Introduce sysinit.c, better debug log, more verbose Makefile

This commit is contained in:
cpq 2023-02-06 19:22:43 +00:00
parent 2ddf71ec46
commit f5ff7cfcf1
9 changed files with 169 additions and 135 deletions

View File

@ -4,18 +4,31 @@ CMSIS_CORE_REPO ?= https://github.com/ARM-software/CMSIS_5
CMSIS_DEVICE_VERSION ?= v1.2.8 # ST MCU peripheral definitions
CMSIS_DEVICE_REPO ?= https://github.com/STMicroelectronics/cmsis_device_f7
CFLAGS ?= -W -Wall -Wextra -Werror -Wundef -Wshadow -Wdouble-promotion \
-Wformat-truncation -fno-common -Wconversion -Wno-sign-conversion\
-g3 -Os -ffunction-sections -fdata-sections \
-I . -I cmsis_core/CMSIS/Core/Include -I cmsis_device_f7/Include \
-mcpu=cortex-m7 -mthumb -mfloat-abi=hard -mfpu=fpv5-sp-d16 $(EXTRA_CFLAGS)
CFLAGS = -W -Wall -Wextra -Werror -Wundef -Wshadow -Wdouble-promotion
CFLAGS += -Wformat-truncation -fno-common -Wconversion -Wno-sign-conversion
CFLAGS += -g3 -Os -ffunction-sections -fdata-sections
CFLAGS += -I. -Icmsis_core/CMSIS/Core/Include -Icmsis_device_f7/Include
CFLAGS += -mcpu=cortex-m7 -mthumb -mfloat-abi=hard -mfpu=fpv5-sp-d16
LDFLAGS ?= -Tlink.ld -nostdlib -nostartfiles --specs nano.specs -lc -lgcc -Wl,--gc-sections -Wl,-Map=$@.map
SOURCES = main.c syscalls.c cmsis_device_f7/Source/Templates/gcc/startup_stm32f746xx.s
SOURCES = main.c syscalls.c sysinit.c
# Using ST-provided startup file. NOTE: this is compiler-dependant
SOURCES += cmsis_device_f7/Source/Templates/gcc/startup_stm32f746xx.s
# Mongoose-specific build flags and source code files
# Build options reference: https://mongoose.ws/documentation/#build-options
CFLAGS += -I../../.. -DMG_ARCH=MG_ARCH_NEWLIB -DMG_ENABLE_CUSTOM_MILLIS=1 -DMG_ENABLE_MIP=1 -DMG_ENABLE_PACKED_FS=1
SOURCES += ../../../mongoose.c ../../device-dashboard/net.c ../../device-dashboard/packed_fs.c
SOURCES += ../../../mongoose.c
SOURCES += ../../device-dashboard/net.c
SOURCES += ../../device-dashboard/packed_fs.c
CFLAGS += -I../../..
CFLAGS += -DMG_ARCH=MG_ARCH_NEWLIB
CFLAGS += -DMG_ENABLE_CUSTOM_MILLIS=1
CFLAGS += -DMG_ENABLE_CUSTOM_RANDOM=1
CFLAGS += -DMG_ENABLE_MIP=1
CFLAGS += -DMG_ENABLE_PACKED_FS=1
CFLAGS += $(CFLAGS_EXTRA)
# Build flashable .bin file
all build example: firmware.bin
@ -50,7 +63,7 @@ update: firmware.bin
# Read serial port on a remote test device for 5 seconds, store in a
# temporary file, and check the output for expected patterns
test: EXTRA_CFLAGS += -DUART_DEBUG=UART1
test: CFLAGS_EXTRA += -DUART_DEBUG=USART1
test: update
curl --fail-with-body -su :$(VCON_API_KEY) $(DEVICE_URL)/tx?t=5 | tee /tmp/output.txt
grep 'READY, IP:' /tmp/output.txt # Check for network init

