mongoose/test/mip_test.c
2022-11-29 11:20:22 +01:00

269 lines
8.3 KiB
C

#define MG_ENABLE_SOCKET 0
#define MG_ENABLE_LINES 1
#define MG_ENABLE_MIP 1
#define MG_ENABLE_PACKED_FS 0
#include <assert.h>
#include <linux/if.h>
#include <linux/if_tun.h>
#include <sys/ioctl.h>
#include "mongoose.c"
#include "driver_mock.c"
static int s_num_tests = 0;
#define ASSERT(expr) \
do { \
s_num_tests++; \
if (!(expr)) { \
printf("FAILURE %s:%d: %s\n", __FILE__, __LINE__, #expr); \
abort(); \
} \
} while (0)
static void test_queue(void) {
static uint8_t
buf[sizeof(size_t) + sizeof(uint16_t) + 3]; // fit 1 element but not 2
uint16_t val = 1234;
static struct queue q = {buf, sizeof(buf), 0, 0};
// Write to an empty queue, and read back
assert(q_avail(&q) == 0);
assert(q_write(&q, &val, sizeof(val)) == true);
assert(q_avail(&q) == sizeof(val));
assert(q.head > q.tail);
// Only one element may fit
assert(q_write(&q, &val, sizeof(val)) == false);
val = 0;
assert(q_read(&q, &val) == sizeof(val));
assert(val == 1234);
assert(q_avail(&q) == 0);
// Second write - wrap over the buffer boundary
assert(q_write(&q, &val, sizeof(val)) == true);
assert(q_avail(&q) == sizeof(val));
assert(q.head < q.tail);
// Only one element may fit
assert(q_write(&q, &val, sizeof(val)) == false);
val = 0;
assert(q_read(&q, &val) == sizeof(val));
assert(val == 1234);
assert(q_avail(&q) == 0);
}
static void test_statechange(void) {
char tx[1540];
struct mip_if iface;
memset(&iface, 0, sizeof(iface));
iface.ip = mg_htonl(0x01020304);
iface.state = MIP_STATE_READY;
iface.tx.ptr = tx, iface.tx.len = sizeof(tx);
iface.driver = &mip_driver_mock;
onstatechange(&iface);
}
// MIP TUNTAP driver
static size_t tap_rx(void *buf, size_t len, void *userdata) {
ssize_t received = read(*(int *) userdata, buf, len);
usleep(1); // This is to avoid 100% CPU
if (received < 0) return 0;
return (size_t) received;
}
static size_t tap_tx(const void *buf, size_t len, void *userdata) {
ssize_t res = write(*(int *) userdata, buf, len);
if (res < 0) {
MG_ERROR(("tap_tx failed: %d", errno));
return 0;
}
return (size_t) res;
}
static bool tap_up(void *userdata) {
return userdata ? true : false;
}
// HTTP fetches IOs
struct Post_reply {
char* post; // HTTP POST data
void* http_response; // Server response(s)
unsigned int http_responses_received; // Number responses received
};
char *fetch(struct mg_mgr *mgr, const char *url, const char *post_data);
static void f_http_fetch_query(struct mg_connection *c, int ev, void *ev_data, void *fn_data);
int get_response_code(char *); // Returns HTTP status code from full char* msg
static void f_http_fetch_query(struct mg_connection *c, int ev, void *ev_data, void *fn_data) {
static char* http_response = 0;
static bool http_response_allocated = 0; // So that we will update out parameter
unsigned int http_responses_received = 0;
struct Post_reply *post_reply_l;
post_reply_l = (struct Post_reply*)fn_data;
if (ev == MG_EV_CONNECT) {
mg_printf(c, post_reply_l->post);
} else if (ev == MG_EV_HTTP_MSG) {
struct mg_http_message *hm = (struct mg_http_message *) ev_data;
http_responses_received++;
if (!http_response_allocated) {
http_response = (char*)mg_strdup(hm->message).ptr;
http_response_allocated = 1;
}
if (http_responses_received > 0) {
post_reply_l->http_response = http_response;
post_reply_l->http_responses_received = http_responses_received;
}
}
}
// Fetch utility returns message from fetch(..., URL, POST)
char *fetch(struct mg_mgr *mgr, const char *url, const char *fn_data) {
struct Post_reply post_reply;
{
post_reply.post=(char*)fn_data;
post_reply.http_response=0;
post_reply.http_responses_received=0;
}
struct mg_connection *conn;
conn = mg_http_connect(mgr, url, f_http_fetch_query, &post_reply);
ASSERT(conn != NULL); // Assertion on initialisation
for (int i = 0; i < 500 && !post_reply.http_responses_received; i++) {
mg_mgr_poll(mgr, 100);
usleep(10000); // 10 ms. Slow down poll loop to ensure packets transit
}
conn->is_closing = 1;
mg_mgr_poll(mgr, 0);
if (!post_reply.http_responses_received)
return 0;
else
return (char*)post_reply.http_response;
}
// Returns server's HTTP response code
int get_response_code(char * http_msg_raw) {
int http_status = 0;
struct mg_http_message http_msg_parsed;
if (mg_http_parse(http_msg_raw, strlen(http_msg_raw), &http_msg_parsed)) {
http_status = mg_http_status(&http_msg_parsed);
} else {
printf("Error: mg_http_parse()\n");
ASSERT(http_status != 0); // Couldn't parse.
