Merge pull request #2109 from cesanta/standex

Standex
This commit is contained in:
Sergio R. Caprile 2023-03-08 11:50:30 -03:00 committed by GitHub
commit db10b3821c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 13 additions and 58 deletions

View File

@ -1,30 +1,10 @@
# A UART to network bridge for ESP32 # A UART to network bridge for ESP32
This example is a demonstration of how Mongoose Library could be integrated
into an embedded device and provide a UART-to-Network bridge capability:
- A device opens listening TCP port and Websocket port and waits for connections
- When a client connects, data is exchanged with the device's UART
- Everything that client send, is sent to the UART
- Everything that is read from the UART, gets sent to the client
- Multiple clients are allowed
- Live UART console allows to talk to the UART from the web page
- Web UI is hardcoded into the binary and does not need a filesystem
# Screenshots
![](../../uart-bridge/screenshots/dashboard.png) ![](../../uart-bridge/screenshots/dashboard.png)
# Build and flash - See detailed tutorial at https://mongoose.ws/tutorials/esp32/uart-bridge/
Build requires Docker installed, and uses Espressif's ESP-IDF docker image: ## Flash pre-built firmware
```sh
make build
make flash PORT=/dev/YOURSERIAL
```
# Flash pre-built firmware
You can flash a pre-built firmware to the ESP32 device using the following You can flash a pre-built firmware to the ESP32 device using the following
instructions: instructions:

View File

@ -1,22 +1 @@
# An example ESP8266 application See detailed tutorial at https://mongoose.ws/tutorials/esp8266/http-client-server/
To build this application, follow these steps:
1. Make sure you have Docker installed
2. Clone whole mongoose repository on your machine:
```sh
git clone https://github.com/cesanta/mongoose.git
```
3. Start command line or terminal, and go into the example's directory:
```sh
cd mongoose/examples/esp8266
```
4. Run `make`. This invokes a Docker-based build. A firmware will be built
in the `src/build/` directory:
```sh
make build
```
5. Flash your ESP8266. If you have esptool.py installed, the build process will end telling you the command to flash your device. You can just run `make` again to use Docker:
```sh
make flash PORT=/your/serial
```

View File

@ -40,7 +40,7 @@ DEVICE_URL ?= https://dash.vcon.io/api/v3/devices/1
update: firmware.bin update: firmware.bin
curl --fail-with-body -su :$(VCON_API_KEY) $(DEVICE_URL)/ota --data-binary @$< curl --fail-with-body -su :$(VCON_API_KEY) $(DEVICE_URL)/ota --data-binary @$<
test update: CFLAGS_EXTRA += -DUART_DEBUG=UART1 test update: CFLAGS_EXTRA += -DUART_DEBUG=UART0
test: update test: update
curl --fail-with-body -su :$(VCON_API_KEY) $(DEVICE_URL)/tx?t=5 | tee /tmp/output.txt curl --fail-with-body -su :$(VCON_API_KEY) $(DEVICE_URL)/tx?t=5 | tee /tmp/output.txt
grep 'READY, IP:' /tmp/output.txt # Check for network init grep 'READY, IP:' /tmp/output.txt # Check for network init

View File

@ -133,22 +133,18 @@ static inline void gpio_irq_attach(uint16_t pin) {
#define UARTNO(u) ((uint8_t) (((unsigned int) (u) -UART0_BASE) / UART_OFFSET)) #define UARTNO(u) ((uint8_t) (((unsigned int) (u) -UART0_BASE) / UART_OFFSET))
static inline void uart_init(UART0_Type *uart, unsigned long baud) { static inline void uart_init(UART0_Type *uart, unsigned long baud) {
struct uarthw { uint8_t af = 1; // Alternate function
uint16_t rx, tx; // pins uint16_t rx = 0, tx = 0; // pins
uint8_t af; // Alternate function
};
// rx, tx, af for UART0,1,2
struct uarthw uarthw[3] = {{PIN('A', 0), PIN('A', 1), 1},
{PIN('B', 0), PIN('B', 1), 1},
{PIN('A', 6), PIN('A', 7), 1}}; // or PD4, PD5...
uint8_t uartno = UARTNO(uart); uint8_t uartno = UARTNO(uart);
SYSCTL->RCGCUART |= BIT(uartno); // Enable peripheral clock SYSCTL->RCGCUART |= BIT(uartno); // Enable peripheral clock
gpio_init(uarthw[uartno].tx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, if (uart == UART0) tx = PIN('A', 0), rx = PIN('A', 1);
GPIO_SPEED_HIGH, 0, uarthw[uartno].af); if (uart == UART1) tx = PIN('B', 0), rx = PIN('B', 1);
gpio_init(uarthw[uartno].rx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, if (uart == UART2) tx = PIN('A', 6), rx = PIN('A', 7); // or PD4, PD5...
GPIO_SPEED_HIGH, 0, uarthw[uartno].af);
gpio_init(tx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, 0, af);
gpio_init(rx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH, 0, af);
// (16.3.2) ClkDiv = 16 (HSE=0) // (16.3.2) ClkDiv = 16 (HSE=0)
// BRD = BRDI + BRDF = UARTSysClk / (ClkDiv * Baud Rate) // BRD = BRDI + BRDF = UARTSysClk / (ClkDiv * Baud Rate)
// UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5) // UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5)