/* chunkset_avx2.c -- AVX2 inline functions to copy small data chunks. * For conditions of distribution and use, see copyright notice in zlib.h */ #include "zbuild.h" #include "zmemory.h" #ifdef X86_AVX2 #include "avx2_tables.h" #include #include "x86_intrins.h" typedef __m256i chunk_t; typedef __m128i halfchunk_t; #define HAVE_CHUNKMEMSET_2 #define HAVE_CHUNKMEMSET_4 #define HAVE_CHUNKMEMSET_8 #define HAVE_CHUNKMEMSET_16 #define HAVE_CHUNK_MAG #define HAVE_HALF_CHUNK static inline void chunkmemset_2(uint8_t *from, chunk_t *chunk) { *chunk = _mm256_set1_epi16(zng_memread_2(from)); } static inline void chunkmemset_4(uint8_t *from, chunk_t *chunk) { *chunk = _mm256_set1_epi32(zng_memread_4(from)); } static inline void chunkmemset_8(uint8_t *from, chunk_t *chunk) { *chunk = _mm256_set1_epi64x(zng_memread_8(from)); } static inline void chunkmemset_16(uint8_t *from, chunk_t *chunk) { /* See explanation in chunkset_avx512.c */ #if defined(_MSC_VER) && _MSC_VER <= 1900 halfchunk_t half = _mm_loadu_si128((__m128i*)from); *chunk = _mm256_inserti128_si256(_mm256_castsi128_si256(half), half, 1); #else *chunk = _mm256_broadcastsi128_si256(_mm_loadu_si128((__m128i*)from)); #endif } static inline void loadchunk(uint8_t const *s, chunk_t *chunk) { *chunk = _mm256_loadu_si256((__m256i *)s); } static inline void storechunk(uint8_t *out, chunk_t *chunk) { _mm256_storeu_si256((__m256i *)out, *chunk); } static inline chunk_t GET_CHUNK_MAG(uint8_t *buf, uint32_t *chunk_rem, uint32_t dist) { lut_rem_pair lut_rem = perm_idx_lut[dist - 3]; __m256i ret_vec; /* While technically we only need to read 4 or 8 bytes into this vector register for a lot of cases, GCC is * compiling this to a shared load for all branches, preferring the simpler code. Given that the buf value isn't in * GPRs to begin with the 256 bit load is _probably_ just as inexpensive */ *chunk_rem = lut_rem.remval; /* See note in chunkset_ssse3.c for why this is ok */ __msan_unpoison(buf + dist, 32 - dist); if (dist < 16) { /* This simpler case still requires us to shuffle in 128 bit lanes, so we must apply a static offset after * broadcasting the first vector register to both halves. This is _marginally_ faster than doing two separate * shuffles and combining the halves later */ const __m256i permute_xform = _mm256_setr_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16); __m256i perm_vec = _mm256_load_si256((__m256i*)(permute_table+lut_rem.idx)); __m128i ret_vec0 = _mm_loadu_si128((__m128i*)buf); perm_vec = _mm256_add_epi8(perm_vec, permute_xform); ret_vec = _mm256_inserti128_si256(_mm256_castsi128_si256(ret_vec0), ret_vec0, 1); ret_vec = _mm256_shuffle_epi8(ret_vec, perm_vec); } else { __m128i ret_vec0 = _mm_loadu_si128((__m128i*)buf); __m128i ret_vec1 = _mm_loadu_si128((__m128i*)(buf + 16)); /* Take advantage of the fact that only the latter half of the 256 bit vector will actually differ */ __m128i perm_vec1 = _mm_load_si128((__m128i*)(permute_table + lut_rem.idx)); __m128i xlane_permutes = _mm_cmpgt_epi8(_mm_set1_epi8(16), perm_vec1); __m128i xlane_res = _mm_shuffle_epi8(ret_vec0, perm_vec1); /* Since we can't wrap twice, we can simply keep the later half exactly how it is instead of having to _also_ * shuffle those values */ __m128i latter_half = _mm_blendv_epi8(ret_vec1, xlane_res, xlane_permutes); ret_vec = _mm256_inserti128_si256(_mm256_castsi128_si256(ret_vec0), latter_half, 1); } return ret_vec; } static inline void loadhalfchunk(uint8_t const *s, halfchunk_t *chunk) { *chunk = _mm_loadu_si128((__m128i *)s); } static inline void storehalfchunk(uint8_t *out, halfchunk_t *chunk) { _mm_storeu_si128((__m128i *)out, *chunk); } static inline chunk_t halfchunk2whole(halfchunk_t *chunk) { /* We zero extend mostly to appease some memory sanitizers. These bytes are ultimately * unlikely to be actually written or read from */ return _mm256_zextsi128_si256(*chunk); } static inline halfchunk_t GET_HALFCHUNK_MAG(uint8_t *buf, uint32_t *chunk_rem, uint32_t dist) { lut_rem_pair lut_rem = perm_idx_lut[dist - 3]; __m128i perm_vec, ret_vec; __msan_unpoison(buf + dist, 16 - dist); ret_vec = _mm_loadu_si128((__m128i*)buf); *chunk_rem = half_rem_vals[dist - 3]; perm_vec = _mm_load_si128((__m128i*)(permute_table + lut_rem.idx)); ret_vec = _mm_shuffle_epi8(ret_vec, perm_vec); return ret_vec; } #define CHUNKSIZE chunksize_avx2 #define CHUNKCOPY chunkcopy_avx2 #define CHUNKUNROLL chunkunroll_avx2 #define CHUNKMEMSET chunkmemset_avx2 #define CHUNKMEMSET_SAFE chunkmemset_safe_avx2 #include "chunkset_tpl.h" #define INFLATE_FAST inflate_fast_avx2 #include "inffast_tpl.h" #endif