View File

@ -75,7 +75,7 @@ static inline void gpio_output(uint16_t pin) {
static inline void irq_exti_attach(uint16_t pin) {
uint8_t bank = (uint8_t) (PINBANK(pin)), n = (uint8_t) (PINNO(pin));
RCC->APB2ENR |= BIT(14); // Enable SYSCFG
RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN; // Enable SYSCFG
SYSCFG->EXTICR[n / 4] &= ~(15UL << ((n % 4) * 4));
SYSCFG->EXTICR[n / 4] |= (uint32_t) (bank << ((n % 4) * 4));
EXTI->IMR |= BIT(n);
@ -86,12 +86,8 @@ static inline void irq_exti_attach(uint16_t pin) {
NVIC_EnableIRQ(irqvec);
}
#define UART1 USART1
#define UART2 USART2
#define UART3 USART3
#ifndef UART_DEBUG
#define UART_DEBUG UART3
#define UART_DEBUG USART3
#endif
static inline void uart_init(USART_TypeDef *uart, unsigned long baud) {
@ -100,13 +96,13 @@ static inline void uart_init(USART_TypeDef *uart, unsigned long baud) {
uint16_t rx = 0, tx = 0; // pins
uint32_t freq = 0; // Bus frequency. UART1 is on APB2, rest on APB1
if (uart == UART1) freq = APB2_FREQUENCY, RCC->APB2ENR |= BIT(4);
if (uart == UART2) freq = APB1_FREQUENCY, RCC->APB1ENR |= BIT(17);
if (uart == UART3) freq = APB1_FREQUENCY, RCC->APB1ENR |= BIT(18);
if (uart == USART1) freq = APB2_FREQUENCY, RCC->APB2ENR |= BIT(4);
if (uart == USART2) freq = APB1_FREQUENCY, RCC->APB1ENR |= BIT(17);
if (uart == USART3) freq = APB1_FREQUENCY, RCC->APB1ENR |= BIT(18);
if (uart == UART1) tx = PIN('A', 9), rx = PIN('A', 10);
if (uart == UART2) tx = PIN('A', 2), rx = PIN('A', 3);
if (uart == UART3) tx = PIN('D', 8), rx = PIN('D', 9);
if (uart == USART1) tx = PIN('A', 9), rx = PIN('A', 10);
if (uart == USART2) tx = PIN('A', 2), rx = PIN('A', 3);
if (uart == USART3) tx = PIN('D', 8), rx = PIN('D', 9);
gpio_init(tx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, 0, af);
gpio_init(rx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, 0, af);
@ -128,25 +124,11 @@ static inline uint8_t uart_read_byte(USART_TypeDef *uart) {
return (uint8_t) (uart->RDR & 255);
}
static inline void clock_init(void) { // Set clock frequency
#if 0
RCC->APB1ENR |= BIT(28); // Power enable
PWR->CR1 |= 3UL << 14; // Voltage regulator scale 3
PWR->CR1 |= BIT(16); // Enable overdrive
while ((PWR->CSR1 & BIT(16)) == 0) spin(1); // Wait until done
PWR->CR1 |= BIT(17); // Enable overdrive switching
while ((PWR->CSR1 & BIT(17)) == 0) spin(1); // Wait until done
#endif
SCB->CPACR |= ((3UL << 10 * 2) | (3UL << 11 * 2)); // Enable FPU
asm("DSB");
asm("ISB");
FLASH->ACR |= FLASH_LATENCY | BIT(8) | BIT(9); // Flash latency, prefetch
RCC->PLLCFGR &= ~((BIT(17) - 1)); // Clear PLL multipliers
RCC->PLLCFGR |= (((PLL_P - 2) / 2) & 3) << 16; // Set PLL_P
RCC->PLLCFGR |= PLL_M | (PLL_N << 6); // Set PLL_M and PLL_N
RCC->CR |= BIT(24); // Enable PLL
while ((RCC->CR & BIT(25)) == 0) spin(1); // Wait until done
RCC->CFGR = (APB1_PRE << 10) | (APB2_PRE << 13); // Set prescalers
RCC->CFGR |= 2; // Set clock source to PLL
while ((RCC->CFGR & 12) == 0) spin(1); // Wait until done
static inline void rng_init(void) {
RCC->AHB2ENR |= RCC_AHB2ENR_RNGEN;
RNG->CR |= RNG_CR_RNGEN;
}
static inline uint32_t rng_read(void) {
while ((RNG->SR & RNG_SR_DRDY) == 0) (void) 0;
return RNG->DR;
}

