127 lines
4.0 KiB
C++
127 lines
4.0 KiB
C++
![]() |
#include <stdio.h>
|
||
|
#include <benchmark/benchmark.h>
|
||
|
#include "benchmark_png_shared.h"
|
||
|
#include <assert.h>
|
||
|
|
||
|
class png_decode: public benchmark::Fixture {
|
||
|
protected:
|
||
|
png_dat inpng[10];
|
||
|
|
||
|
/* Backing this on the heap is a more realistic benchmark */
|
||
|
uint8_t *output_img_buf = NULL;
|
||
|
|
||
|
public:
|
||
|
/* Let's make the vanilla version have something extremely compressible */
|
||
|
virtual void init_img(png_bytep img_bytes, size_t width, size_t height) {
|
||
|
init_compressible(img_bytes, width*height);
|
||
|
}
|
||
|
|
||
|
void SetUp(const ::benchmark::State& state) {
|
||
|
output_img_buf = (uint8_t*)malloc(IMWIDTH * IMHEIGHT * 3);
|
||
|
assert(output_img_buf != NULL);
|
||
|
init_img(output_img_buf, IMWIDTH, IMHEIGHT);
|
||
|
|
||
|
/* First we need to author the png bytes to be decoded */
|
||
|
for (int i = 0; i < 10; ++i) {
|
||
|
inpng[i] = {NULL, 0, 0};
|
||
|
encode_png(output_img_buf, &inpng[i], i, IMWIDTH, IMHEIGHT);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* State in this circumstance will convey the compression level */
|
||
|
void Bench(benchmark::State &state) {
|
||
|
for (auto _ : state) {
|
||
|
int compress_lvl = state.range(0);
|
||
|
png_parse_dat in = { inpng[compress_lvl].buf };
|
||
|
uint32_t width, height;
|
||
|
decode_png(&in, (png_bytepp)&output_img_buf, IMWIDTH * IMHEIGHT * 3, width, height);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void TearDown(const ::benchmark::State &state) {
|
||
|
free(output_img_buf);
|
||
|
for (int i = 0; i < 10; ++i) {
|
||
|
free(inpng[i].buf);
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class png_decode_realistic: public png_decode {
|
||
|
private:
|
||
|
bool test_files_found = false;
|
||
|
|
||
|
public:
|
||
|
void SetUp(const ::benchmark::State &state) {
|
||
|
output_img_buf = NULL;
|
||
|
output_img_buf = (uint8_t*)malloc(IMWIDTH * IMHEIGHT * 3);
|
||
|
/* Let's take all the images at different compression levels and jam their bytes into buffers */
|
||
|
char test_fname[25];
|
||
|
FILE *files[10];
|
||
|
|
||
|
/* Set all to NULL */
|
||
|
memset(files, 0, sizeof(FILE*));
|
||
|
|
||
|
for (size_t i = 0; i < 10; ++i) {
|
||
|
sprintf(test_fname, "test_pngs/%1lu.png", i);
|
||
|
FILE *in_img = fopen(test_fname, "r");
|
||
|
if (in_img == NULL) {
|
||
|
for (size_t j = 0; j < i; ++j) {
|
||
|
if (files[j])
|
||
|
fclose(files[j]);
|
||
|
}
|
||
|
|
||
|
/* For proper cleanup */
|
||
|
for (size_t j = i; j < 10; ++j) {
|
||
|
inpng[i] = { NULL, 0, 0 };
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
files[i] = in_img;
|
||
|
}
|
||
|
|
||
|
test_files_found = true;
|
||
|
/* Now that we've established we have all the png files, let's read all of their bytes into buffers */
|
||
|
for (size_t i = 0; i < 10; ++i) {
|
||
|
FILE *in_file = files[i];
|
||
|
fseek(in_file, 0, SEEK_END);
|
||
|
size_t num_bytes = ftell(in_file);
|
||
|
rewind(in_file);
|
||
|
|
||
|
uint8_t *raw_file = (uint8_t*)malloc(num_bytes);
|
||
|
if (raw_file == NULL)
|
||
|
abort();
|
||
|
|
||
|
inpng[i].buf = raw_file;
|
||
|
inpng[i].len = num_bytes;
|
||
|
inpng[i].buf_rem = 0;
|
||
|
|
||
|
size_t bytes_read = fread(raw_file, 1, num_bytes, in_file);
|
||
|
if (bytes_read != num_bytes) {
|
||
|
fprintf(stderr, "couldn't read all of the bytes for file test_pngs/%lu.png", i);
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
fclose(in_file);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Bench(benchmark::State &state) {
|
||
|
if (!test_files_found) {
|
||
|
state.SkipWithError("Test imagery in test_pngs not found");
|
||
|
}
|
||
|
|
||
|
png_decode::Bench(state);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
BENCHMARK_DEFINE_F(png_decode, png_decode)(benchmark::State &state) {
|
||
|
Bench(state);
|
||
|
}
|
||
|
BENCHMARK_REGISTER_F(png_decode, png_decode)->DenseRange(0, 9, 1)->Unit(benchmark::kMicrosecond);
|
||
|
|
||
|
BENCHMARK_DEFINE_F(png_decode_realistic, png_decode_realistic)(benchmark::State &state) {
|
||
|
Bench(state);
|
||
|
}
|
||
|
BENCHMARK_REGISTER_F(png_decode_realistic, png_decode_realistic)->DenseRange(0, 9, 1)->Unit(benchmark::kMicrosecond);
|