
Understanding LDAP

Heinz Johner, Larry Brown, Franz-Stefan Hinner, Wolfgang Reis, Johan Westman

SG24-4986-00

International Technical Support Organization

http://www.redbooks.ibm.com

© Copyright IBM Corp. 1998 iii

Contents

Figures . vii

Tables. .ix

Preface .xi
The Team That Wrote This Redbook . xi
Comments Welcome . xii

Chapter 1. LDAP: The New Common Directory 1
1.1 What is a Directory? . 2

1.1.1 Differences Between Directories and Databases 2
1.1.2 Directory Clients and Servers . 4
1.1.3 Distributed Directories . 6
1.1.4 Directory Security . 7

1.2 The Directory as Infrastructure . 8
1.2.1 Directory-Enabled Applications. 8
1.2.2 The Benefits of a Common Directory . 9

1.3 LDAP History and Standards . 10
1.3.1 OSI and the Internet . 10
1.3.2 X.500: The Directory Service Standard. 11
1.3.3 LDAP: Lightweight Access to X.500 . 12

1.4 LDAP: Protocol or Directory? . 14
1.5 The LDAP Road Map . 15
1.6 The Quick Start: A Public LDAP Example . 16

Chapter 2. LDAP Concepts and Architecture . 19
2.1 Overview of LDAP Architecture . 19
2.2 The LDAP Models . 24

2.2.1 The Information Model . 25
2.2.2 The Naming Model . 28
2.2.3 The Functional Model . 35
2.2.4 The Security Model. 42

2.3 Security . 43
2.3.1 No Authentication . 44
2.3.2 Basic Authentication . 44
2.3.3 Simple Authentication and Security Layer (SASL) 45

2.4 Manageability . 49
2.4.1 LDAP Command Line Tools . 50
2.4.2 LDAP Data Interchange Format (LDIF) . 50

2.5 Platform Support . 56

iv Understanding LDAP

Chapter 3. Designing and Maintaining an LDAP Directory 57
3.1 Directory Design Guidelines . 57

3.1.1 Defining the Data Model . 58
3.1.2 Security Policy . 65
3.1.3 Physical Design . 69

3.2 Migration Planning . 73
3.3 Example Scenarios . 76

3.3.1 Small Organization . 76
3.3.2 Large Organization . 79

Chapter 4. Building LDAP-Enabled Applications 85
4.1 LDAP Software Development Kits (SDKs) . 86
4.2 The C Language API to LDAP . 86

4.2.1 Getting Started . 86
4.2.2 Synchronous and Asynchronous Use of the API 91
4.2.3 A Synchronous Search Example . 92
4.2.4 More about Search Filters . 96
4.2.5 Parsing Search Results . 96
4.2.6 An Asynchronous Example . 99
4.2.7 Error Handling . 104
4.2.8 Authentication Methods . 108
4.2.9 Multithreaded Applications . 113

4.3 LDAP Command Line Tools . 115
4.3.1 The Search Tool: ldapsearch . 116
4.3.2 The ldapmodify and ldapadd Utilities . 117
4.3.3 The ldapdelete Tool . 118
4.3.4 The ldapmodrdn Tool . 119
4.3.5 Security Considerations . 119

4.4 LDAP URLs . 120
4.4.1 Uses of LDAP URLs . 122
4.4.2 LDAP URL APIs . 123

4.5 The Java Naming and Directory Interface (JNDI) 124
4.5.1 JNDI Example Program . 127

Chapter 5. The Future of LDAP . 131
5.1 The IETF LDAP Road Map . 131

5.1.1 Access Control Requirements for LDAP 132
5.1.2 Scrolling View Browsing of Search Results 133
5.1.3 LDAP Clients Finding LDAP Servers . 133

5.2 Distributed Computing Environment (DCE) and LDAP 133
5.2.1 LDAP Interface for the GDA . 135
5.2.2 LDAP Interface for the CDS . 135
5.2.3 Future LDAP Integration . 136

v

5.3 Other Middleware Software . 137
5.4 The Directory-Enabled Networks Initiative . 138

Appendix A. Other LDAP References . 139
A.1 The Internet Engineering Task Force (IETF) . 139
A.2 The University of Michigan (UMICH) . 140
A.3 Software Development Kits. 140
A.4 Other Sources. 140

A.4.1 Vendors Mentioned in this Book . 141
A.4.2 LDAP, General . 141
A.4.3 Request for Comments (RFCs) . 142
A.4.4 Security . 142

Appendix B. LDAP Products and Services . 143
B.1 IBM Product Offerings. 143

B.1.1 IBM eNetwork LDAP Directory . 143
B.1.2 IBM eNetwork X.500 Directory for AIX . 144
B.1.3 IBM eNetwork LDAP Client Pack for Multiplatforms 145

B.2 Lotus Domino . 146
B.3 Tivoli User Administration: LDAP Endpoint. 147
B.4 Other LDAP Server Products . 148

B.4.1 Netscape Directory Server . 148
B.4.2 Novell LDAP Services for NDS. 149
B.4.3 Microsoft Active Directory . 149

B.5 LDAP Enabled Clients and Applications . 150
B.6 LDAP Development Kits and Tools. 150
B.7 Public LDAP Services . 151

Appendix C. LDAP C Language API Functions and Error Codes 153
C.1 C Language API Calls . 153

C.1.1 Functions to Establish and Terminate a Connection 153
C.1.2 Session-Handling Functions. 154
C.1.3 Interacting with the Server . 154
C.1.4 Error Handling . 155
C.1.5 Analyzing Results . 156
C.1.6 Freeing Memory . 157
C.1.7 Other Functions . 157

C.2 LDAP API Error Codes . 158

Appendix D. Special Notices . 161

Appendix E. Related Publications . 163
E.1 International Technical Support Organization Publications 163
E.2 Redbooks on CD-ROMs . 163

vi Understanding LDAP

E.3 Other Publications. 164

How to Get ITSO Redbooks . 165
How IBM Employees Can Get ITSO Redbooks . 165
How Customers Can Get ITSO Redbooks. 166
IBM Redbook Order Form . 167

List of Abbreviations. 169

Index . 171

ITSO Redbook Evaluation . 177

© Copyright IBM Corp. 1998 19

Chapter 2. LDAP Concepts and Architecture

LDAP is based on the client/server model of distributed computing (see 1.1.2,
“Directory Clients and Servers” on page 4). LDAP has evolved as a
lightweight protocol for accessing information in X.500 directory services. It
has since become more independent of X.500, and servers that specifically
support the LDAP protocol rather than the X.500 Directory Access Protocol
(DAP) are now common. The success of LDAP has been largely due to the
following characteristics that make it simpler to implement and use, compared
to X.500 and DAP:

• LDAP runs over TCP/IP rather than the OSI protocol stack. TCP/IP is less
resource-intensive and is much more widely available, especially on
desktop systems.

• The functional model of LDAP is simpler. It omits duplicate, rarely-used
and esoteric features. This makes LDAP easier to understand and to
implement.

• LDAP uses strings to represent data rather than complicated structured
syntaxes such as ASN.1 (Abstract Syntax Notation One).