View File

@ -4,53 +4,35 @@
#include "hal.h"
#include "mongoose.h"
#define LED1 PIN('B', 0) // On-board LED pin (green)
#define LED2 PIN('B', 7) // On-board LED pin (blue)
#define LED3 PIN('B', 14) // On-board LED pin (red)
#define BTN1 PIN('C', 13) // On-board user button
#define LED PIN('B', 7) // On-board LED pin
#define BLINK_PERIOD_MS 1000 // LED blinking period in millis
static uint64_t s_ticks, s_exti; // Counters, increased by IRQ handlers
uint64_t mg_millis(void) { // Declare our own uptime function
return s_ticks; // Return number of milliseconds since boot
}
void HardFault_Handler(void) { // Escalated fault handler
gpio_output(LED3); // Setup red LED
for (;;) spin(2999999), gpio_toggle(LED3); // Blink LED infinitely
}
static uint64_t s_ticks; // Milliseconds since boot
void SysTick_Handler(void) { // SyStick IRQ handler, triggered every 1ms
s_ticks++;
}
void EXTI15_10_IRQHandler(void) { // External interrupt handler
s_exti++;
if (EXTI->PR & BIT(PINNO(BTN1))) EXTI->PR = BIT(PINNO(BTN1));
gpio_write(LED1, gpio_read(BTN1)); // No debounce. Turn LED if button pressed
uint64_t mg_millis(void) { // Let Mongoose use our uptime function
return s_ticks; // Return number of milliseconds since boot
}
void SystemInit(void) { // Called automatically by startup code
clock_init(); // Set clock to 180MHz
SysTick_Config(SYS_FREQUENCY / 1000); // Increment s_ticks every ms
void mg_random(void *buf, size_t len) { // Use on-board RNG
for (size_t n = 0; n < len; n += sizeof(uint32_t)) {
uint32_t r = rng_read();
memcpy((char *) buf + n, &r, n + sizeof(r) > len ? len - n : sizeof(r));
}
}
static void timer_fn(void *arg) {
gpio_toggle(LED2); // Blink LED
bool up = ((struct mip_if *) arg)->state == MIP_STATE_READY;
MG_INFO(("Ethernet: %s", up ? "up" : "down")); // Show network status
gpio_toggle(LED); // Blink LED
struct mip_if *ifp = arg; // And show
const char *names[] = {"down", "up", "ready"}; // network stats
MG_INFO(("Ethernet: %s, IP: %M, rx:%u, tx:%u, dr:%u, er:%u",
names[ifp->state], mg_print_ip4, &ifp->ip, ifp->nrecv, ifp->nsent,
ifp->ndropped, ifp->nerr));
}
int main(void) {
gpio_output(LED1); // Setup green LED
gpio_output(LED2); // Setup blue LED
gpio_input(BTN1); // Set button to input
irq_exti_attach(BTN1); // Attach BTN1 to exti
uart_init(UART_DEBUG, 115200); // Initialise debug printf
MG_INFO(("Starting, CPU freq %g MHz", (double) SYS_FREQUENCY / 1000000));
static void ethernet_init(void) {
// Initialise Ethernet. Enable MAC GPIO pins, see
// https://www.farnell.com/datasheets/2014265.pdf section 6.10
uint16_t pins[] = {PIN('A', 1), PIN('A', 2), PIN('A', 7),
@ -58,25 +40,29 @@ int main(void) {
PIN('C', 5), PIN('G', 11), PIN('G', 13)};
for (size_t i = 0; i < sizeof(pins) / sizeof(pins[0]); i++) {
gpio_init(pins[i], GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_INSANE,
GPIO_PULL_NONE, 11);
GPIO_PULL_NONE, 11); // 11 is the Ethernet function
}
NVIC_EnableIRQ(ETH_IRQn); // Setup Ethernet IRQ handler
RCC->APB2ENR |= BIT(14); // Enable SYSCFG
SYSCFG->PMC |= BIT(23); // Use RMII. Goes first!
RCC->AHB1ENR |= BIT(25) | BIT(26) | BIT(27); // Enable Ethernet clocks
RCC->AHB1RSTR |= BIT(25); // ETHMAC force reset
RCC->AHB1RSTR &= ~BIT(25); // ETHMAC release reset
NVIC_EnableIRQ(ETH_IRQn); // Setup Ethernet IRQ handler
SYSCFG->PMC |= SYSCFG_PMC_MII_RMII_SEL; // Use RMII. Goes first!
RCC->AHB1ENR |=
RCC_AHB1ENR_ETHMACEN | RCC_AHB1ENR_ETHMACTXEN | RCC_AHB1ENR_ETHMACRXEN;
}
struct mg_mgr mgr; // Initialise Mongoose event manager
mg_mgr_init(&mgr); // and attach it to the MIP interface
int main(void) {
gpio_output(LED); // Setup green LED
uart_init(UART_DEBUG, 115200); // Initialise debug printf
ethernet_init(); // Initialise ethernet pins
MG_INFO(("Starting, CPU freq %g MHz", (double) SYS_FREQUENCY / 1000000));
struct mg_mgr mgr; // Initialise
mg_mgr_init(&mgr); // Mongoose event manager
mg_log_set(MG_LL_DEBUG); // Set log level
// Initialise Mongoose network stack
// Specify MAC address, and IP/mask/GW in network byte order for static
// IP configuration. If IP/mask/GW are unset, DHCP is going to be used
struct mip_driver_stm32_data driver_data = {.mdc_cr = 4}; // driver_stm32.h
struct mip_if mif = {.mac = {2, 0, 1, 2, 3, 5},
.driver = &mip_driver_stm32,
struct mip_if mif = {.driver = &mip_driver_stm32,
.driver_data = &driver_data};
mip_init(&mgr, &mif);
mg_timer_add(&mgr, BLINK_PERIOD_MS, MG_TIMER_REPEAT, timer_fn, &mif);

