#include "mip.h" #if MG_ENABLE_MIP && defined(MG_ENABLE_DRIVER_TM4C) && MG_ENABLE_DRIVER_TM4C struct tm4c_emac { volatile uint32_t EMACCFG, EMACFRAMEFLTR, EMACHASHTBLH, EMACHASHTBLL, EMACMIIADDR, EMACMIIDATA, EMACFLOWCTL, EMACVLANTG, RESERVED0, EMACSTATUS, EMACRWUFF, EMACPMTCTLSTAT, RESERVED1[2], EMACRIS, EMACIM, EMACADDR0H, EMACADDR0L, EMACADDR1H, EMACADDR1L, EMACADDR2H, EMACADDR2L, EMACADDR3H, EMACADDR3L, RESERVED2[31], EMACWDOGTO, RESERVED3[8], EMACMMCCTRL, EMACMMCRXRIS, EMACMMCTXRIS, EMACMMCRXIM, EMACMMCTXIM, RESERVED4, EMACTXCNTGB, RESERVED5[12], EMACTXCNTSCOL, EMACTXCNTMCOL, RESERVED6[4], EMACTXOCTCNTG, RESERVED7[6], EMACRXCNTGB, RESERVED8[4], EMACRXCNTCRCERR, EMACRXCNTALGNERR, RESERVED9[10], EMACRXCNTGUNI, RESERVED10[239], EMACVLNINCREP, EMACVLANHASH, RESERVED11[93], EMACTIMSTCTRL, EMACSUBSECINC, EMACTIMSEC, EMACTIMNANO, EMACTIMSECU, EMACTIMNANOU, EMACTIMADD, EMACTARGSEC, EMACTARGNANO, EMACHWORDSEC, EMACTIMSTAT, EMACPPSCTRL, RESERVED12[12], EMACPPS0INTVL, EMACPPS0WIDTH, RESERVED13[294], EMACDMABUSMOD, EMACTXPOLLD, EMACRXPOLLD, EMACRXDLADDR, EMACTXDLADDR, EMACDMARIS, EMACDMAOPMODE, EMACDMAIM, EMACMFBOC, EMACRXINTWDT, RESERVED14[8], EMACHOSTXDESC, EMACHOSRXDESC, EMACHOSTXBA, EMACHOSRXBA, RESERVED15[218], EMACPP, EMACPC, EMACCC, RESERVED16, EMACEPHYRIS, EMACEPHYIM, EMACEPHYIMSC; }; #define EMAC ((struct tm4c_emac *) (uintptr_t) 0x400EC000) #define BIT(x) ((uint32_t) 1 << (x)) #define ETH_PKT_SIZE 1540 // Max frame size #define ETH_DESC_CNT 4 // Descriptors count #define ETH_DS 4 // Descriptor size (words) static uint32_t s_rxdesc[ETH_DESC_CNT][ETH_DS]; // RX descriptors static uint32_t s_txdesc[ETH_DESC_CNT][ETH_DS]; // TX descriptors static uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE]; // RX ethernet buffers static uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE]; // TX ethernet buffers static void (*s_rx)(void *, size_t, void *); // Recv callback static void *s_rxdata; // Recv callback data enum { EPHY_ADDR = 0, EPHYBMCR = 0, EPHYBMSR = 1 }; // PHY constants static inline void spin(volatile uint32_t count) { while (count--) (void) 0; } static uint32_t emac_read_phy(uint8_t addr, uint8_t reg) { EMAC->EMACMIIADDR &= (0xf << 2); EMAC->EMACMIIADDR |= ((uint32_t) addr << 11) | ((uint32_t) reg << 6); EMAC->EMACMIIADDR |= BIT(0); while (EMAC->EMACMIIADDR & BIT(0)) spin(1); return EMAC->EMACMIIDATA; } static void emac_write_phy(uint8_t addr, uint8_t reg, uint32_t val) { EMAC->EMACMIIDATA = val; EMAC->EMACMIIADDR &= (0xf << 2); EMAC->EMACMIIADDR |= ((uint32_t) addr << 11) | ((uint32_t) reg << 6) | BIT(1); EMAC->EMACMIIADDR |= BIT(0); while (EMAC->EMACMIIADDR & BIT(0)) spin(1); } // TODO(scaprile) TEST static uint32_t get_sysclk(void) { struct sysctl { volatile uint32_t DONTCARE0[44], RSCLKCFG, DONTCARE1[43], PLLFREQ0, PLLFREQ1; } *SYSCTL = (struct sysctl *) 0x400FE000; uint32_t clk = 0, piosc = 16000000 /* 16 MHz */, mosc = 25000000 /* 25MHz */; uint32_t oscsrc = (SYSCTL->RSCLKCFG & (0xf << 20)) >> 20; if (oscsrc == 0) clk = piosc; else if (oscsrc == 3) clk = mosc; else MG_ERROR(("Unsupported clock source")); if (SYSCTL->RSCLKCFG & (1 << 28)) { // USEPLL uint32_t fin, vco, mdiv, n, q, psysdiv; q = (SYSCTL->PLLFREQ1 & (0x1f << 8)) >> 8; n = (SYSCTL->PLLFREQ1 & (0x1f << 0)) >> 0; fin = clk / ((q + 1) * (n + 1)); mdiv = (SYSCTL->PLLFREQ0 & (0x3ff << 0)) >> 0; // mint + (mfrac / 1024); MFRAC not supported psysdiv = (SYSCTL->RSCLKCFG & (0x3f << 0)) >> 0; vco = (uint32_t) ((uint64_t) fin * mdiv); return vco / (psysdiv + 1); } uint32_t osysdiv = (SYSCTL->RSCLKCFG & (0xf << 16)) >> 16; return clk / (osysdiv + 1); } // Guess CR from SYSCLK. MDC clock is generated from SYSCLK (AHB); as per // 802.3, it must not exceed 2.5MHz (also 20.4.2.6) As the AHB clock can be // (and usually is) derived from the PIOSC (internal RC), and it can go above // specs, the datasheets specify a range of frequencies and activate one of a // series of dividers to keep the MDC clock safely below 2.5MHz. We guess a // divider setting based on SYSCLK with a +5% drift. If the user uses a // different clock from our defaults, needs to set the macros on top Valid for // TM4C129x (20.7) (4.5% worst case drift) // The PHY receives the main oscillator (MOSC) (20.3.1) static int guess_mdc_cr(void) { uint8_t crs[] = {2, 3, 0, 1}; // EMAC->MACMIIAR::CR values uint8_t div[] = {16, 26, 42, 62}; // Respective HCLK dividers uint32_t sysclk = get_sysclk(); // Guess system SYSCLK int result = -1; // Invalid CR value if (sysclk < 25000000) { MG_ERROR(("SYSCLK too low")); } else { for (int i = 0; i < 4; i++) { if (sysclk / div[i] <= 2375000UL /* 2.5MHz - 5% */) { result = crs[i]; break; } } if (result < 0) MG_ERROR(("SYSCLK too high")); } MG_DEBUG(("SYSCLK: %u, CR: %d", sysclk, result)); return result; } static bool mip_driver_tm4c_init(uint8_t *mac, void *userdata) { struct mip_driver_tm4c *d = (struct mip_driver_tm4c *) userdata; // Init RX descriptors for (int i = 0; i < ETH_DESC_CNT; i++) { s_rxdesc[i][0] = BIT(31); // Own s_rxdesc[i][1] = sizeof(s_rxbuf[i]) | BIT(14); // 2nd address chained s_rxdesc[i][2] = (uint32_t) (uintptr_t) s_rxbuf[i]; // Point to data buffer s_rxdesc[i][3] = (uint32_t) (uintptr_t) s_rxdesc[(i + 1) % ETH_DESC_CNT]; // Chain // MG_DEBUG(("%d %p", i, s_rxdesc[i])); } // Init TX descriptors for (int i = 0; i < ETH_DESC_CNT; i++) { s_txdesc[i][2] = (uint32_t) (uintptr_t) s_txbuf[i]; // Buf pointer s_txdesc[i][3] = (uint32_t) (uintptr_t) s_txdesc[(i + 1) % ETH_DESC_CNT]; // Chain } EMAC->EMACDMABUSMOD |= BIT(0); // Software reset while ((EMAC->EMACDMABUSMOD & BIT(0)) != 0) spin(1); // Wait until done // Set MDC clock divider. If user told us the value, use it. Otherwise, guess int cr = (d == NULL || d->mdc_cr < 0) ? guess_mdc_cr() : d->mdc_cr; EMAC->EMACMIIADDR = ((uint32_t) cr & 0xf) << 2; // NOTE(cpq): we do not use extended descriptor bit 7, and do not use // hardware checksum. Therefore, descriptor size is 4, not 8 // EMAC->EMACDMABUSMOD = BIT(13) | BIT(16) | BIT(22) | BIT(23) | BIT(25); EMAC->EMACIM = BIT(3) | BIT(9); // Mask timestamp & PMT IT EMAC->EMACFLOWCTL = BIT(7); // Disable zero-quanta pause // EMAC->EMACFRAMEFLTR = BIT(31); // Receive all // EMAC->EMACPC defaults to internal PHY (EPHY) in MMI mode emac_write_phy(EPHY_ADDR, EPHYBMCR, BIT(15)); // Reset internal PHY (EPHY) emac_write_phy(EPHY_ADDR, EPHYBMCR, BIT(12)); // Set