This chapter explains the basic architecture of LDAP. It discusses the
information, naming, functional, and security models that form the basis of
the LDAP architecture. Various terms and concepts defined by or needed to
understand the LDAP architecture are introduced along the way. After a
general overview of the architecture, each of the models that form the
backbone of the LDAP architecture is discussed in detail.

2.1 Overview of LDAP Architecture

LDAP defines the content of messages exchanged between an LDAP client
and an LDAP server. The messages specify the operations requested by the
client (search, modify, delete, and so on), the responses from the server, and
the format of data carried in the messages. LDAP messages are carried over
TCP/IP, a connection-oriented protocol; so there are also operations to
establish and disconnect a session between the client and server.

However, for the designer of an LDAP directory, it is not so much the structure
of the messages being sent and received over the wire that is of interest.
What is important is the logical model that is defined by these messages and
data types, how the directory is organized, what operations are possible, how
information is protected, and so forth.

20 Understanding LDAP

The general interaction between an LDAP client and an LDAP server takes
the following form:

• The client establishes a session with an LDAP server. This is known as
binding to the server. The client specifies the host name or IP address and
TCP/IP port number where the LDAP server is listening. The client can
provide a user name and a password to properly authenticate with the
server. Or the client can establish an anonymous session with default
access rights. The client and server can also establish a session that uses
stronger security methods such as encryption of data.

• The client then performs operations on directory data. LDAP offers both
read and update capabilities. This allows directory information to be
managed as well as queried. LDAP also supports searching the directory
for data meeting arbitrary user-specified criteria. Searching is a very
common operation in LDAP. A user can specify what part of the directory
to search and what information to return. A search filter that uses Boolean
conditions specifies what directory data matches the search.

• When the client is finished making requests, it closes the session with the
server. This is also known as unbinding.

Although it is not defined by the LDAP protocol and architecture itself, there is
a well-known LDAP API (application program interface) that allows
applications to easily interact with LDAP servers. The API can be considered
an extension to the LDAP architecture. Although the C language LDAP API is
only an informational RFC and the most recent update to it is an Internet
Draft, it has achieved de facto standard status because it is supported by all
major LDAP vendors. The philosophy of the LDAP API is to keep simple
things simple. This means that adding directory support to existing
applications can be done with low overhead. As we will see in Chapter 4,
“Building LDAP-Enabled Applications” on page 85, this interface is
reasonably easy to use and implement in applications.

Because LDAP was originally intended as a lightweight alternative to DAP for
accessing X.500 directories, it follows an X.500 model (see 1.3.2, “X.500:
The Directory Service Standard” on page 11). The directory stores and
organizes data structures known as entries.

A directory entry usually describes an object such as a person, a printer, a
server, and so on. Each entry has a name called a distinguished name (DN)
that uniquely identifies it. The DN consists of a sequence of parts called
relative distinguished names (RDNs), much like a file name consists of a path
of directory names in many operating systems such as UNIX and Windows.
The entries can be arranged into a hierarchical tree-like structure based on

LDAP Concepts and Architecture 21

their distinguished names. This tree of directory entries is called the Directory
Information Tree (DIT).

Each entry contains one or more attributes that describe the entry. Each
attribute has a type and a value. For example, the directory entry for a person
might have an attribute called telephonNnumber. The syntax of the
telephoneNumber attribute would specify that a telephone number must be a
string of numbers that can contain spaces and hyphens. The value of the
attribute would be the person’s telephone number, such as 512-555-1212.

A directory entry describes some object. An object class is a general
description, sometimes called a template, of an object as opposed to the
description of a particular object. For instance, the object class person has a
surname attribute, whereas the object describing John Smith has a surname
attribute with the value Smith. The object classes that a directory server can
store and the attributes they contain are described by schema. Schema
define what object classes are allowed where in the directory, what attributes
they must contain, what attributes are optional, and the syntax of each
attribute. For example, a schema could define a person object class. The
person schema might require that a person have a surname attribute that is a
character string, specify that a person entry can optionally have a
telephoneNumber attribute that is a string of numbers with spaces and hyphens,
and so on.

LDAP defines operations for accessing and modifying directory entries such
as:

• Searching for entries meeting user-specified criteria

• Adding an entry

• Deleting an entry

• Modifying an entry

• Modifying the distinguished name or relative distinguished name of an
entry (move)

• Comparing an entry

LDAP is documented in several IETF RFCs. As discussed in 1.3.3, “LDAP:
Lightweight Access to X.500” on page 12, the current version of LDAP is
Version 3. That section also lists the RFCs associated with each version of
LDAP.

The LDAP Version 3 RFCs are again listed below along with a short
description to provide an overview of the documents defining the LDAP
architecture.

22 Understanding LDAP

1. RFC 2251 Lightweight Directory Access Protocol (v3)

Describes the LDAP protocol designed to provide lightweight access to
directories supporting the X.500 model. The lightweight protocol is meant
to be implementable in resource-constrained environments such as
browsers and small desktop systems. This RFC is the core of the LDAP
family of RFCs. It describes how entries are named with distinguished
names, defines the format of messages exchanged between client and
server, enumerates the operations that can be performed by the client,
and specifies that data is represented using UTF-8 character encoding.

The RFC specifies that the schema describing directory entries must
themselves be readable so that a client can determine what type of
objects a directory server stores. It defines how the client can be referred
to another LDAP server if a server does not contain the requested
information. It describes how individual operations can be extended using
controls and how additional operations can be defined using extensions. It
also discusses how clients can authenticate to servers and optionally use
Simple Authentication and Security Layer (SASL) to allow additional
authentication mechanisms.

2. RFC 2252 Lightweight Directory Access Protocol (v3): Attribute Syntax
Definitions

LDAP uses octet strings to represent the values of attributes for
transmission in the LDAP protocol. This RFC defines how values such as
integers, time stamps, mail addresses, and so on are represented. For
example, the integer 123 is represented by the string "123". These
definitions are called attribute syntaxes. This RFC describes how an
attribute with a syntax such as “telephone number” is encoded. It also
defines matching rules to determine if values meet search criteria. An
example is caseIgnoreString, which is used to compare character strings
when case is not important.

These attribute types and syntaxes are used to build schema that describe
objects classes. A schema lists what attributes a directory entry must or
may have. Every directory entry has an objectclass attribute that lists the
(one or more) schema that describe the entry. For example, a directory
entry could be described by the object classes residentialPerson and
organizationalPerson. If an objectclass attribute includes the value
extensibleObject, it can contain any attribute.

3. RFC 2253 Lightweight Directory Access Protocol (v3): UTF-8 String
Representation of Distinguished Names

Distinguished names (DNs) are the unique identifiers, sometimes called
primary keys, of directory entries. X.500 uses ASN.1 to encode

LDAP Concepts and Architecture 23

distinguished names. LDAP encodes distinguished names as strings. This
RFC defines how distinguished names are represented as strings. A string
representation is easy to encode and decode and is also human readable.
A DN is composed of a sequence of relative distinguished names (RDNs)
separated by commas. The sequence of RDNs making up a DN names the
ancestors of a directory entry up to the root of the DIT. Each RDN is
composed of an attribute value from the directory entry. For example, the
DN cn=John Smith,ou=Austin,o=IBM,c=US represents a directory entry for a
person with the common name (cn) John Smith under the organizational unit

(ou) Austin in the organization (o) IBM in the country (c) US.