View File

@ -0,0 +1,29 @@
// Copyright (c) 2023 Cesanta Software Limited
// All rights reserved
//
// This file contains essentials required by the CMSIS:
// uint32_t SystemCoreClock - holds the system core clock value
// SystemInit() - initialises the system, e.g. sets up clocks
#include "hal.h"
uint32_t SystemCoreClock = SYS_FREQUENCY;
void SystemInit(void) { // Called automatically by startup code
SCB->CPACR |= ((3UL << 10 * 2) | (3UL << 11 * 2)); // Enable FPU
asm("DSB");
asm("ISB");
FLASH->ACR |= FLASH_LATENCY | BIT(8) | BIT(9); // Flash latency, prefetch
RCC->PLLCFGR &= ~((BIT(17) - 1)); // Clear PLL multipliers
RCC->PLLCFGR |= (((PLL_P - 2) / 2) & 3) << 16; // Set PLL_P
RCC->PLLCFGR |= PLL_M | (PLL_N << 6); // Set PLL_M and PLL_N
RCC->CR |= BIT(24); // Enable PLL
while ((RCC->CR & BIT(25)) == 0) spin(1); // Wait until done
RCC->CFGR = (APB1_PRE << 10) | (APB2_PRE << 13); // Set prescalers
RCC->CFGR |= 2; // Set clock source to PLL
while ((RCC->CFGR & 12) == 0) spin(1); // Wait until done
RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN; // Enable SYSCFG
rng_init(); // Initialise random number generator
SysTick_Config(SystemCoreClock / 1000); // Sys tick every 1ms
}

