN_PP0:
|
||
|
case RAPL_DOMAIN_PP1:
|
||
|
case RAPL_DOMAIN_DRAM:
|
||
|
case RAPL_DOMAIN_PLATFORM:
|
||
|
ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
|
||
|
break;
|
||
|
default:
|
||
|
pr_err("invalid domain id %d\n", domain);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
/* make sure domain counters are available and contains non-zero
|
||
|
* values, otherwise skip it.
|
||
|
*/
|
||
|
|
||
|
ra.mask = ENERGY_STATUS_MASK;
|
||
|
if (rp->priv->read_raw(cpu, &ra) || !ra.value)
|
||
|
return -ENODEV;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check if power limits are available. Two cases when they are not available:
|
||
|
* 1. Locked by BIOS, in this case we still provide read-only access so that
|
||
|
* users can see what limit is set by the BIOS.
|
||
|
* 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
|
||
|
* exist at all. In this case, we do not show the constraints in powercap.
|
||
|
*
|
||
|
* Called after domains are detected and initialized.
|
||
|
*/
|
||
|
static void rapl_detect_powerlimit(struct rapl_domain *rd)
|
||
|
{
|
||
|
u64 val64;
|
||
|
int i;
|
||
|
|
||
|
/* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
|
||
|
if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
|
||
|
if (val64) {
|
||
|
pr_info("RAPL %s domain %s locked by BIOS\n",
|
||
|
rd->rp->name, rd->name);
|
||
|
rd->state |= DOMAIN_STATE_BIOS_LOCKED;
|
||
|
}
|
||
|
}
|
||
|
/* check if power limit MSR exists, otherwise domain is monitoring only */
|
||
|
for (i = 0; i < NR_POWER_LIMITS; i++) {
|
||
|
int prim = rd->rpl[i].prim_id;
|
||
|
|
||
|
if (rapl_read_data_raw(rd, prim, false, &val64))
|
||
|
rd->rpl[i].name = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Detect active and valid domains for the given CPU, caller must
|
||
|
* ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
|
||
|
*/
|
||
|
static int rapl_detect_domains(struct rapl_package *rp, int cpu)
|
||
|
{
|
||
|
struct rapl_domain *rd;
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
|
||
|
/* use physical package id to read counters */
|
||
|
if (!rapl_check_domain(cpu, i, rp)) {
|
||
|
rp->domain_map |= 1 << i;
|
||
|
pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
|
||
|
}
|
||
|
}
|
||
|
rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
|
||
|
if (!rp->nr_domains) {
|
||
|
pr_debug("no valid rapl domains found in %s\n", rp->name);
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
|
||
|
|
||
|
rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
|
||
|
GFP_KERNEL);
|
||
|
if (!rp->domains)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
rapl_init_domains(rp);
|
||
|
|
||
|
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
|
||
|
rapl_detect_powerlimit(rd);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* called from CPU hotplug notifier, hotplug lock held */
|
||
|
void rapl_remove_package(struct rapl_package *rp)
|
||
|
{
|
||
|
struct rapl_domain *rd, *rd_package = NULL;
|
||
|
|
||
|
package_power_limit_irq_restore(rp);
|
||
|
|
||
|
for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
|
||
|
rapl_write_data_raw(rd, PL1_ENABLE, 0);
|
||
|
rapl_write_data_raw(rd, PL1_CLAMP, 0);
|
||
|
if (find_nr_power_limit(rd) > 1) {
|
||
