fix: breakpad use miniz
Some checks failed
sm-rpc / build (Debug, arm-linux-gnueabihf) (push) Successful in 1m34s
sm-rpc / build (Debug, aarch64-linux-gnu) (push) Successful in 2m46s
sm-rpc / build (Debug, host.gcc) (push) Failing after 1m28s
sm-rpc / build (Release, aarch64-linux-gnu) (push) Successful in 2m14s
sm-rpc / build (Release, arm-linux-gnueabihf) (push) Successful in 2m8s
sm-rpc / build (Debug, mipsel-linux-gnu) (push) Successful in 5m35s
sm-rpc / build (Release, host.gcc) (push) Failing after 1m55s
sm-rpc / build (Release, mipsel-linux-gnu) (push) Successful in 7m21s
Some checks failed
sm-rpc / build (Debug, arm-linux-gnueabihf) (push) Successful in 1m34s
sm-rpc / build (Debug, aarch64-linux-gnu) (push) Successful in 2m46s
sm-rpc / build (Debug, host.gcc) (push) Failing after 1m28s
sm-rpc / build (Release, aarch64-linux-gnu) (push) Successful in 2m14s
sm-rpc / build (Release, arm-linux-gnueabihf) (push) Successful in 2m8s
sm-rpc / build (Debug, mipsel-linux-gnu) (push) Successful in 5m35s
sm-rpc / build (Release, host.gcc) (push) Failing after 1m55s
sm-rpc / build (Release, mipsel-linux-gnu) (push) Successful in 7m21s
This commit is contained in:
145
third_party/zlib-ng/arch/x86/adler32_avx2.c
vendored
Normal file
145
third_party/zlib-ng/arch/x86/adler32_avx2.c
vendored
Normal file
@@ -0,0 +1,145 @@
|
||||
/* adler32_avx2.c -- compute the Adler-32 checksum of a data stream
|
||||
* Copyright (C) 1995-2011 Mark Adler
|
||||
* Copyright (C) 2022 Adam Stylinski
|
||||
* Authors:
|
||||
* Brian Bockelman <bockelman@gmail.com>
|
||||
* Adam Stylinski <kungfujesus06@gmail.com>
|
||||
* For conditions of distribution and use, see copyright notice in zlib.h
|
||||
*/
|
||||
|
||||
#ifdef X86_AVX2
|
||||
|
||||
#include "zbuild.h"
|
||||
#include <immintrin.h>
|
||||
#include "adler32_p.h"
|
||||
#include "adler32_avx2_p.h"
|
||||
#include "x86_intrins.h"
|
||||
|
||||
extern uint32_t adler32_fold_copy_sse42(uint32_t adler, uint8_t *dst, const uint8_t *src, size_t len);
|
||||
extern uint32_t adler32_ssse3(uint32_t adler, const uint8_t *src, size_t len);
|
||||
|
||||
static inline uint32_t adler32_fold_copy_impl(uint32_t adler, uint8_t *dst, const uint8_t *src, size_t len, const int COPY) {
|
||||
if (src == NULL) return 1L;
|
||||
if (len == 0) return adler;
|
||||
|
||||
uint32_t adler0, adler1;
|
||||
adler1 = (adler >> 16) & 0xffff;
|
||||
adler0 = adler & 0xffff;
|
||||
|
||||
rem_peel:
|
||||
if (len < 16) {
|
||||
if (COPY) {
|
||||
return adler32_copy_len_16(adler0, src, dst, len, adler1);
|
||||
} else {
|
||||
return adler32_len_16(adler0, src, len, adler1);
|
||||
}
|
||||
} else if (len < 32) {
|
||||
if (COPY) {
|
||||
return adler32_fold_copy_sse42(adler, dst, src, len);
|
||||
} else {
|
||||
return adler32_ssse3(adler, src, len);
|
||||
}
|
||||
}
|
||||
|
||||
__m256i vs1, vs2;
|
||||
|
||||
const __m256i dot2v = _mm256_setr_epi8(32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15,
|
||||
14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1);
|
||||
const __m256i dot3v = _mm256_set1_epi16(1);
|
||||
const __m256i zero = _mm256_setzero_si256();
|
||||
|
||||
while (len >= 32) {
|
||||
vs1 = _mm256_zextsi128_si256(_mm_cvtsi32_si128(adler0));
|
||||
vs2 = _mm256_zextsi128_si256(_mm_cvtsi32_si128(adler1));
|
||||
__m256i vs1_0 = vs1;
|
||||
__m256i vs3 = _mm256_setzero_si256();
|
||||
|
||||
size_t k = MIN(len, NMAX);
|
||||
k -= k % 32;
|
||||
len -= k;
|
||||
|
||||
while (k >= 32) {
|
||||
/*
|
||||
vs1 = adler + sum(c[i])
|
||||
vs2 = sum2 + 32 vs1 + sum( (32-i+1) c[i] )
|
||||
*/
|
||||
__m256i vbuf = _mm256_loadu_si256((__m256i*)src);
|