}
return http_status;
}
static void test_http_fetch(void) {
// Setup interface
const char *iface = "tap0"; // Network iface
const char *mac = "00:00:01:02:03:78"; // MAC address
int fd = open("/dev/net/tun", O_RDWR); // Open network interface
struct ifreq ifr;
memset(&ifr, 0, sizeof(ifr));
strncpy(ifr.ifr_name, iface, IFNAMSIZ);
ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
if (ioctl(fd, TUNSETIFF, (void *) &ifr) < 0) {
MG_ERROR(("Failed to setup TAP interface: %s", ifr.ifr_name));
abort(); // return EXIT_FAILURE;
}
fcntl(fd, F_SETFL, fcntl(fd, F_GETFL, 0) | O_NONBLOCK); // Non-blocking mode
MG_INFO(("Opened TAP interface: %s", iface));
// Events
struct mg_mgr mgr; // Event manager
mg_mgr_init(&mgr); // Initialise event manager
// MIP driver
// Zero init fields required (C/C++ style diverge)
#ifndef __cplusplus
struct mip_driver driver = {.tx = tap_tx, .up = tap_up, .rx = tap_rx};
// DHCP
// struct mip_if mif = {.use_dhcp = true, .driver = &driver, .driver_data = &fd};
// Static
// 192.168.32.2/24 gw 192.168.32.1
struct mip_if mif = {.use_dhcp = false, \
.ip=0x0220a8c0 , .mask=0x00ffffff, .gw=0x0120a8c0, \
.driver = &driver, .driver_data = &fd};
#else
struct mip_driver driver {};
driver.tx = tap_tx;
driver.up = tap_up;
driver.rx = tap_rx;
struct mip_if mif {};
// mif.use_dhcp = true; // DHCP
mif.use_dhcp = false; // Static IP
mif.ip = 0x0220a8c0; // 192.168.32.2
mif.mask = 0x00ffffff; // 255.255.255.0
mif.gw = 0x0120a8c0; // 192.168.32.1
mif.driver = &driver;
mif.driver_data = &fd;
#endif
sscanf(mac, "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx", &mif.mac[0], &mif.mac[1], &mif.mac[2],
&mif.mac[3], &mif.mac[4], &mif.mac[5]);
mip_init(&mgr, &mif);
MG_INFO(("Init done, starting main loop"));
// Stack initialization, Network configuration (DHCP lease, ...)
{
if (mif.ip) MG_INFO(("MIF configuration: Static IP"));
else MG_INFO(("MIF configuration: DHCP"));
MG_INFO(("Opened TAP interface: %s", iface));
// ASSERT(!mif.ip); // Check we are set for DHCP
int pc = 500; // Timout on DHCP lease 500 ~ approx 5s (typical delay <1s)
while (((pc--)>0) /*& !mif.ip*/) {
mg_mgr_poll(&mgr, 100);
usleep(10000); // 10 ms
}
if (!mif.ip) printf("No ip assigned (DHCP lease may have failed).\n");
ASSERT(mif.ip); // We have an IP (lease or static)
}
// Simple HTTP fetch
{
char* http_feedback = (char*)"";
const bool ipv6 = 0;
if (ipv6) {
http_feedback = fetch (&mgr, "ipv6.google.com",\
"GET/ HTTP/1.0\r\nHost: ipv6.google.com\r\n\r\n");
} else {
http_feedback = fetch (&mgr, "http://cesanta.com",\
"GET //robots.txt HTTP/1.0\r\nHost: cesanta.com\r\n\r\n");
}
ASSERT(*http_feedback != '\0'); // Received HTTP response ?
int http_status = get_response_code(http_feedback);
// printf("Server response HTTP status code: %d\n",http_status);
ASSERT(http_status != 0);
ASSERT(http_status == 301); // OK: Permanently moved (HTTP->HTTPS redirect)
if (http_feedback) {
free(http_feedback);
http_feedback = 0;
}
}
// Clear
mip_free(&mif);
mg_mgr_free(&mgr);
ASSERT(mgr.conns == NULL); // Deconstruction OK
close(fd);
}
int main(void) {
test_queue();
test_statechange();
test_http_fetch();
printf("SUCCESS. Total tests: %d\n", s_num_tests);
return 0;
}