View File

@ -27,13 +27,11 @@ static uint32_t s_rxdesc[ETH_DESC_CNT][ETH_DS]; // RX descriptors
static uint32_t s_txdesc[ETH_DESC_CNT][ETH_DS]; // TX descriptors
static uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE]; // RX ethernet buffers
static uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE]; // TX ethernet buffers
static struct mip_if *s_ifp; // MIP interface
enum {
PHY_ADDR = 0,
PHY_BCR = 0,
PHY_BSR = 1,
PHY_CSCR = 31
}; // PHY constants
static uint8_t s_txno; // Current TX descriptor
static uint8_t s_rxno; // Current RX descriptor
static struct mip_if *s_ifp; // MIP interface
enum { PHY_ADDR = 0, PHY_BCR = 0, PHY_BSR = 1, PHY_CSCR = 31 };
static uint32_t eth_read_phy(uint8_t addr, uint8_t reg) {
ETH->MACMIIAR &= (7 << 2);
@ -156,13 +154,13 @@ static bool mip_driver_stm32_init(struct mip_if *ifp) {
return true;
}
static uint32_t s_txno;
static size_t mip_driver_stm32_tx(const void *buf, size_t len,
struct mip_if *ifp) {
if (len > sizeof(s_txbuf[s_txno])) {
MG_ERROR(("Frame too big, %ld", (long) len));
len = 0; // Frame is too big
} else if ((s_txdesc[s_txno][0] & BIT(31))) {
ifp->nerr++;
MG_ERROR(("No free descriptors"));
// printf("D0 %lx SR %lx\n", (long) s_txdesc[0][0], (long) ETH->DMASR);
len = 0; // All descriptors are busy, fail
@ -176,7 +174,6 @@ static size_t mip_driver_stm32_tx(const void *buf, size_t len,
ETH->DMASR = BIT(2) | BIT(5); // Clear any prior TBUS/TUS
ETH->DMATPDR = 0; // and resume
return len;
(void) ifp;
}
static bool mip_driver_stm32_up(struct mip_if *ifp) {
@ -195,7 +192,6 @@ static bool mip_driver_stm32_up(struct mip_if *ifp) {
}
void ETH_IRQHandler(void);
static uint32_t s_rxno;
void ETH_IRQHandler(void) {
qp_mark(QP_IRQTRIGGERED, 0);
if (ETH->DMASR & BIT(6)) { // Frame received, loop

