fix: breakpad use miniz
Some checks failed
sm-rpc / build (Debug, arm-linux-gnueabihf) (push) Successful in 1m34s
sm-rpc / build (Debug, aarch64-linux-gnu) (push) Successful in 2m46s
sm-rpc / build (Debug, host.gcc) (push) Failing after 1m28s
sm-rpc / build (Release, aarch64-linux-gnu) (push) Successful in 2m14s
sm-rpc / build (Release, arm-linux-gnueabihf) (push) Successful in 2m8s
sm-rpc / build (Debug, mipsel-linux-gnu) (push) Successful in 5m35s
sm-rpc / build (Release, host.gcc) (push) Failing after 1m55s
sm-rpc / build (Release, mipsel-linux-gnu) (push) Successful in 7m21s

This commit is contained in:
tqcq
2025-08-25 15:24:22 +08:00
parent a58517497b
commit 68b2e7f763
728 changed files with 489652 additions and 1211 deletions

17
third_party/zlib-ng/tools/config.sub vendored Executable file
View File

@@ -0,0 +1,17 @@
#!/bin/sh
# Canonicalize CHOST.
# In particular, converts Debian multiarch tuples into GNU triplets.
# See also
# https://wiki.debian.org/Multiarch/Tuples
# https://wiki.gentoo.org/wiki/CHOST
# If you need an architecture not listed here, file a bug at github.com/zlib-ng/zlib-ng
# and work around the problem by dropping libtool's much more comprehensive config.sub
# on top of this file, see
# https://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub
case "$1" in
*-*-linux-gnu*) echo $1;;
i686-linux-gnu*|x86_64-linux-gnu*) echo $1 | sed 's/-linux-gnu/-pc-linux-gnu/';;
*-linux-gnu*) echo $1 | sed 's/-linux-gnu/-unknown-linux-gnu/';;
*) echo $1;;
esac