4. RFC 2254 The String Representation of LDAP Search Filters

LDAP search filters provide a powerful mechanism to search a directory
for entries that match specific criteria. The LDAP protocol defines the
network representation of a search filter. This document defines how to
represent a search filter as a human-readable string. Such a
representation can be used by applications or in program source code to
specify search criteria. Attribute values are compared using relational
operators such as equal, greater than, or “sounds like” for approximate or
phonetic matching. Boolean operators can be used to build more complex
search filters. For example, the search filter (| (sn=Smith) (cn=Jo*))
searches for entries that either have a surname attribute of Smith or that
have a common name attribute that begins with Jo.

5. RFC 2255 The LDAP URL Format

Uniform Resource Locators (URLs) are used to identify Web pages, files,
and other resources on the Internet. An LDAP URL specifies an LDAP
search to be performed at a particular LDAP server. An LDAP URL
represents in a compact and standard way the information returned as the
result of the search. Section 4.4, “LDAP URLs” on page 120, explains
LDAP URLs in detail.

6. RFC 2256 A Summary of the X.500(96) User Schema for use with LDAPv3

Many schema and attributes commonly accessed by directory clients are
already defined by X.500. This RFC provides an overview of those
attribute types and object classes that LDAP servers should recognize.
For instance, attributes such as cn (common name), description, and
postalAddress are defined. Object classes such as country,
organizationalUnit, groupOfNames, and applicationEntity are also defined.

The RFCs listed above build up the core LDAP Version 3 specification. In
addition to these RFCs, the IETF lists a number of so-called proposed
extensions to LDAP Version 3 that vendors may implement as well. However,
these proposed extensions only have the status of Internet Drafts and may

24 Understanding LDAP

therefore still change. The following list summarizes some of these proposed
extensions:

• Mandatory-to-Implement Authentication

An attempt to have at least one standard, secure authentication method
available in all servers and clients (not only LDAP), rather than individual
methods for each protocol above TCP/IP.

• Extensions for Dynamic Directory Services

This is a protocol extension that allows clients to interact more reliably with
servers while directory contents are being changed.

• Use of Language Codes in LDAP

Describes the addition of natural language codes to attributes stored in an
LDAP directory.

• LDAPv3 Extension for Transport Layer Security

Defines the integration of the Transport Layer Security (TLS) mechanism
into LDAP.

• LDAP Control Extension for Simple Paged Results Manipulation

Describes a control extension for paging of search results. This is of
special value for simple, limited-function clients so they can request that
search results are returned in smaller portions (pages) at a time.

• Referrals and Knowledge References in LDAP Directories

Defines how referrals and reference information can be stored as
attributes and how they may be used.

• LDAP Control Extension for Server Side Sorting of Search Results

Allows sorting of search results on the server rather than on the client.
This may be desirable to build simpler, limited function clients.

• The LDAP Application Program Interface

Defines the C language application program interface (API) to LDAP. Most
vendors already incorporate this extension, or at least a subset of it. See
Chapter 4, “Building LDAP-Enabled Applications” on page 85, for more
information on the C language API.

2.2 The LDAP Models

LDAP can be better understood by considering the four models upon which it
is based:

LDAP Concepts and Architecture 25

Information Describes the structure of information stored in an LDAP
directory.

Naming Describes how information in an LDAP directory is organized
and identified.

Functional Describes what operations can be performed on the
information stored in an LDAP directory.

Security Describes how the information in an LDAP directory can be
protected from unauthorized access.

The following sections discuss the four LDAP models.

2.2.1 The Information Model
The basic unit of information stored in the directory is called an entry. Entries
represent objects of interest in the real world such as people, servers,
organizations, and so on. Entries are composed of a collection of attributes
that contain information about the object. Every attribute has a type and one
or more values. The type of the attribute is associated with a syntax. The
syntax specifies what kind of values can be stored. For example, an entry
might have a facsimilieTelephoneNumber attribute. The syntax associated with
this type of attribute would specify that the values are telephone numbers
represented as printable strings optionally followed by keywords describing
paper size and resolution characteristics. It is possible that the directory entry
for an organization would contain multiple values in this attribute—that is that
an organization or person represented by the entity would have multiple fax
numbers. The relationship between a directory entry and its attributes and
their values is shown in Figure 6.

Figure 6. Entries, Attributes and Values

Entry
Attribute

TypeAttribute

Attribute

Attribute

Attribute
Value

Value

Value

26 Understanding LDAP

In addition to defining what data can be stored as the value of an attribute, an
attribute syntax also defines how those values behave during searches and
other directory operations. The attribute telephoneNumber, for example, has a
syntax that specifies:

• Lexicographic ordering.

• Case, spaces and dashes are ignored during the comparisons.

• Values must be character strings.

For example, using the correct definitions, the telephone numbers
“512-838-6008”, “512838-6008”, and “5128386008” are considered the same.
A few of the syntaxes that have been defined for LDAP are listed in the
following table.

Table 2. Some of the LDAP Attribute Syntaxes

Table 3 lists some common attributes. Some attributes have alias names that
can be used wherever the full attribute name is used. For example, cn can be
used when referring to the attribute commonName.

Table 3. Common LDAP Attributes

Syntax Description

bin Binary information.

ces Case exact string, also known as a "directory string", case is
significant during comparisons.

cis Case ignore string. Case is not significant durring comparisons.

tel Telephone number. The numbers are treated as text, but all
blanks and dashes are ignored.

dn Distinguished name.

Generalized Time Year, month, day, and time represented as a printable string.

Postal Address Postal address with lines separated by "$" characters.

Attribute, Alias Syntax Description Example

commonName, cn cis Common name of an
entry

John Smith

surname, sn cis Surname (last name) of a
person

Smith

telephoneNumber tel Telephone number 512-838-6008

LDAP Concepts and Architecture 27

Constraints can be associated with attribute types to limit the number of
values that can be stored in the attribute or to limit the total size of a value.
For example, an attribute that contains a photo could be limited to a size of
10 KB to prevent the use of unreasonable amounts of storage space. Or an
attribute used to store a social security number could be limited to holding a
single value.

Schemas define the type of objects that can be stored in the directory.
Schemas also list the attributes of each object type and whether these
attributes are required or optional. For example, in the person schema, the
attribute surname (sn) is required, but the attribute description is optional.
Schema-checking ensures that all required attributes for an entry are present
before an entry is stored. Schema-checking also ensures that attributes not in
the schema are not stored in the entry. Optional attributes can be filled in at
any time. Schema also define the inheritance and subclassing of objects and
where in the DIT structure (hierarchy) objects may appear.

Table 4 lists a few of the common schema (object classes and their required
attributes). In many cases, an entry can consist of more than one object
class:

Table 4. Object Classes and Required Attributes

organizationalUnitName,
ou

cis Name of an
organizational unit

itso

owner dn Distinguished name of
the person that owns the
entry

cn=John Smith,
o=IBM, c=US

organization, o cis Name of an organization IBM

jpegPhoto bin Photographic image in
JPEG format

Photograph of
John Smith

Object Class Description Required Attributes

InetOrgPerson Defines entries for a person commonName (cn)
surname (sn)
objectClass

organizationalUnit Defines entries for organizational
units

ou
objectClass

organization Defines entries for organizations o
objectClass

Attribute, Alias Syntax Description Example

28 Understanding LDAP

Though each server can define its own schema, for interoperability it is
expected that many common schema will be standardized (refer to RFC
2252, Lightweight Directory Access Protocol (v3): Attribute Syntax
Definitions, and RFC 2256, A Summary of the X.500(96) User Schema for
use with LDAPv3).