View File

@ -260,7 +260,9 @@ static size_t ether_output(struct mip_if *ifp, size_t len) {
// size_t min = 64; // Pad short frames to 64 bytes (minimum Ethernet size)
// if (len < min) memset(ifp->tx.ptr + len, 0, min - len), len = min;
// mg_hexdump(ifp->tx.ptr, len);
return ifp->driver->tx(ifp->tx.ptr, len, ifp);
size_t n = ifp->driver->tx(ifp->tx.ptr, len, ifp);
if (n == len) ifp->nsent++;
return n;
}
static void arp_ask(struct mip_if *ifp, uint32_t ip) {
@ -715,7 +717,6 @@ static void rx_tcp(struct mip_if *ifp, struct pkt *pkt) {
}
static void rx_ip(struct mip_if *ifp, struct pkt *pkt) {
// MG_DEBUG(("IP %d", (int) pkt->pay.len));
if (pkt->ip->proto == 1) {
pkt->icmp = (struct icmp *) (pkt->ip + 1);
if (pkt->pay.len < sizeof(*pkt->icmp)) return;
@ -725,6 +726,9 @@ static void rx_ip(struct mip_if *ifp, struct pkt *pkt) {
pkt->udp = (struct udp *) (pkt->ip + 1);
if (pkt->pay.len < sizeof(*pkt->udp)) return;
mkpay(pkt, pkt->udp + 1);
MG_DEBUG(("UDP %M:%hu -> %M:%hu len %u", mg_print_ip4, &pkt->ip->src,
mg_ntohs(pkt->udp->sport), mg_print_ip4, &pkt->ip->dst,
mg_ntohs(pkt->udp->dport), (int) pkt->pay.len));
if (pkt->udp->dport == mg_htons(68)) {
pkt->dhcp = (struct dhcp *) (pkt->udp + 1);
mkpay(pkt, pkt->dhcp + 1);
@ -743,6 +747,9 @@ static void rx_ip(struct mip_if *ifp, struct pkt *pkt) {
uint16_t iplen = mg_ntohs(pkt->ip->len);
uint16_t off = (uint16_t) (sizeof(*pkt->ip) + ((pkt->tcp->off >> 4) * 4U));
if (iplen >= off) pkt->pay.len = (size_t) (iplen - off);
MG_DEBUG(("TCP %M:%hu -> %M:%hu len %u", mg_print_ip4, &pkt->ip->src,
mg_ntohs(pkt->tcp->sport), mg_print_ip4, &pkt->ip->dst,
mg_ntohs(pkt->tcp->dport), (int) pkt->pay.len));
rx_tcp(ifp, pkt);
}
}
@ -867,8 +874,9 @@ static void mip_poll(struct mip_if *ifp, uint64_t uptime_ms) {
void mip_qwrite(void *buf, size_t len, struct mip_if *ifp) {
if (q_write(&ifp->queue, buf, len)) {
qp_mark(QP_FRAMEPUSHED, (int) q_space(&ifp->queue));
ifp->nrecv++;
} else {
ifp->dropped++;
ifp->ndropped++;
qp_mark(QP_FRAMEDROPPED, ifp->dropped);
MG_ERROR(("dropped %d", (int) len));
}
@ -888,6 +896,14 @@ size_t mip_driver_rx(void *buf, size_t len, struct mip_if *ifp) {
}
void mip_init(struct mg_mgr *mgr, struct mip_if *ifp) {
// If MAC address is not set, make a random one
if (ifp->mac[0] == 0 && ifp->mac[1] == 0 && ifp->mac[2] == 0 &&
ifp->mac[3] == 0 && ifp->mac[4] == 0 && ifp->mac[5] == 0) {
mg_random(ifp->mac, sizeof(ifp->mac));
ifp->mac[0] &= (uint8_t) ~1; // 1st byte must be even (unicast)
MG_INFO(("MAC not set. Generated random: %M", mg_print_mac, ifp->mac));
}
if (ifp->driver->init && !ifp->driver->init(ifp)) {
MG_ERROR(("driver init failed"));
} else {
@ -901,6 +917,12 @@ void mip_init(struct mg_mgr *mgr, struct mip_if *ifp) {
ifp->mgr = mgr;
mgr->extraconnsize = sizeof(struct connstate);
if (ifp->ip == 0) ifp->enable_dhcp_client = true;
// Randomise initial ephemeral port
uint16_t jitter;
mg_random(&jitter, sizeof(jitter));
ifp->eport = MIP_ETHEMERAL_PORT + (jitter % (0xffffu - MIP_ETHEMERAL_PORT));
#ifdef MIP_QPROFILE
qp_init();
#endif
@ -918,15 +940,6 @@ int mg_mkpipe(struct mg_mgr *m, mg_event_handler_t fn, void *d, bool udp) {
return -1;
}
#if 0
static uint16_t mkeport(void) {
uint16_t a = 0, b = mg_millis() & 0xffffU, c = MIP_ETHEMERAL_PORT;
mg_random(&a, sizeof(a));
c += (a ^ b) % (0xffffU - MIP_ETHEMERAL_PORT);
return c;
}
#endif
void mg_connect_resolved(struct mg_connection *c) {
struct mip_if *ifp = (struct mip_if *) c->mgr->priv;
c->is_resolving = 0;

View File

@ -43,7 +43,10 @@ struct mip_if {
uint64_t lease_expire; // Lease expiration time
uint8_t arp_cache[MIP_ARP_CS]; // Each entry is 12 bytes
uint16_t eport; // Next ephemeral port
uint16_t dropped; // Number of dropped frames
volatile uint32_t ndropped; // Number of received, but dropped frames
volatile uint32_t nrecv; // Number of received frames
volatile uint32_t nsent; // Number of transmitted frames
volatile uint32_t nerr; // Number of driver errors
uint8_t state; // Current state
#define MIP_STATE_DOWN 0 // Interface is down
#define MIP_STATE_UP 1 // Interface is up