||||
src += 32;
|
||||
k -= 32;
|
||||
|
||||
__m256i vs1_sad = _mm256_sad_epu8(vbuf, zero); // Sum of abs diff, resulting in 2 x int32's
|
||||
|
||||
if (COPY) {
|
||||
_mm256_storeu_si256((__m256i*)dst, vbuf);
|
||||
dst += 32;
|
||||
}
|
||||
|
||||
vs1 = _mm256_add_epi32(vs1, vs1_sad);
|
||||
vs3 = _mm256_add_epi32(vs3, vs1_0);
|
||||
__m256i v_short_sum2 = _mm256_maddubs_epi16(vbuf, dot2v); // sum 32 uint8s to 16 shorts
|
||||
__m256i vsum2 = _mm256_madd_epi16(v_short_sum2, dot3v); // sum 16 shorts to 8 uint32s
|
||||
vs2 = _mm256_add_epi32(vsum2, vs2);
|
||||
vs1_0 = vs1;
|
||||
}
|
||||
|
||||
/* Defer the multiplication with 32 to outside of the loop */
|
||||
vs3 = _mm256_slli_epi32(vs3, 5);
|
||||
vs2 = _mm256_add_epi32(vs2, vs3);
|
||||
|
||||
/* The compiler is generating the following sequence for this integer modulus
|
||||
* when done the scalar way, in GPRs:
|
||||
|
||||
adler = (s1_unpack[0] % BASE) + (s1_unpack[1] % BASE) + (s1_unpack[2] % BASE) + (s1_unpack[3] % BASE) +
|
||||
(s1_unpack[4] % BASE) + (s1_unpack[5] % BASE) + (s1_unpack[6] % BASE) + (s1_unpack[7] % BASE);
|
||||
|
||||
mov $0x80078071,%edi // move magic constant into 32 bit register %edi
|
||||
...
|
||||
vmovd %xmm1,%esi // move vector lane 0 to 32 bit register %esi
|
||||
mov %rsi,%rax // zero-extend this value to 64 bit precision in %rax
|
||||
imul %rdi,%rsi // do a signed multiplication with magic constant and vector element
|
||||
shr $0x2f,%rsi // shift right by 47
|
||||
imul $0xfff1,%esi,%esi // do a signed multiplication with value truncated to 32 bits with 0xfff1
|
||||
sub %esi,%eax // subtract lower 32 bits of original vector value from modified one above
|
||||
...
|
||||
// repeats for each element with vpextract instructions
|
||||
|
||||
This is tricky with AVX2 for a number of reasons:
|
||||
1.) There's no 64 bit multiplication instruction, but there is a sequence to get there
|
||||
2.) There's ways to extend vectors to 64 bit precision, but no simple way to truncate
|
||||
back down to 32 bit precision later (there is in AVX512)
|
||||
3.) Full width integer multiplications aren't cheap
|
||||
|
||||
We can, however, do a relatively cheap sequence for horizontal sums.
|
||||
Then, we simply do the integer modulus on the resulting 64 bit GPR, on a scalar value. It was
|
||||
previously thought that casting to 64 bit precision was needed prior to the horizontal sum, but
|
||||
that is simply not the case, as NMAX is defined as the maximum number of scalar sums that can be
|
||||
performed on the maximum possible inputs before overflow
|
||||
*/
|
||||
|
||||
|
||||
/* In AVX2-land, this trip through GPRs will probably be unavoidable, as there's no cheap and easy
|
||||
* conversion from 64 bit integer to 32 bit (needed for the inexpensive modulus with a constant).
|
||||
* This casting to 32 bit is cheap through GPRs (just register aliasing). See above for exactly
|
||||
* what the compiler is doing to avoid integer divisions. */
|
||||
adler0 = partial_hsum256(vs1) % BASE;
|
||||
adler1 = hsum256(vs2) % BASE;
|
||||
}
|
||||
|
||||
adler = adler0 | (adler1 << 16);
|
||||
|
||||
if (len) {
|
||||
goto rem_peel;
|
||||
}
|
||||
|
||||
return adler;
|
||||
}
|
||||
|
||||
Z_INTERNAL uint32_t adler32_avx2(uint32_t adler, const uint8_t *src, size_t len) {
|
||||
return adler32_fold_copy_impl(adler, NULL, src, len, 0);
|
||||
}
|
||||
|
||||
Z_INTERNAL uint32_t adler32_fold_copy_avx2(uint32_t adler, uint8_t *dst, const uint8_t *src, size_t len) {
|
||||
return adler32_fold_copy_impl(adler, dst, src, len, 1);
|
||||
}
|
||||
|
||||
#endif
|
Reference in New Issue
Block a user