There are times when new schema will be needed at a particular server or
within an organization. In LDAP Version 3, a server is required to return
information about itself, including the schema that it uses. A program can
therefore query a server to determine the contents of the schema. This server
information is stored at the special zero-length DN (see 2.2.2, “The Naming
Model” on page 28, for more details).

Objects can be derived from other objects. This is known as subclassing. For
example, suppose an object called person was defined that included a
surname and so on. An object class organizationalPerson could be defined
as a subclass of the person object class. The organizationPerson object class
would have the same attributes as the person object class and could add
other attributes such as title and officenumber. The person object class
would be called the superior of the organizationPerson object class. One
special object class, called top, has no superiors. The top object class
includes the mandatory objectClass attribute. Attributes in top appear in all
directory entries as specified (required or optional).

Each directory entry has a special attribute called objectClass. The value of
the objectClass attribute is a list of two or more schema names. These
schema define what type of object(s) the entry represents. One of the values
must be either top or alias. Alias is used if the entry is an alias for another
entry (see 2.2.2, “The Naming Model” on page 28), otherwise top is used.
The objectClass attribute determines what attributes the entry must and may
have.

The special object class extensibleObject allows any attribute to be stored in
the entry. This can be more convenient than defining a new object class to
add a special attribute to a few entries, but also opens up that object to be
able to contain anything (which might not be a good thing in a structured
system).

2.2.2 The Naming Model
The LDAP naming model defines how entries are identified and organized.
Entries are organized in a tree-like structure called the Directory Information
Tree (DIT). Entries are arranged within the DIT based on their distinguished
name (DN). A DN is a unique name that unambiguously identifies a single

LDAP Concepts and Architecture 29

entry. DNs are made up of a sequence of relative distinguished names
(RDNs). Each RDN in a DN corresponds to a branch in the DIT leading from
the root of the DIT to the directory entry.

Each RDN is derived from the attributes of the directory entry. In the simple
and common case, an RDN has the form <attribute name> = <value> (see
Figure 8 on page 31 for the complete syntax of DNs and RDNs). A DN is
composed of a sequence of RDNs separated by commas.

An example of a DIT is shown in Figure 7. The example is very simple, but
can be used to illustrate some basic concepts. Each box represents a
directory entry. The root directory entry is conceptual, but does not actually
exist. Attributes are listed inside each entry. The list of attributes shown is not
complete. For example, the entry for the country DE (c=DE) could have an
attribute called description with the value Germany.

Figure 7. Example Directory Information Tree (DIT)

The organization of the entries in the DIT are restricted by their
corresponding object class definitions. It is usual to follow either a
geographical or an organizational scheme. For example, entries that

c=US c=DE

o=IBM

cn: John Smith
mail: jsmith@mail.com

o=transarc

mail: info@transarc.com
fax: 512-838-5187

Directory Root

o=IBM

cn: Mike Young
mail: my@transarc.com

ou=LDAP Team

cn=John
(alias)

o=MyOrg

30 Understanding LDAP

represent countries would be at the top of the DIT. Below the countries would
be national organizations, states, and provinces, and so on. Below this level,
entries might represent people within those organizations or further
subdivisions of the organization. The lowest layers of the DIT entries could
represent any object, such as people, printers, application servers, and so on.
The depth or breadth of the DIT is not restricted and can be designed to suit
application requirements. See Chapter 3, “Designing and Maintaining an
LDAP Directory” on page 57, for information on designing a DIT.

Entries are named according to their position in the DIT. The directory entry
in the lower-right corner of Figure 7 has the DN cn=John Smith,o=IBM,c=DE.
Note that DNs read from leaf to root as opposed to file system names which
usually read from root to leaf. The DN is made up of a sequence of RDNs.
Each RDN is constructed from an attribute (or attributes) of the entry it
names. For example, the DN cn=John Smith,o=IBM,c=DE is constructed by
adding the RDN cn=John Smith to the DN of the ancestor entry o=IBM,c=DE.
Note that cn=John Smith is an attribute in the entry cn=John Smith,o=IBM,c=DE.
The DN of an entry is specified when it is created. It would have been legal,
though not intuitive, to have created the entry with the DN
mail=jsmith@mail.com,o=IBM,c=DE.

The DIT is described as being tree-like implying it is not a tree. This is
because of aliases. Aliases allow the tree structure to be circumvented. This
can be useful if an entry belongs to more than one organization or if a
commonly used DN is too complex. Another common use of aliases is when
entries are moved within the DIT and you want access to continue to work as
before. In Figure 7, cn=John,ou=LDAP Team,o=IBM,c=US is an alias for
cn=John Smith,o=IBM,c=DE. Aliases do not have to point to leaf entries in the
DIT. For example, o=Redbook,c=US could be an alias for ou=ITSO,o=IBM,c=US.

2.2.2.1 Distinguished Name Syntax
DNs are used as primary keys to entries in the directory. LDAP defines a
user-oriented string representation of DNs. The syntax of DNs, which consist
of a sequence of RDNs, was described informally above. Figure 8 on page 31
shows the formal grammar of DNs.

Note that RDNs can be more complicated than in the examples shown above.
An RDN can be composed of multiple attributes joined by “+” as in the DN
cn=John Smith+l=Stuttgart,o=IBM,c=DE.

If attribute values contain special characters or leading or trailing spaces,
those characters must be escaped by preceding them with a backslash
character. The following DN contains a comma character
o=Transarc\, Inc.,c=US.

LDAP Concepts and Architecture 31

DNs in LDAP Version 3 are more restrictive than in LDAP V2. For example, in
LDAP V2, semicolons could also be used to separate RDNs. LDAP V3 must
accept the older syntax, but must not generate DNs that do not conform to the
newer syntax. The exact grammar for a distinguished name syntax is shown
in Figure 8.

Figure 8. Distinguished Name Grammar

The attribute types used in the RDN can be represented by a dotted decimal
string encoding of its object identifier. For example, cn=John could also be
written as 2.5.4.2=John. However, frequently used attribute names have a
string representation that is obviously easier to understand. Table 5 lists
some of the common attribute types and their string representation. Please

distinguishedName = [name] ; may be empty string

name = name-component *("," name-component)

name-component = attributeTypeAndValue *("+" attributeTypeAndValue)

attributeTypeAndValue = attributeType "=" attributeValue

attributeType = (ALPHA 1*keychar) / oid
keychar = ALPHA / DIGIT / "-"

oid = 1*DIGIT *("." 1*DIGIT)

attributeValue = string

string = *(stringchar / pair)
/ "#" hexstring
/ QUOTATION *(quotechar / pair) QUOTATION ; only from v2

quotechar = <any character except "\" or QUOTATION >

special = "," / "=" / "+" / "<" / ">" / "#" / ";"

pair = "\" (special / "\" / QUOTATION / hexpair)
stringchar = <any character except one of special, "\" or QUOTATION >

hexstring = 1*hexpair
hexpair = hexchar hexchar

hexchar = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"
/ "a" / "b" / "c" / "d" / "e" / "f"

ALPHA = <any ASCII alphabetic character> ; (decimal 65-90 and 97-122)
DIGIT = <any ASCII decimal digit> ; (decimal 48-57)
QUOTATION = <the ASCII double quotation mark character '"' decimal 34>

32 Understanding LDAP

notice that because attribute names are case insensitive, you might see
different uppercase/lowercase notations in the literature.