autonegotiation EMAC->EMACRXDLADDR = (uint32_t) (uintptr_t) s_rxdesc; // RX descriptors EMAC->EMACTXDLADDR = (uint32_t) (uintptr_t) s_txdesc; // RX descriptors EMAC->EMACDMAIM = BIT(6) | BIT(16); // RIE, NIE EMAC->EMACCFG = BIT(2) | BIT(3) | BIT(11) | BIT(14); // RE, TE, Duplex, Fast EMAC->EMACDMAOPMODE = BIT(1) | BIT(13) | BIT(21) | BIT(25); // SR, ST, TSF, RSF // TODO(scaprile) we are not using EPHY interrupts, we could probably use // them, have a status flag, and avoid polling the PHY // MAC address filtering NOTE(scaprile): This is currently ignored by // configuration of EMACFRAMEFLTR above; MIP receives all frames. This also // applies to the STM32 driver (Nov 1st 2022) EMAC->EMACADDR0H = ((uint32_t) mac[5] << 8U) | mac[4]; EMAC->EMACADDR0L = (uint32_t) (mac[3] << 24) | ((uint32_t) mac[2] << 16) | ((uint32_t) mac[1] << 8) | mac[0]; // NOTE(scaprile) There are 3 additional slots for filtering, disabled by // default. This also applies to the STM32 driver (at least for F7) return true; } static void mip_driver_tm4c_setrx(void (*rx)(void *, size_t, void *), void *rxdata) { s_rx = rx; s_rxdata = rxdata; } static uint32_t s_txno; static size_t mip_driver_tm4c_tx(const void *buf, size_t len, void *userdata) { if (len > sizeof(s_txbuf[s_txno])) { MG_ERROR(("frame too big, %ld", (long) len)); len = 0; // fail } else if ((s_txdesc[s_txno][0] & BIT(31))) { MG_ERROR(("no descriptors available")); len = 0; // fail } else { memcpy(s_txbuf[s_txno], buf, len); // Copy data s_txdesc[s_txno][1] = (uint32_t) len; // Set data len s_txdesc[s_txno][0] = BIT(20) | BIT(28) | BIT(29) | BIT(30); // Chain,FS,LS,IC s_txdesc[s_txno][0] |= BIT(31); // Set OWN bit - let DMA take over if (++s_txno >= ETH_DESC_CNT) s_txno = 0; } uint32_t sr = EMAC->EMACDMARIS; if (sr & BIT(2)) EMAC->EMACDMARIS = BIT(2), EMAC->EMACTXPOLLD = 0; // Resume if (sr & BIT(5)) EMAC->EMACDMARIS = BIT(5), EMAC->EMACTXPOLLD = 0; // if busy if (len == 0) MG_ERROR(("E: D0 %lx SR %lx", (long) s_txdesc[0][0], (long) sr)); return len; (void) userdata; } static bool mip_driver_tm4c_up(void *userdata) { uint32_t bmsr = emac_read_phy(EPHY_ADDR, EPHYBMSR); (void) userdata; return (bmsr & BIT(2)) ? 1 : 0; } void EMAC0_IRQHandler(void); void EMAC0_IRQHandler(void) { qp_mark(QP_IRQTRIGGERED, 0); volatile uint32_t sr = EMAC->EMACDMARIS; if (sr & BIT(6)) { // Frame received, loop for (uint32_t i = 0; i < ETH_DESC_CNT; i++) { if (s_rxdesc[i][0] & BIT(31)) continue; uint32_t len = ((s_rxdesc[i][0] >> 16) & (BIT(14) - 1)); // MG_DEBUG(("%lu %lu %lx %lx", i, len, s_rxdesc[i][0], sr)); if (s_rx != NULL) s_rx(s_rxbuf[i], len > 4 ? len - 4 : len, s_rxdata); s_rxdesc[i][0] = BIT(31); } } if (sr & BIT(7)) { EMAC->EMACRXPOLLD = 0; // Resume RX // uint32_t *p = (uint32_t *)(EMAC->EMACHOSRXDESC); // MG_DEBUG(("RU: %p %c", p, (*p & BIT(31))? '1':'0')); } EMAC->EMACDMARIS = sr & ~(BIT(2) | BIT(7)); // Clear status // if (EMAC->EMACDMARIS & BIT(7)) { // uint32_t *p = (uint32_t *)(EMAC->EMACHOSRXDESC); // MG_ERROR(("OOPS: %p %c", p, (*p & BIT(31))? '1':'0')); // } } struct mip_driver mip_driver_tm4c = {mip_driver_tm4c_init, mip_driver_tm4c_tx, NULL, mip_driver_tm4c_up, mip_driver_tm4c_setrx}; #endif