/* chunkset_avx512.c -- AVX512 inline functions to copy small data chunks. * For conditions of distribution and use, see copyright notice in zlib.h */ #include "zbuild.h" #include "zmemory.h" #ifdef X86_AVX512 #include "avx2_tables.h" #include #include "x86_intrins.h" typedef __m256i chunk_t; typedef __m128i halfchunk_t; typedef __mmask32 mask_t; typedef __mmask16 halfmask_t; #define HAVE_CHUNKMEMSET_2 #define HAVE_CHUNKMEMSET_4 #define HAVE_CHUNKMEMSET_8 #define HAVE_CHUNKMEMSET_16 #define HAVE_CHUNK_MAG #define HAVE_HALF_CHUNK #define HAVE_MASKED_READWRITE #define HAVE_CHUNKCOPY #define HAVE_HALFCHUNKCOPY static inline halfmask_t gen_half_mask(unsigned len) { return (halfmask_t)_bzhi_u32(0xFFFF, len); } static inline mask_t gen_mask(unsigned len) { return (mask_t)_bzhi_u32(0xFFFFFFFF, len); } static inline void chunkmemset_2(uint8_t *from, chunk_t *chunk) { *chunk = _mm256_set1_epi16(zng_memread_2(from)); } static inline void chunkmemset_4(uint8_t *from, chunk_t *chunk) { *chunk = _mm256_set1_epi32(zng_memread_4(from)); } static inline void chunkmemset_8(uint8_t *from, chunk_t *chunk) { *chunk = _mm256_set1_epi64x(zng_memread_8(from)); } static inline void chunkmemset_16(uint8_t *from, chunk_t *chunk) { /* Unfortunately there seems to be a compiler bug in Visual Studio 2015 where * the load is dumped to the stack with an aligned move for this memory-register * broadcast. The vbroadcasti128 instruction is 2 fewer cycles and this dump to * stack doesn't exist if compiled with optimizations. For the sake of working * properly in a debugger, let's take the 2 cycle penalty */ #if defined(_MSC_VER) && _MSC_VER <= 1900 halfchunk_t half = _mm_loadu_si128((__m128i*)from); *chunk = _mm256_inserti128_si256(_mm256_castsi128_si256(half), half, 1); #else *chunk = _mm256_broadcastsi128_si256(_mm_loadu_si128((__m128i*)from)); #endif } static inline void loadchunk(uint8_t const *s, chunk_t *chunk) { *chunk = _mm256_loadu_si256((__m256i *)s); } static inline void storechunk(uint8_t *out, chunk_t *chunk) { _mm256_storeu_si256((__m256i *)out, *chunk); } static inline uint8_t* CHUNKCOPY(uint8_t *out, uint8_t const *from, unsigned len) { Assert(len > 0, "chunkcopy should never have a length 0"); chunk_t chunk; uint32_t rem = len % sizeof(chunk_t); if (len < sizeof(chunk_t)) { mask_t rem_mask = gen_mask(rem); chunk = _mm256_maskz_loadu_epi8(rem_mask, from); _mm256_mask_storeu_epi8(out, rem_mask, chunk); return out + rem; } loadchunk(from, &chunk); rem = (rem == 0) ? sizeof(chunk_t) : rem; storechunk(out, &chunk); out += rem; from += rem; len -= rem; while (len > 0) { loadchunk(from, &chunk); storechunk(out, &chunk); out += sizeof(chunk_t); from += sizeof(chunk_t); len -= sizeof(chunk_t); } return out; } static inline chunk_t GET_CHUNK_MAG(uint8_t *buf, uint32_t *chunk_rem, uint32_t dist) { lut_rem_pair lut_rem = perm_idx_lut[dist - 3]; __m256i ret_vec; *chunk_rem = lut_rem.remval; /* See the AVX2 implementation for more detailed comments. This is that + some masked * loads to avoid an out of bounds read on the heap */ if (dist < 16) { const __m256i permute_xform = _mm256_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16); __m256i perm_vec = _mm256_load_si256((__m256i*)(permute_table+lut_rem.idx)); halfmask_t load_mask = gen_half_mask(dist); __m128i ret_vec0 = _mm_maskz_loadu_epi8(load_mask, buf); perm_vec = _mm256_add_epi8(perm_vec, permute_xform); ret_vec = _mm256_inserti128_si256(_mm256_castsi128_si256(ret_vec0), ret_vec0, 1); ret_vec = _mm256_shuffle_epi8(ret_vec, perm_vec); } else { halfmask_t load_mask = gen_half_mask(dist - 16); __m128i ret_vec0 = _mm_loadu_si128((__m128i*)buf); __m128i ret_vec1 = _mm_maskz_loadu_epi8(load_mask, (__m128i*)(buf + 16)); __m128i perm_vec1 = _mm_load_si128((__m128i*)(permute_table + lut_rem.idx)); halfmask_t xlane_mask = _mm_cmp_epi8_mask(perm_vec1, _mm_set1_epi8(15), _MM_CMPINT_LE); __m128i latter_half = _mm_mask_shuffle_epi8(ret_vec1, xlane_mask, ret_vec0, perm_vec1); ret_vec = _mm256_inserti128_si256(_mm256_castsi128_si256(ret_vec0), latter_half, 1); } return ret_vec; } static inline void storehalfchunk(uint8_t *out, halfchunk_t *chunk) { _mm_storeu_si128((__m128i *)out, *chunk); } static inline chunk_t halfchunk2whole(halfchunk_t *chunk) { /* We zero extend mostly to appease some memory sanitizers. These bytes are ultimately * unlikely to be actually written or read from */ return _mm256_zextsi128_si256(*chunk); } static inline halfchunk_t GET_HALFCHUNK_MAG(uint8_t *buf, uint32_t *chunk_rem, uint32_t dist) { lut_rem_pair lut_rem = perm_idx_lut[dist - 3]; __m128i perm_vec, ret_vec; halfmask_t load_mask = gen_half_mask(dist); ret_vec = _mm_maskz_loadu_epi8(load_mask, buf); *chunk_rem = half_rem_vals[dist - 3]; perm_vec = _mm_load_si128((__m128i*)(permute_table + lut_rem.idx)); ret_vec = _mm_shuffle_epi8(ret_vec, perm_vec); return ret_vec; } static inline uint8_t* HALFCHUNKCOPY(uint8_t *out, uint8_t const *from, unsigned len) { Assert(len > 0, "chunkcopy should never have a length 0"); halfchunk_t chunk; uint32_t rem = len % sizeof(halfchunk_t); if (rem == 0) { rem = sizeof(halfchunk_t); } halfmask_t rem_mask = gen_half_mask(rem); chunk = _mm_maskz_loadu_epi8(rem_mask, from); _mm_mask_storeu_epi8(out, rem_mask, chunk); return out + rem; } #define CHUNKSIZE chunksize_avx512 #define CHUNKUNROLL chunkunroll_avx512 #define CHUNKMEMSET chunkmemset_avx512 #define CHUNKMEMSET_SAFE chunkmemset_safe_avx512 #include "chunkset_tpl.h" #define INFLATE_FAST inflate_fast_avx512 #include "inffast_tpl.h" #endif