Table 5. Attribute Type String Representations

2.2.2.2 Suffixes and Referrals
An individual LDAP server might not store the entire DIT. A server might store
the entries for a particular department and not the entries for the ancestors of
the department. For example, a server might store the entries for the ITSO
department at IBM. The highest node in the DIT stored by the server would
be ou=ITSO,o=IBM,c=US. The server would not store entries for c=US or for
o=IBM,c=US. The highest entry stored by a server is called a suffix. Each entry
stored by the server ends with this suffix (remember that in the DN syntax,
the higher-level entries are at the end).

A server can support multiple suffixes. For example, in addition to storing
information about the ITSO department, the same server could store
information about the sales department at Transarc. The server would then
have the suffixes ou=ITSO,o=IBM,c=US and ou=sales,o=Transarc,c=US.

Since a server might not store the entire DIT, servers need to be linked
together in some way in order to form a distributed directory that contains the
entire DIT. This is accomplished with referrals. Continuing the example,
another server might store the entry o=IBM,c=US but not information about the
ITSO department. If somebody searched this directory server for information
about the ITSO department, no information would be found. However, the
server can store a referral to the LDAP server that does contain the
information. This referral acts like a pointer that can be followed to where the
desired information is stored. Such an example is shown in Figure 9, where

Attribute Type String

CommonName CN

LocalityName L

StateOrProvinceName ST

OrganizationName O

OrganizationalUnitName OU

CountryName C

StreetAddress STREET

domainComponent DC

userid UID

LDAP Concepts and Architecture 33

the referral arrow shows the logical connection of a referral and does not
reflect the technical implementaion (see text that follows).

A referral is an entry of objectClass referral. It has an attribute, ref, whose
value is the LDAP URL of the referred entry on another LDAP server. See 4.4,
“LDAP URLs” on page 120, for information about LDAP URLs.

Figure 9. Example DIT Showing Suffixes and Referrals

When a client sends a request to an LDAP server, the response to the client
may be a referral. The client can then choose to follow the referral by
querying the other LDAP server contained in the referral returned by the first
LDAP server. Referrals are not followed (resolved) by servers. This can
improve server performance by off-loading the work of contacting other
servers to the client.

Figure 10 illustrates a client following a referral. An LDAP client requests
information from LDAP Server 1 (1). This request is answered with a referral
to LDAP Server 2 (2). The LDAP client then contacts LDAP Server 2 (3).
LDAP Server 2 provides the requested data to the client (4).

o=IBM,c=US

ou=ITSO

ou=ITSOtest,...ou=ITSO,o=IBM,c=US

Server 1

Server 2Suffix

Suffix Suffix

Referra
l

cn=John Smith

cn=Paul Miller

cn=Mike Cook

34 Understanding LDAP

Figure 10. Referral Followed by Client

Figure 11 illustrates chaining. An LDAP client requests information from
LDAP Server 1 (1). LDAP Server 1 finds a referral to Server 2 and forwards
the request (2). Server 2 provides the requested data to LDAP Server 1 (3).
LDAP Server 1 then returns the result to the client (4). Note that this
explanation and Figure 11 are for illustration purposes only since chaining is
not included in either the LDAP Version 2 or Version 3 specifications.

Figure 11. Server Chaining

The LDAP API allows the programmer to specify whether returned referrals
should be followed automatically or returned to the program. If referrals are
followed automatically, the LDAP client library (not the server nor the
application program) follows the referral. This requires no extra coding and is
transparent to the programmer. To prevent lengthy searches or referrals that

LDAP
Server 2

LDAP
Server 1

LDAP
Client

1

4

2

3

2
4

3

1

Server 2

LDAP
Server 1

LDAP
Client

LDAP Concepts and Architecture 35

(mistakenly) form a loop, the programmer can limit the number of referrals
followed for a request.

If the referral is returned to the program, code must be supplied to recognize
that a referral has been returned. The referral can be examined and a
decision made whether to follow it or not. This is more complicated, but gives
the programmer greater choice of which referrals to follow.

Referrals allow a DIT to be partitioned and distributed across multiple
servers. Portions of the DIT can also be replicated. This can improve
performance and availability. See Chapter 3, “Designing and Maintaining an
LDAP Directory” on page 57, for information on designing a distributed
directory.

LDAP Version 2 did not formally define referrals, but Version 3 does include
them. Neither Version 2 nor Version 3 define chaining, but it is not prohibited
if vendors chose to implement it. Vendors, for example, may chose to
implement an X.500-type chaining mechanism or functionality provided by
distributed databases to achieve this.

2.2.2.3 Server Information
An LDAP Version 3 server must provide information about itself. The special
entry called the root DSE with a zero-length (empty) DN contains attributes
that describe the server. These attributes can be retrieved to discover basic
information about the server and the DIT that it stores. Server-specific
information available includes:

• The suffixes, also called naming contexts, the server stores

• The DN of a special entry that contains a list of all the objectClass and
attribute schema known to the server

• The version(s) of LDAP supported,

• A list of supported extended operations and controls (see 2.2.3.7,
“Controls and Extended Operations” on page 41)

• A list of supported SASL security mechanisms

• A list of alternate LDAP servers

As LDAP is extended, additional information about the server will be stored in
the root DSE.

2.2.3 The Functional Model
LDAP defines operations for accessing and modifying directory entries. This
section discusses LDAP operations in a programming language-independent

36 Understanding LDAP

manner. See Chapter 4, “Building LDAP-Enabled Applications” on page 85,
for information on writing programs that invoke these operations.

LDAP operations can be divided into the following three categories:

Query Includes the search and compare operations used to
retrieve information from a directory

Update Includes the add, delete, modify, and modify RDN
operations used to update stored information in a directory

Authentication Includes the bind, unbind, and abandon operations used to
connect and disconnect to and from an LDAP server,
establish access rights and protect information

The most common operation is search. The search operation is very flexible
and has some of the most complex options.

2.2.3.1 Search
The search operation allows a client to request that an LDAP server search
through some portion of the DIT for information meeting user-specified
criteria in order to read and list the result(s). There are no separate
operations for read and list; they are incorporated in the search function. The
search can be very general or very specific. The search operation allows one
to specify the starting point within the DIT, how deep within the DIT to search,
what attributes an entry must have to be considered a match, and what
attributes to return for matched entries.

Some example searches expressed informally in English are:

• Find the postal address for cn=John Smith,o=IBM,c=DE.

• Find all the entries that are children of the entry ou=ITSO,o=IBM,c=US.

• Find the e-mail address and phone number of anyone in IBM whose last
name contains the characters “miller” and who also has a fax number.