244
third_party/zlib-ng/tools/makecrct.c vendored Normal file
View File

@@ -0,0 +1,244 @@
/* makecrct.c -- output crc32 tables
* Copyright (C) 1995-2022 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#include <stdio.h>
#include <inttypes.h>
#include "zbuild.h"
#include "zutil.h"
/*
The crc32 table header file contains tables for both 32-bit and 64-bit
z_word_t's, and so requires a 64-bit type be available. In that case,
z_word_t must be defined to be 64-bits. This code then also generates
and writes out the tables for the case that z_word_t is 32 bits.
*/
#define W 8 /* Need a 64-bit integer type in order to generate crc32 tables. */
#include "crc32_braid_p.h"
static uint32_t crc_table[256];
static z_word_t crc_big_table[256];
static uint32_t x2n_table[32];
#include "crc32_braid_comb_p.h"
static void make_crc_table(void);
static void print_crc_table(void);
static void braid(uint32_t ltl[][256], z_word_t big[][256], int n, int w);
static void write_table(const uint32_t *table, int k);
static void write_table32hi(const z_word_t *table, int k);
static void write_table64(const z_word_t *table, int k);
/* ========================================================================= */
/*
Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
Polynomials over GF(2) are represented in binary, one bit per coefficient,
with the lowest powers in the most significant bit. Then adding polynomials
is just exclusive-or, and multiplying a polynomial by x is a right shift by
one. If we call the above polynomial p, and represent a byte as the
polynomial q, also with the lowest power in the most significant bit (so the
byte 0xb1 is the polynomial x^7+x^3+x^2+1), then the CRC is (q*x^32) mod p,
where a mod b means the remainder after dividing a by b.
This calculation is done using the shift-register method of multiplying and
taking the remainder. The register is initialized to zero, and for each
incoming bit, x^32 is added mod p to the register if the bit is a one (where
x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x
(which is shifting right by one and adding x^32 mod p if the bit shifted out
is a one). We start with the highest power (least significant bit) of q and
repeat for all eight bits of q.
The table is simply the CRC of all possible eight bit values. This is all the
information needed to generate CRCs on data a byte at a time for all
combinations of CRC register values and incoming bytes.
*/
static void make_crc_table(void) {
unsigned i, j, n;
uint32_t p;
/* initialize the CRC of bytes tables */
for (i = 0; i < 256; i++) {
p = i;
for (j = 0; j < 8; j++)
p = p & 1 ? (p >> 1) ^ POLY : p >> 1;
crc_table[i] = p;
crc_big_table[i] = ZSWAP64(p);
}
/* initialize the x^2^n mod p(x) table */
p = (uint32_t)1 << 30; /* x^1 */
x2n_table[0] = p;
for (n = 1; n < 32; n++)
x2n_table[n] = p = multmodp(p, p);
}
/*
Generate the little and big-endian braid tables for the given n and z_word_t
size w. Each array must have room for w blocks of 256 elements.
*/
static void braid(uint32_t ltl[][256], z_word_t big[][256], int n, int w) {
int k;
uint32_t i, p, q;
for (k = 0; k < w; k++) {
p = x2nmodp(((z_off64_t)n * w + 3 - k) << 3, 0);
ltl[k][0] = 0;
big[w - 1 - k][0] = 0;
for (i = 1; i < 256; i++) {
ltl[k][i] = q = multmodp(i << 24, p);
big[w - 1 - k][i] = ZSWAP64(q);
}
}
}
/*
Write the 32-bit values in table[0..k-1] to out, five per line in
hexadecimal separated by commas.
*/
static void write_table(const uint32_t *table, int k) {
int n;
for (n = 0; n < k; n++)
printf("%s0x%08" PRIx32 "%s", n == 0 || n % 5 ? "" : " ",
(uint32_t)(table[n]),
n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", "));
}
/*
Write the high 32-bits of each value in table[0..k-1] to out, five per line
in hexadecimal separated by commas.
*/
static void write_table32hi(const z_word_t *table, int k) {
int n;
for (n = 0; n < k; n++)
printf("%s0x%08" PRIx32 "%s", n == 0 || n % 5 ? "" : " ",
(uint32_t)(table[n] >> 32),
n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", "));
}
/*
Write the 64-bit values in table[0..k-1] to out, three per line in
hexadecimal separated by commas. This assumes that if there is a 64-bit
type, then there is also a long long integer type, and it is at least 64
bits. If not, then the type cast and format string can be adjusted
accordingly.
*/
static void write_table64(const z_word_t *table, int k) {
int n;
for (n = 0; n < k; n++)
printf("%s0x%016" PRIx64 "%s", n == 0 || n % 3 ? "" : " ",
(uint64_t)(table[n]),
n == k - 1 ? "" : (n % 3 == 2 ? ",\n" : ", "));
}
static void print_crc_table(void) {
int k, n;
uint32_t ltl[8][256];
z_word_t big[8][256];
printf("#ifndef CRC32_BRAID_TBL_H_\n");
printf("#define CRC32_BRAID_TBL_H_\n\n");
printf("/* crc32_braid_tbl.h -- tables for braided CRC calculation\n");
printf(" * Generated automatically by makecrct.c\n */\n\n");
/* print little-endian CRC table */
printf("static const uint32_t crc_table[] = {\n");
printf(" ");
write_table(crc_table, 256);
printf("};\n\n");
/* print big-endian CRC table for 64-bit z_word_t */
printf("#ifdef W\n\n");
printf("#if W == 8\n\n");
printf("static const z_word_t crc_big_table[] = {\n");
printf(" ");
write_table64(crc_big_table, 256);
printf("};\n\n");
/* print big-endian CRC table for 32-bit z_word_t */
printf("#else /* W == 4 */\n\n");
printf("static const z_word_t crc_big_table[] = {\n");
printf(" ");
write_table32hi(crc_big_table, 256);
printf("};\n\n");
printf("#endif\n\n");
printf("#endif /* W */\n\n");
/* write out braid tables for each value of N */
for (n = 1; n <= 6; n++) {
printf("#if N == %d\n", n);
/* compute braid tables for this N and 64-bit word_t */
braid(ltl, big, n, 8);
/* write out braid tables for 64-bit z_word_t */
printf("\n");
printf("#if W == 8\n\n");
printf("static const uint32_t crc_braid_table[][256] = {\n");
for (k = 0; k < 8; k++) {
printf(" {");
write_table(ltl[k], 256);
printf("}%s", k < 7 ? ",\n" : "");
}
printf("};\n\n");
printf("static const z_word_t crc_braid_big_table[][256] = {\n");
for (k = 0; k < 8; k++) {
printf(" {");
write_table64(big[k], 256);
printf("}%s", k < 7 ? ",\n" : "");
}
printf("};\n");
/* compute braid tables for this N and 32-bit word_t */
braid(ltl, big, n, 4);
/* write out braid tables for 32-bit z_word_t */
printf("\n");
printf("#else /* W == 4 */\n\n");
printf("static const uint32_t crc_braid_table[][256] = {\n");
for (k = 0; k < 4; k++) {
printf(" {");
write_table(ltl[k], 256);
printf("}%s", k < 3 ? ",\n" : "");
}
printf("};\n\n");
printf("static const z_word_t crc_braid_big_table[][256] = {\n");
for (k = 0; k < 4; k++) {
printf(" {");
write_table32hi(big[k], 256);
printf("}%s", k < 3 ? ",\n" : "");
}
printf("};\n\n");
printf("#endif /* W */\n\n");
printf("#endif /* N == %d */\n", n);
}
printf("\n");
/* write out zeros operator table */
printf("static const uint32_t x2n_table[] = {\n");
printf(" ");
write_table(x2n_table, 32);
printf("};\n");
printf("\n");
printf("#endif /* CRC32_BRAID_TBL_H_ */\n");
}
// The output of this application can be piped out to recreate crc32 tables
int main(int argc, char *argv[]) {
Z_UNUSED(argc);
Z_UNUSED(argv);
make_crc_table();
print_crc_table();
return 0;
}