|
rapl_write_data_raw(rd, PL2_ENABLE, 0);
|
||
|
rapl_write_data_raw(rd, PL2_CLAMP, 0);
|
||
|
rapl_write_data_raw(rd, PL4_ENABLE, 0);
|
||
|
}
|
||
|
if (rd->id == RAPL_DOMAIN_PACKAGE) {
|
||
|
rd_package = rd;
|
||
|
continue;
|
||
|
}
|
||
|
pr_debug("remove package, undo power limit on %s: %s\n",
|
||
|
rp->name, rd->name);
|
||
|
powercap_unregister_zone(rp->priv->control_type,
|
||
|
&rd->power_zone);
|
||
|
}
|
||
|
/* do parent zone last */
|
||
|
powercap_unregister_zone(rp->priv->control_type,
|
||
|
&rd_package->power_zone);
|
||
|
list_del(&rp->plist);
|
||
|
kfree(rp);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rapl_remove_package);
|
||
|
|
||
|
/* caller to ensure CPU hotplug lock is held */
|
||
|
struct rapl_package *rapl_find_package_domain(int cpu, struct rapl_if_priv *priv)
|
||
|
{
|
||
|
int id = topology_logical_die_id(cpu);
|
||
|
struct rapl_package *rp;
|
||
|
|
||
|
list_for_each_entry(rp, &rapl_packages, plist) {
|
||
|
if (rp->id == id
|
||
|
&& rp->priv->control_type == priv->control_type)
|
||
|
return rp;
|
||
|
}
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rapl_find_package_domain);
|
||
|
|
||
|
/* called from CPU hotplug notifier, hotplug lock held */
|
||
|
struct rapl_package *rapl_add_package(int cpu, struct rapl_if_priv *priv)
|
||
|
{
|
||
|
int id = topology_logical_die_id(cpu);
|
||
|
struct rapl_package *rp;
|
||
|
int ret;
|
||
|
|
||
|
if (!rapl_defaults)
|
||
|
return ERR_PTR(-ENODEV);
|
||
|
|
||
|
rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
|
||
|
if (!rp)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
/* add the new package to the list */
|
||
|
rp->id = id;
|
||
|
rp->lead_cpu = cpu;
|
||
|
rp->priv = priv;
|
||
|
|
||
|
if (topology_max_die_per_package() > 1)
|
||
|
snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH,
|
||
|
"package-%d-die-%d",
|
||
|
topology_physical_package_id(cpu), topology_die_id(cpu));
|
||
|
else
|
||
|
snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
|
||
|
topology_physical_package_id(cpu));
|
||
|
|
||
|
/* check if the package contains valid domains */
|
||
|
if (rapl_detect_domains(rp, cpu) || rapl_defaults->check_unit(rp, cpu)) {
|
||
|
ret = -ENODEV;
|
||
|
goto err_free_package;
|
||
|
}
|
||
|
ret = rapl_package_register_powercap(rp);
|
||
|
if (!ret) {
|
||
|
INIT_LIST_HEAD(&rp->plist);
|
||
|
list_add(&rp->plist, &rapl_packages);
|
||
|
return rp;
|
||
|
}
|
||
|
|
||
|
err_free_package:
|
||
|
kfree(rp->domains);
|
||
|
kfree(rp);
|
||
|
return ERR_PTR(ret);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(rapl_add_package);
|
||
|
|
||
|
static void power_limit_state_save(void)
|
||
|
{
|
||
|
struct rapl_package *rp;
|
||
|
struct rapl_domain *rd;
|
||
|
int nr_pl, ret, i;
|
||
|
|
||
|
cpus_read_lock();
|
||
|
list_for_each_entry(rp, &rapl_packages, plist) {
|
||
|
if (!rp->power_zone)
|
||
|
continue;
|
||
|
rd = power_zone_to_rapl_domain(rp->power_zone);
|
||
|
nr_pl = find_nr_power_limit(rd);
|
||
|
for (i = 0; i < nr_pl; i++) {
|
||
|
switch (rd->rpl[i].prim_id) {
|
||
|
case PL1_ENABLE:
|
||
|
ret = rapl_read_data_raw(rd,
|
||
|
POWER_LIMIT1, true,
|
||
|
&rd->rpl[i].last_power_limit);
|
||
|
if (ret)
|
||
|
rd->rpl[i].last_power_limit = 0;