To perform a search, the following parameters must be specified (refer to
Figure 12 on page 38):

• Base

A DN that defines the starting point, called the base object, of the search.
The base object is a node within the DIT.

• Scope

Specifies how deep within the DIT to search from the base object. There
are three choices: baseObject, singleLevel, and wholeSubtree. If baseObject
is specified, only the base object is examined. If singleLevel is specified,

LDAP Concepts and Architecture 37

only the immediate children of the base object are examined; the base
object itself is not examined. If wholeSubtree is specified, the base object
and all of its descendants are examined.

• Search Filter

Specifies the criteria an entry must match to be returned from a search.
The search filter is a Boolean combination of attribute value assertions. An
attribute value assertion tests the value of an attribute for equality, less
than or equal, and so on. For example, a search filter might specify entries
with a common name containing “wolf” or belonging to the organization
ITSO. Search filters are discussed more fully in 2.2.3.3, “Search Filter
Syntax” on page 39.

• Attributes to Return

Specifies which attributes to retrieve from entries that match the search
criteria. Since an entry may have many attributes, this allows the user to
only see the attributes they are interested in. Normally, the user is
interested in the value of the attributes. However, it is possible to return
only the attribute types and not their values. This could be useful if a large
value like a JPEG photograph was not needed for every entry returned
from the search, but some of the photographs would be retrieved later as
needed.

• Alias Dereferencing

Specifies if aliases are dereferenced—that is, if the alias entry itself or the
entry it points to is used. Aliases can be dereferenced or not when locating
the base object and/or when searching under the base object. If aliases
are dereferenced, then they are alternate names for objects of interest in
the directory. Not dereferencing aliases allows the alias entries
themselves to be examined.

• Limits

Searches can be very general, examining large subtrees and causing
many entries to be returned. The user can specify time and size limits to
prevent wayward searching from consuming too many resources. The size
limit restricts the number of entries returned from the search. The time
limit limits the total time of the search. Servers are free to impose stricter
limits than requested by the client.

38 Understanding LDAP

Figure 12. Search Parameters

2.2.3.2 Referrals and Continuation References
If the server does not contain the base object, it will return a referral to a
server that does, if possible. Once the base object is found singleLevel and
wholeSubtree searches may encounter other referrals. These referrals are
returned in the search result along with other matching entries. These
referrals are called continuation references because they indicate where a
search could be continued.

For example, when searching a subtree for anybody named Smith, a
continuation reference to another server might be returned, possibly along

Scope of Search
LDAP_SCOPE_SUBTREE

c=US c=DE

o=Transarc

mail: info@transarc.com
fax: 512-838-5187

Directory Root

cn=Larry Brown

cn: Mike Cook
mail: mc@transarc.com

cn=Charlie Brown

cn: Paul Miller
mail: pm@transarc.com

c=SE

Base Object
dn=“o=Transarc,c=US”

Search Filter
(cn=Larry Brown)

Information Returned
All Attributes

LDAP Concepts and Architecture 39

with several other matching entries. It is not guaranteed that an entry for
somebody named Smith actually exists at that server, only that the
continuation reference points to a subtree that could contain such an entry. It
is up to the client to follow continuation references if desired.

Since only LDAP Version 3 specifies referrals, continuation references are not
supported in earlier versions.

2.2.3.3 Search Filter Syntax
The search filter defines criteria that an entry must match to be returned from
a search. The basic component of a search filter is an attribute value
assertion of the form:

attribute operator value

For example, to search for a person named John Smith the search filter would
be cn=John Smith. In this case, cn is the attribute; = is the operator, and John

Smith is the value. This search filter matches entries with the common name
John Smith.

Table 6 lists the operators for search filters.

Table 6. Search Filter Operators

The “*” character matches any substring and can be used with the = operator.
For example, cn=J*Smi* would match John Smith and Jan Smitty.

Search filters can be combined with Boolean operators to form more complex
search filters. The syntax for combining search filters is:

Operator Description Example

= Returns entries whose attribute is
equal to the value.

cn=John Smith finds the entry
with common name John Smith

>= Returns entries whose attribute is
greater than or equal to the value.

sn>=smith finds all entries from
smith to z*

<= Returns entries whose attribute is
less than or equal to the value.

sn<=smith finds all entries from
a* to smith

=* Returns entries that have a value
set for that attribute.

sn=* finds all entries that have the
sn attribute

~= Returns entries whose attribute
value approximately matches the
specified value. Typically, this is an
algorithm that matches words that
sound alike.

sn~= smit might find the entry
“sn=smith”

40 Understanding LDAP

("&" or "|" (filter1) (filter2) (filter3) ...)
("!" (filter))

The Boolean operators are listed in Table 7.

Table 7. Boolean Operators

For example, (|(sn=Smith)(sn=Miller)) matches entries with the surname
Smith or the surname Miller. The Boolean operators can also be nested as in
(| (sn=Smith) (&(ou=Austin)(sn=Miller))), which matches any entry with the
surname Smith or with the surname Miller that also has the organizational
unit attribute Austin.

2.2.3.4 Compare
The compare operation compares an entry for an attribute value. If the entry
has that value, compare returns TRUE. Otherwise, compare returns FALSE.
Although compare is simpler than a search, it is almost the same as a base
scope search with a search filter of attribute=value. The difference is that if
the entry does not have the attribute at all (the attribute is not present), the
search will return not found. This is indistinguishable from the case where the
entry itself does not exist. On the other hand, compare will return FALSE.
This indicates that the entry does exist, but does not have an attribute
matching the value specified.

2.2.3.5 Update Operations
Update operations modify the contents of the directory. Table 8 summarizes
the update operations.

Table 8. Update Operations

Boolean Operator Description

& Returns entries matching all specified filter criteria.

| Returns entries matching one or more of the filter criteria.

! Returns entries for which the filter is not true. This operator can
only be applied to a single filter. (!(filter)) is valid, but
(!(filter1)(filter2)) is not.

Operation Description

add Inserts new entries into the directory.

delete Deletes existing entries from the directory. Only leaf nodes can be
deleted. Aliases are not resolved when deleting.

LDAP Concepts and Architecture 41

2.2.3.6 Authentication Operations
Authentication operations are used to establish and end a session between
an LDAP client and an LDAP server. The session may be secured at various
levels ranging from an insecure anonymous session, an authenticated
session in which the client identifies itself by providing a password, to a
secure, encrypted session using SASL mechanisms. SASL was added in
LDAP Version 3 to overcome the weak authentication in LDAP Version 2
(some vendors, however, have added stronger authentication methods, such
as Kerberos, to LDAP Version 2). Table 9 summarizes the authentication
operations. The security aspects are discussed further in 2.2.4, “The Security
Model” on page 42 and in 2.3, “Security” on page 43.

Table 9. Authentication Operations

2.2.3.7 Controls and Extended Operations
Controls and extended operations allow the LDAP protocol to be extended
without changing the protocol itself. Controls modify the behavior of an
operation, and extended operations add new operations to the LDAP
protocol. The list of controls and extensions supported by an LDAP server
can be obtained by examining the empty DN at that server (see 2.2.2.3,
“Server Information” on page 35).