89
third_party/zlib-ng/tools/makefixed.c vendored Normal file
View File

@@ -0,0 +1,89 @@
#include <stdio.h>
#include "zbuild.h"
#include "zutil.h"
#include "inftrees.h"
#include "inflate.h"
// Build and return state with length and distance decoding tables and index sizes set to fixed code decoding.
void Z_INTERNAL buildfixedtables(struct inflate_state *state) {
static code *lenfix, *distfix;
static code fixed[544];
// build fixed huffman tables
unsigned sym, bits;
static code *next;
// literal/length table
sym = 0;
while (sym < 144) state->lens[sym++] = 8;
while (sym < 256) state->lens[sym++] = 9;
while (sym < 280) state->lens[sym++] = 7;
while (sym < 288) state->lens[sym++] = 8;
next = fixed;
lenfix = next;
bits = 9;
zng_inflate_table(LENS, state->lens, 288, &(next), &(bits), state->work);
// distance table
sym = 0;
while (sym < 32) state->lens[sym++] = 5;
distfix = next;
bits = 5;
zng_inflate_table(DISTS, state->lens, 32, &(next), &(bits), state->work);
state->lencode = lenfix;
state->lenbits = 9;
state->distcode = distfix;
state->distbits = 5;
}
// Create fixed tables on the fly and write out a inffixed_tbl.h file that is #include'd above.
// makefixed() writes those tables to stdout, which would be piped to inffixed_tbl.h.
void makefixed(void) {
unsigned low, size;
struct inflate_state state;
memset(&state, 0, sizeof(state));
buildfixedtables(&state);
puts("/* inffixed_tbl.h -- table for decoding fixed codes");
puts(" * Generated automatically by makefixed().");
puts(" */");
puts("");
puts("/* WARNING: this file should *not* be used by applications.");
puts(" * It is part of the implementation of this library and is");
puts(" * subject to change. Applications should only use zlib.h.");
puts(" */");
puts("");
size = 1U << 9;
printf("static const code lenfix[%u] = {", size);
low = 0;
for (;;) {
if ((low % 7) == 0)
printf("\n ");
printf("{%u,%u,%d}", (low & 127) == 99 ? 64 : state.lencode[low].op,
state.lencode[low].bits, state.lencode[low].val);
if (++low == size)
break;
putchar(',');
}
puts("\n};");
size = 1U << 5;
printf("\nstatic const code distfix[%u] = {", size);
low = 0;
for (;;) {
if ((low % 6) == 0)
printf("\n ");
printf("{%u,%u,%d}", state.distcode[low].op, state.distcode[low].bits, state.distcode[low].val);
if (++low == size)
break;
putchar(',');
}
puts("\n};");
}
// The output of this application can be piped out to recreate inffixed_tbl.h
int main(void) {
makefixed();
return 0;
}