View File

@ -5966,13 +5966,11 @@ static uint32_t s_rxdesc[ETH_DESC_CNT][ETH_DS]; // RX descriptors
static uint32_t s_txdesc[ETH_DESC_CNT][ETH_DS]; // TX descriptors
static uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE]; // RX ethernet buffers
static uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE]; // TX ethernet buffers
static struct mip_if *s_ifp; // MIP interface
enum {
PHY_ADDR = 0,
PHY_BCR = 0,
PHY_BSR = 1,
PHY_CSCR = 31
}; // PHY constants
static uint8_t s_txno; // Current TX descriptor
static uint8_t s_rxno; // Current RX descriptor
static struct mip_if *s_ifp; // MIP interface
enum { PHY_ADDR = 0, PHY_BCR = 0, PHY_BSR = 1, PHY_CSCR = 31 };
static uint32_t eth_read_phy(uint8_t addr, uint8_t reg) {
ETH->MACMIIAR &= (7 << 2);
@ -6095,13 +6093,13 @@ static bool mip_driver_stm32_init(struct mip_if *ifp) {
return true;
}
static uint32_t s_txno;
static size_t mip_driver_stm32_tx(const void *buf, size_t len,
struct mip_if *ifp) {
if (len > sizeof(s_txbuf[s_txno])) {
MG_ERROR(("Frame too big, %ld", (long) len));
len = 0; // Frame is too big
} else if ((s_txdesc[s_txno][0] & BIT(31))) {
ifp->nerr++;
MG_ERROR(("No free descriptors"));
// printf("D0 %lx SR %lx\n", (long) s_txdesc[0][0], (long) ETH->DMASR);
len = 0; // All descriptors are busy, fail
@ -6115,7 +6113,6 @@ static size_t mip_driver_stm32_tx(const void *buf, size_t len,
ETH->DMASR = BIT(2) | BIT(5); // Clear any prior TBUS/TUS
ETH->DMATPDR = 0; // and resume
return len;
(void) ifp;
}
static bool mip_driver_stm32_up(struct mip_if *ifp) {
@ -6134,7 +6131,6 @@ static bool mip_driver_stm32_up(struct mip_if *ifp) {
}
void ETH_IRQHandler(void);
static uint32_t s_rxno;
void ETH_IRQHandler(void) {
qp_mark(QP_IRQTRIGGERED, 0);
if (ETH->DMASR & BIT(6)) { // Frame received, loop
@ -7054,7 +7050,9 @@ static size_t ether_output(struct mip_if *ifp, size_t len) {
// size_t min = 64; // Pad short frames to 64 bytes (minimum Ethernet size)
// if (len < min) memset(ifp->tx.ptr + len, 0, min - len), len = min;
// mg_hexdump(ifp->tx.ptr, len);
return ifp->driver->tx(ifp->tx.ptr, len, ifp);
size_t n = ifp->driver->tx(ifp->tx.ptr, len, ifp);
if (n == len) ifp->nsent++;
return n;
}
static void arp_ask(struct mip_if *ifp, uint32_t ip) {
@ -7509,7 +7507,6 @@ static void rx_tcp(struct mip_if *ifp, struct pkt *pkt) {
}
static void rx_ip(struct mip_if *ifp, struct pkt *pkt) {
// MG_DEBUG(("IP %d", (int) pkt->pay.len));
if (pkt->ip->proto == 1) {
pkt->icmp = (struct icmp *) (pkt->ip + 1);
if (pkt->pay.len < sizeof(*pkt->icmp)) return;
@ -7519,6 +7516,9 @@ static void rx_ip(struct mip_if *ifp, struct pkt *pkt) {
pkt->udp = (struct udp *) (pkt->ip + 1);
if (pkt->pay.len < sizeof(*pkt->udp)) return;
mkpay(pkt, pkt->udp + 1);
MG_DEBUG(("UDP %M:%hu -> %M:%hu len %u", mg_print_ip4, &pkt->ip->src,
mg_ntohs(pkt->udp->sport), mg_print_ip4, &pkt->ip->dst,
mg_ntohs(pkt->udp->dport), (int) pkt->pay.len));
if (pkt->udp->dport == mg_htons(68)) {