Controls can be defined to extend any operation. Controls are added to the
end of the operation’s protocol message. They are supplied as parameters to
functions in the API. In the future, standard controls might be defined in
LDAP-related RFCs.

modify Changes the attributes and values contained within an existing entry.
Allows new attributes to be added and existing attributes to be deleted
or modified.

modify DN Change the least significant (left most) component of a DN or moves a
subtree of entries to a new location in the DIT. Entries cannot be moved
across server boundaries.

Operation Description

Bind Initiates an LDAP session between a client and a server. Allows the
client to prove its identity by authenticating itself to the server.

Unbind Terminates a client/server session.

Abandon Allows a client to request that the server abandon an outstanding
operation.

Operation Description

42 Understanding LDAP

A control has a dotted decimal string object ID used to identify the control, an
arbitrary control value that holds parameters for the control, and a criticality
level. If the criticality level is TRUE, the server must honor the control or if the
server does not support the control, reject the entire operation. If the
criticality level is FALSE, a server that does not support the control must
perform the operation as if there was no control specified.

For example, a control might extend the delete operation by causing an audit
record of the deletion to be logged to a file specified by the control value
information.

An extended operation allows an entirely new operation to be defined. The
extended operation protocol message consists of a dotted decimal string
object ID used to identify the extended operation and an arbitrary string of
operation-specific data.

2.2.4 The Security Model
As previously described, the security model is based on the bind operation.
There are several different bind operations possible, and thus the security
mechanism applied is different as well. One possibility is when a client
requesting access supplies a DN identifying itself along with a simple
clear-text password. If no DN and password is declared, an anonymous
session is assumed by the LDAP server. The use of clear text passwords is
strongly discouraged when the underlying transport service cannot guarantee
confidentiality and may therefore result in disclosure of the password to
unauthorized parties.

Additionally, a Kerberos bind is possible in LDAP Version 2, but this has
become deprecated in LDAP Version 3. Instead, LDAP V3 comes along with a
bind command supporting the Simple Authentication and Security Layer
(SASL) mechanism. This is a general authentication framework, where
several different authentication methods are available for authenticating the
client to the server; one of them is Kerberos. We discuss authentication in
more detail in the following section 2.3, “Security” on page 43.

Furthermore, extended protocol operations are available in LDAP V3. An
extension related to security is the “Extension for Transport Layer Security
(TLS) for LDAPv3” which, at the time this book was written, is an Internet
Draft (see A.4, “Other Sources” on page 140 for an URL). It defines
operations that use TLS as a means to encrypt an LDAP session and protect
it against spoofing. TLS is defined in “The TLS Protocol” Version 1.0, which is
also still an Internet Draft. It is based on the Secure Socket Layer (SSL)
Protocol 3.0, devised by Netscape Communications Corporation which it

LDAP Concepts and Architecture 43

eventually will supersede. TLS has a mechanism which enables it to
communicate to an SSL server so that it is backwards compatible. The basic
principles of SSL and TLS are the same and are further detailed in the
following section 2.3, “Security” on page 43.

Some vendors, like Netscape and IBM, have already extended the LDAP
protocol and added some SSL specific commands so that an encrypted
TCP/IP connection is possible, thus providing a means for eliminating the
need of sending a DN and a password unprotected over the network

Once a client is identified, access control information can be consulted to
determine whether or not the client has sufficient access permissions to do
what it is requesting.

2.3 Security

Security is of great importance in the networked world of computers, and this
is true for LDAP as well. When sending data over insecure networks,
internally or externally, sensitive information may need to be protected during
transportation. There is also a need to know who is requesting the
information and who is sending it. This is especially important when it comes
to the update operations on a directory. The term security, as used in the
context of this book, generally covers the following four aspects:

Authentication Assurance that the opposite party (machine or person)
really is who he/she/it claims to be.

Integrity Assurance that the information that arrives is really the
same as what was sent.

Confidentiality Protection of information disclosure by means of data
encryption to those who are not intended to receive it.

Authorization Assurance that a party is really allowed to do what
he/she/it is requesting to do. This is usually checked after
user authentication. In LDAP Version 3, this is currently
not part of the protocol specification and is therefore
implementation- (or vendor-) specific. This is basically
achieved by assigning access controls, like read, write, or
delete, to user IDs or common names. There is an Internet
Draft that proposes access control for LDAP.

The following sections focus on the first three aspects (since authorization is
not contained in the LDAP Version 3 standard): authentication, integrity and
confidentiality. There are several methods that can be used for this purpose;
the most important ones are discussed here. These are:

44 Understanding LDAP

• No authentication

• Basic authentication

• Simple Authentication and Security Layer (SASL)

Because no other data encryption method was available in LDAP Version 2,
some vendors, for example Netscape and IBM, added their own SSL calls to
the LDAP API. A potential drawback of such an approach is that the API calls
might not be compatible among different vendor implementations. Therefore,
in LDAP Version 3, a proposal is made (Extension for Transport Layer
Security) to include SSL or, more accurately, its successor, TLS, through
extended protocol operations. This should make the vendor-dependent
functions redundant in the near future.

2.3.1 No Authentication
This is the simpliest way, one that obviously does not need to be explained in
much detail. This method should only be used when data security is not an
issue and when no special access control permissions are involved. This
could be the case, for example, when your directory is an address book
browsable by anybody. No authentication is assumed when you leave the
password and DN field empty in the bind API call (see also Chapter 4,
“Building LDAP-Enabled Applications” on page 85). The LDAP server then
automatically assumes an anonymous user session and grants access with
the appropriate access controls defined for this kind of access (not to be
confused with the SASL anonymous user as discussed in 2.3.3, “Simple
Authentication and Security Layer (SASL)” on page 45).

2.3.2 Basic Authentication
The security mechanism in LDAP is negotiated when the connection between
the client and the server is established. This is the approach specified in the
LDAP application program interface (API). Beside the option of using no
authentication at all, the most simple security mechanism in LDAP is called
basic authentication, which is also used in several other Web-related
protocols, such as in HTTP.

When using basic authentication with LDAP, the client identifies itself to the
server by means of a DN and a password which are sent in the clear over the
network (some implementation may use Base64 encoding instead). The
server considers the client authenticated if the DN and password sent by the
client matches the password for that DN stored in the directory. Base64
encoding is defined in the Multipurpose Internet Mail Extensions (MIME)

LDAP Concepts and Architecture 45

standard (RFC 1521). It is a relatively simple encryption, and therefore it is
not hard to break once one has captured the data on the network.

2.3.3 Simple Authentication and Security Layer (SASL)
SASL is a framework for adding additional authentication mechanisms to
connection-oriented protocols. It has been added to LDAP Version 3 to
overcome the authentication shortcomings of Version 2. SASL was originally
devised to add stronger authentication to the IMAP protocol. SASL has since
evolved into a more general system for mediating between protocols and
authentication systems. It is a proposed Internet standard defined in RFC
2222.

In SASL, connection protocols, like LDAP, IMAP, and so on, are represented
by profiles; each profile is considered a protocol extension that allows the
protocol and SASL to work together. A complete list of SASL profiles can be
obtained from the Information Sciences Institute (ISI). See A.4, “Other
Sources” on page 140, for URL references. Among these are IMAP4, SMTP,
POP3, and LDAP. Each protocol that intends to use SASL needs to be
extended with a command to identify an authentication mechanism and to
carry out an authentication exchange. Optionally, a security layer can be
negotiated to encrypt the data after authentication and so ensure
confidentiality. LDAP Version 3 includes such a command (ldap_sasl_bind()).