147
third_party/zlib-ng/tools/maketrees.c vendored Normal file
View File

@@ -0,0 +1,147 @@
/* maketrees.c -- output static huffman trees
* Copyright (C) 1995-2017 Jean-loup Gailly
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#include <stdio.h>
#include "zbuild.h"
#include "deflate.h"
#include "trees.h"
static ct_data static_ltree[L_CODES+2];
/* The static literal tree. Since the bit lengths are imposed, there is no
* need for the L_CODES extra codes used during heap construction. However
* The codes 286 and 287 are needed to build a canonical tree (see zng_tr_init).
*/
static ct_data static_dtree[D_CODES];
/* The static distance tree. (Actually a trivial tree since all codes use 5 bits.)
*/
static unsigned char dist_code[DIST_CODE_LEN];
/* Distance codes. The first 256 values correspond to the distances 3 .. 258,
* the last 256 values correspond to the top 8 bits of the 15 bit distances.
*/
static unsigned char length_code[STD_MAX_MATCH-STD_MIN_MATCH+1];
/* length code for each normalized match length (0 == STD_MIN_MATCH) */
static int base_length[LENGTH_CODES];
/* First normalized length for each code (0 = STD_MIN_MATCH) */
static int base_dist[D_CODES];
/* First normalized distance for each code (0 = distance of 1) */
static void tr_static_init(void) {
int n; /* iterates over tree elements */
int bits; /* bit counter */
int length; /* length value */
int code; /* code value */
int dist; /* distance index */
uint16_t bl_count[MAX_BITS+1];
/* number of codes at each bit length for an optimal tree */
/* Initialize the mapping length (0..255) -> length code (0..28) */
length = 0;
for (code = 0; code < LENGTH_CODES-1; code++) {
base_length[code] = length;
for (n = 0; n < (1 << extra_lbits[code]); n++) {
length_code[length++] = (unsigned char)code;
}
}
Assert(length == 256, "tr_static_init: length != 256");
/* Note that the length 255 (match length 258) can be represented in two different
* ways: code 284 + 5 bits or code 285, so we overwrite length_code[255] to use the best encoding:
*/
length_code[length-1] = (unsigned char)code;
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
dist = 0;
for (code = 0; code < 16; code++) {
base_dist[code] = dist;
for (n = 0; n < (1 << extra_dbits[code]); n++) {
dist_code[dist++] = (unsigned char)code;
}
}
Assert(dist == 256, "tr_static_init: dist != 256");
dist >>= 7; /* from now on, all distances are divided by 128 */
for ( ; code < D_CODES; code++) {
base_dist[code] = dist << 7;
for (n = 0; n < (1 << (extra_dbits[code]-7)); n++) {
dist_code[256 + dist++] = (unsigned char)code;
}
}
Assert(dist == 256, "tr_static_init: 256+dist != 512");
/* Construct the codes of the static literal tree */
for (bits = 0; bits <= MAX_BITS; bits++)
bl_count[bits] = 0;
n = 0;
while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
/* Codes 286 and 287 do not exist, but we must include them in the tree construction
* to get a canonical Huffman tree (longest code all ones)
*/
gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
/* The static distance tree is trivial: */
for (n = 0; n < D_CODES; n++) {
static_dtree[n].Len = 5;
static_dtree[n].Code = PREFIX(bi_reverse)((unsigned)n, 5);
}
}
# define SEPARATOR(i, last, width) \
((i) == (last)? "\n};\n\n" : \
((i) % (width) == (width)-1 ? ",\n" : ", "))
static void gen_trees_header(void) {
int i;
printf("#ifndef TREES_TBL_H_\n");
printf("#define TREES_TBL_H_\n\n");
printf("/* header created automatically with maketrees.c */\n\n");
printf("Z_INTERNAL const ct_data static_ltree[L_CODES+2] = {\n");
for (i = 0; i < L_CODES+2; i++) {
printf("{{%3u},{%u}}%s", static_ltree[i].Code, static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
}
printf("Z_INTERNAL const ct_data static_dtree[D_CODES] = {\n");
for (i = 0; i < D_CODES; i++) {
printf("{{%2u},{%u}}%s", static_dtree[i].Code, static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
}
printf("const unsigned char Z_INTERNAL zng_dist_code[DIST_CODE_LEN] = {\n");
for (i = 0; i < DIST_CODE_LEN; i++) {
printf("%2u%s", dist_code[i], SEPARATOR(i, DIST_CODE_LEN-1, 20));
}
printf("const unsigned char Z_INTERNAL zng_length_code[STD_MAX_MATCH-STD_MIN_MATCH+1] = {\n");
for (i = 0; i < STD_MAX_MATCH-STD_MIN_MATCH+1; i++) {
printf("%2u%s", length_code[i], SEPARATOR(i, STD_MAX_MATCH-STD_MIN_MATCH, 20));
}
printf("Z_INTERNAL const int base_length[LENGTH_CODES] = {\n");
for (i = 0; i < LENGTH_CODES; i++) {
printf("%d%s", base_length[i], SEPARATOR(i, LENGTH_CODES-1, 20));
}
printf("Z_INTERNAL const int base_dist[D_CODES] = {\n");
for (i = 0; i < D_CODES; i++) {
printf("%5d%s", base_dist[i], SEPARATOR(i, D_CODES-1, 10));
}
printf("#endif /* TREES_TBL_H_ */\n");
}
// The output of this application can be piped out to recreate trees.h
int main(void) {
tr_static_init();
gen_trees_header();
return 0;
}