pkt->dhcp = (struct dhcp *) (pkt->udp + 1);
mkpay(pkt, pkt->dhcp + 1);
@ -7537,6 +7537,9 @@ static void rx_ip(struct mip_if *ifp, struct pkt *pkt) {
uint16_t iplen = mg_ntohs(pkt->ip->len);
uint16_t off = (uint16_t) (sizeof(*pkt->ip) + ((pkt->tcp->off >> 4) * 4U));
if (iplen >= off) pkt->pay.len = (size_t) (iplen - off);
MG_DEBUG(("TCP %M:%hu -> %M:%hu len %u", mg_print_ip4, &pkt->ip->src,
mg_ntohs(pkt->tcp->sport), mg_print_ip4, &pkt->ip->dst,
mg_ntohs(pkt->tcp->dport), (int) pkt->pay.len));
rx_tcp(ifp, pkt);
}
}
@ -7661,8 +7664,9 @@ static void mip_poll(struct mip_if *ifp, uint64_t uptime_ms) {
void mip_qwrite(void *buf, size_t len, struct mip_if *ifp) {
if (q_write(&ifp->queue, buf, len)) {
qp_mark(QP_FRAMEPUSHED, (int) q_space(&ifp->queue));
ifp->nrecv++;
} else {
ifp->dropped++;
ifp->ndropped++;
qp_mark(QP_FRAMEDROPPED, ifp->dropped);
MG_ERROR(("dropped %d", (int) len));
}
@ -7682,6 +7686,14 @@ size_t mip_driver_rx(void *buf, size_t len, struct mip_if *ifp) {
}
void mip_init(struct mg_mgr *mgr, struct mip_if *ifp) {
// If MAC address is not set, make a random one
if (ifp->mac[0] == 0 && ifp->mac[1] == 0 && ifp->mac[2] == 0 &&
ifp->mac[3] == 0 && ifp->mac[4] == 0 && ifp->mac[5] == 0) {
mg_random(ifp->mac, sizeof(ifp->mac));
ifp->mac[0] &= (uint8_t) ~1; // 1st byte must be even (unicast)
MG_INFO(("MAC not set. Generated random: %M", mg_print_mac, ifp->mac));
}
if (ifp->driver->init && !ifp->driver->init(ifp)) {
MG_ERROR(("driver init failed"));
} else {
@ -7695,6 +7707,12 @@ void mip_init(struct mg_mgr *mgr, struct mip_if *ifp) {
ifp->mgr = mgr;
mgr->extraconnsize = sizeof(struct connstate);
if (ifp->ip == 0) ifp->enable_dhcp_client = true;
// Randomise initial ephemeral port
uint16_t jitter;
mg_random(&jitter, sizeof(jitter));
ifp->eport = MIP_ETHEMERAL_PORT + (jitter % (0xffffu - MIP_ETHEMERAL_PORT));
#ifdef MIP_QPROFILE
qp_init();
#endif
@ -7712,15 +7730,6 @@ int mg_mkpipe(struct mg_mgr *m, mg_event_handler_t fn, void *d, bool udp) {
return -1;
}
#if 0
static uint16_t mkeport(void) {
uint16_t a = 0, b = mg_millis() & 0xffffU, c = MIP_ETHEMERAL_PORT;
mg_random(&a, sizeof(a));
c += (a ^ b) % (0xffffU - MIP_ETHEMERAL_PORT);
return c;
}
#endif
void mg_connect_resolved(struct mg_connection *c) {
struct mip_if *ifp = (struct mip_if *) c->mgr->priv;
c->is_resolving = 0;

View File

@ -1492,7 +1492,10 @@ struct mip_if {
uint64_t lease_expire; // Lease expiration time
uint8_t arp_cache[MIP_ARP_CS]; // Each entry is 12 bytes
uint16_t eport; // Next ephemeral port
uint16_t dropped; // Number of dropped frames
volatile uint32_t ndropped; // Number of received, but dropped frames
volatile uint32_t nrecv; // Number of received frames
volatile uint32_t nsent; // Number of transmitted frames
volatile uint32_t nerr; // Number of driver errors
uint8_t state; // Current state
#define MIP_STATE_DOWN 0 // Interface is down
#define MIP_STATE_UP 1 // Interface is up