The SASL bind operation is explained in more detail with an example in 4.2.8,
“Authentication Methods” on page 108. The key parameters that influence the
security method used are:

dn This is the distinguished name of the entry you want to bind as.
This can be thought of as the user ID in a normal user ID and
password authentication.

mechanism This is the name of the security method that should be used.
Valid security mechanisms are currently Kerberos Version 4,
S/Key, GSSAPI, CRAM-MD5 and EXTERNAL. There is also an
ANONYMOUS mechanism available which enables an
authentication as user “anonymous”. In LDAP, the most common
mechanism used is SSL (or its successor, TLS), which is
provided as an EXTERNAL mechanism.

credentials This contains the arbitrary data that identifies the DN. The
format and content of the parameter depends on the mechanism
chosen. If it is, for example, the ANONYMOUS mechanism, it
can be an arbitrary string or an e-mail address that identifies the
user.

46 Understanding LDAP

Through the SASL bind API function call, LDAP client applications call the
SASL protocol driver on the server, which in turn connects the authentication
system named in the SASL mechanism to retrieve the required authentication
information for the user. SASL can be seen as intermediator between the
authentication system and a protocol like LDAP. Figure 13 illustrates this
relationship.

Figure 13. SASL Mechanism

Of course, the server must support this SASL mechanism as well, otherwise
the authentication process will not be able to succeed. To retrieve a list of
SASL mechanisms supported by an LDAP server (Version 3 only), point your
Web browser to the following URL:

ldap://<ldap server>/?supportedsaslmechanisms

This is actually an LDAP URL, very similar to those used for HTTP
(http://<host>/...) or other Internet protocols. You can get more information
about LDAP URLs in 4.4, “LDAP URLs” on page 120.

As we have seen, the basic idea behind SASL is that it provides a high level
framework that lets the involved parties decide on the particular security
mechanism to use. The SASL security mechanism negotiation between client
and server is done in the clear. Once the client and the server have agreed on
a common mechanism, the connection is secure against modifying the
authentication identities. An attacker could now try to eavesdrop the
mechanism negotiation and cause a party to use the least secure
mechanism. In order to prevent this from happening, clients and servers

SASL Mechanism Call
e.g. LDAP Client

SASL Driver
on LDAP Server

Authentication Systems
(e.g. Kerberos)

LDAP Concepts and Architecture 47

should be configured to use a minimum security mechanism, provided they
support such a configuration option.

As stated earlier, SSL and its successor, TLS, are the mechanisms commonly
used in SASL for LDAP. Following is a brief description of SSL and TLS.

2.3.3.1 SSL and TLS
The Secure Socket Layer (SSL) protocol was devised to provide both
authentication and data security. It encapsulates the TCP/IP socket so that
basically every TCP/IP application can use it to secure its communication.
See Figure 14.

Figure 14. SSL/TLS in Relationship with Other Protocols

SSL was developed by Netscape and the current version is 3.0. Transport
Layer Security (TLS) is an evolving open standard, currently in the state of an
Internet Draft, being worked on at the IETF. It is based on SSL 3.0 with only a
few minor differences, and it provides backwards compatibility with SSL 3.0. It
is assumed that TLS will replace SSL. The following discussion is equally
valid for both SSL and TLS.

SSL/TLS supports server authentication (client authenticates server), client
authentication (server authenticates client), or mutual authentication. In
addition, it provides for privacy by encrypting data sent over the network.

SSL/TLS uses a public key method to secure the communication and to
authenticate the counterparts of the session. This is achieved with a
public/private key pair. They operate as reverse functions to each other, which
means data encrypted with the private key can be decrypted with the public
key and vice versa. The assumption for the following considerations is that

Application Protocols

Network Protocols

Application(s)

(WWW, POP, SMTP, E-Mail)

HTTP LDAPSMTP

Security Layer (SSL/TLS)

TCP/IP Layer

48 Understanding LDAP

the server has its key pair already generated. This is usually done when
setting up the LDAP server.

The simplified interchange between a client and a server negotiating an
SSL/TLS connection is explained in the following segment and illustrated in
Figure 15.

Figure 15. SSL/TLS Handshake

1. As a first step, the client asks the server for an SSL/TLS session. The
client also includes the SSL/TLS options it supports in the request.

2. The server sends back its SSL/TLS options and a certificate which
includes, among other things, the server’s public key, the identity for whom
the certificate was issued (as a distinguished name), the certifier’s name
and the validity time. A certificate can be thought of the electronic
equivalent of a passport. It has to be issued by a general, trusted
Certificate Authority (CA) which vouches that the public key really belongs
to the entity mentioned in the certificate. The certificate is signed by the
certifier which can be verified with the certifier’s freely available public key

3. The client then requests the server to prove its identity. This is to make
sure that the certificate was not sent by someone else who intercepted it
on a former occasion.

4. The server sends back a message including a message digest (similar to
a check sum) which is encrypted with its private key. A message digest
that is computed from the message content using a hash function has two

Request, SSL/TLS Options

Prove It

Message, Digest

Symmetric Key (encrypted)

Random Message (encrypted)

Certificate, SSL/TLS Options

T
im

e

S
e

r
v

e
r

C
li

e
n

t

LDAP Concepts and Architecture 49

features. It is extremely difficult to reverse, and it is nearly impossible to
find a message that would produce the same digest. The client can
decrypt the digest with the server’s public key and then compare it with the
digest it computes from the message. If both are equal, the server’s
identity is proved, and the authentication process is finished.

5. Next, server and client have to agree upon a secret (symmetric) key used
for data encryption. Data encryption is done with a symmetric key
algorithm because it is more efficient than the computing-intensive public
key method. The client therefore generates a symmetric key, encrypts it
with the server’s public key, and sends it to the server. Only the server with
its private key can decrypt the secret key.

6. The server decrypts the secret key and sends back a test message
encrypted with the secret key to prove that the key has safely arrived.
They can now start communicating using the symmetric key to encrypt the
data.

As outlined above, SSL/TLS is used to authenticate a server to a client using
its certificate and its private key and to negotiate a secret key later on used
for data encryption. An example on how SSL can be used in a client
application can be found in 4.2.8, “Authentication Methods” on page 108.

2.3.3.2 Other SASL Authentication Mechanisms
Although the SASL concepts supports multiple mechanisms, a particular
vendor product may not support them all. It is very likely that vendor products
only support a few mechanisms, such as SSL or TLS as just discussed
above. Another common authentication method widely used is Kerberos. It
has its roots in universities, where it proved to be scalable up to many
thousands of clients. Kerberos is a third-party authentication method that
uses a separate server providing security functions for the authentication
process between involved parties. It uses the widely accepted Data
Encryption Standard (DES) for message encryption.

2.4 Manageability

The LDAP specifications contained in the pertinent RFCs (as listed and
briefly explained in 2.1, “Overview of LDAP Architecture” on page 19) include
functions for directory data management. These include functions to create
and modify the directory information tree (DIT) and to add, modify, and delete
data stored in the directory.