|
||
|
break;
|
||
|
case PL2_ENABLE:
|
||
|
ret = rapl_read_data_raw(rd,
|
||
|
POWER_LIMIT2, true,
|
||
|
&rd->rpl[i].last_power_limit);
|
||
|
if (ret)
|
||
|
rd->rpl[i].last_power_limit = 0;
|
||
|
break;
|
||
|
case PL4_ENABLE:
|
||
|
ret = rapl_read_data_raw(rd,
|
||
|
POWER_LIMIT4, true,
|
||
|
&rd->rpl[i].last_power_limit);
|
||
|
if (ret)
|
||
|
rd->rpl[i].last_power_limit = 0;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
cpus_read_unlock();
|
||
|
}
|
||
|
|
||
|
static void power_limit_state_restore(void)
|
||
|
{
|
||
|
struct rapl_package *rp;
|
||
|
struct rapl_domain *rd;
|
||
|
int nr_pl, i;
|
||
|
|
||
|
cpus_read_lock();
|
||
|
list_for_each_entry(rp, &rapl_packages, plist) {
|
||
|
if (!rp->power_zone)
|
||
|
continue;
|
||
|
rd = power_zone_to_rapl_domain(rp->power_zone);
|
||
|
nr_pl = find_nr_power_limit(rd);
|
||
|
for (i = 0; i < nr_pl; i++) {
|
||
|
switch (rd->rpl[i].prim_id) {
|
||
|
case PL1_ENABLE:
|
||
|
if (rd->rpl[i].last_power_limit)
|
||
|
rapl_write_data_raw(rd, POWER_LIMIT1,
|
||
|
rd->rpl[i].last_power_limit);
|
||
|
break;
|
||
|
case PL2_ENABLE:
|
||
|
if (rd->rpl[i].last_power_limit)
|
||
|
rapl_write_data_raw(rd, POWER_LIMIT2,
|
||
|
rd->rpl[i].last_power_limit);
|
||
|
break;
|
||
|
case PL4_ENABLE:
|
||
|
if (rd->rpl[i].last_power_limit)
|
||
|
rapl_write_data_raw(rd, POWER_LIMIT4,
|
||
|
rd->rpl[i].last_power_limit);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
cpus_read_unlock();
|
||
|
}
|
||
|
|
||
|
static int rapl_pm_callback(struct notifier_block *nb,
|
||
|
unsigned long mode, void *_unused)
|
||
|
{
|
||
|
switch (mode) {
|
||
|
case PM_SUSPEND_PREPARE:
|
||
|
power_limit_state_save();
|
||
|
break;
|
||
|
case PM_POST_SUSPEND:
|
||
|
power_limit_state_restore();
|
||
|
break;
|
||
|
}
|
||
|
return NOTIFY_OK;
|
||
|
}
|
||
|
|
||
|
static struct notifier_block rapl_pm_notifier = {
|
||
|
.notifier_call = rapl_pm_callback,
|
||
|
};
|
||
|
|
||
|
static struct platform_device *rapl_msr_platdev;
|
||
|
|
||
|
static int __init rapl_init(void)
|
||
|
{
|
||
|
const struct x86_cpu_id *id;
|
||
|
int ret;
|
||
|
|
||
|
id = x86_match_cpu(rapl_ids);
|
||
|
if (!id) {
|
||
|
pr_err("driver does not support CPU family %d model %d\n",
|
||
|
boot_cpu_data.x86, boot_cpu_data.x86_model);
|
||
|
|
||
|
return -ENODEV;
|
||
|
}
|
||
|
|
||
|
rapl_defaults = (struct rapl_defaults *)id->driver_data;
|
||
|
|
||
|
ret = register_pm_notifier(&rapl_pm_notifier);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
|
||
|
if (!rapl_msr_platdev) {
|
||
|
ret = -ENOMEM;
|
||
|
goto end;
|
||
|
}
|
||
|
|
||
|
ret = platform_device_add(rapl_msr_platdev);
|
||
|
if (ret)
|
||
|
platform_device_put(rapl_msr_platdev);
|
||
|
|
||
|
end:
|
||
|
if (ret)
|
||
|
unregister_pm_notifier(&rapl_pm_notifier);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void __exit rapl_exit(void)
|
||
|
{
|
||
|
platform_device_unregister(rapl_msr_platdev);
|
||
|
unregister_pm_notifier(&rapl_pm_notifier);
|
||
|
}
|
||
|
|
||
|
fs_initcall(rapl_init);
|
||
|
module_exit(rapl_exit);
|
||
|
|
||
|
MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
|
||
|
MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
|
||
|
MODULE_LICENSE("GPL v2");
|