Merge pull request #2414 from cesanta/rt1020

Rework  RT1020 driver
This commit is contained in:
Sergey Lyubka 2023-10-07 11:21:29 +01:00 committed by GitHub
commit 82399f1561
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 360 additions and 469 deletions

View File

@ -219,6 +219,19 @@ jobs:
run: sudo apt -y update; sudo apt -y install gcc-arm-none-eabi
- if: ${{ env.GO == 1 }}
run: make -C examples/stm32/nucleo-h563zi-make-baremetal-builtin test VCON_API_KEY=${{secrets.VCON_API_KEY}}
# - if: ${{ env.GO == 1 }}
# WIP run: make -C examples/stm32/nucleo-h563zi-make-freertos-builtin test VCON_API_KEY=${{secrets.VCON_API_KEY}}
test_rt1020:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
with: { fetch-depth: 3 }
- run: if ./test/match_changed_files.sh "^src|examples/nxp/rt1020.*-make-" ; then echo GO=1 >> $GITHUB_ENV ; fi
- if: ${{ env.GO == 1 }}
run: sudo apt -y update; sudo apt -y install gcc-arm-none-eabi
- if: ${{ env.GO == 1 }}
run: make -C examples/nxp/rt1020-evk-make-baremetal-builtin test VCON_API_KEY=${{secrets.VCON_API_KEY}}
test_tm4c:
runs-on: ubuntu-latest
@ -301,6 +314,7 @@ jobs:
- path: nxp/nxp-lpcxpresso54608-lwip-freertos
- path: nxp/nxp-lpcxpresso54618-lwip-freertos
- path: nxp/nxp-lpcxpresso54628-lwip-freertos
- path: nxp/rt1020-evk-make-baremetal-builtin
- path: nxp/nxp-twrk65f180m-lwip-freertos
- path: nxp/nxp-twrkv58f220m-lwip-freertos
- path: rp2040/pico-rmii
@ -314,7 +328,9 @@ jobs:
- path: stm32/nucleo-f746zg-make-freertos-builtin
- path: stm32/nucleo-f746zg-make-freertos-tcp
- path: stm32/nucleo-f746zg-make-baremetal-builtin-rndis
- path: stm32/nucleo-g031-make-baremetal-builtin
- path: stm32/nucleo-h563zi-make-baremetal-builtin
- path: stm32/nucleo-h563zi-make-freertos-builtin
- path: stm32/nucleo-h743zi-make-baremetal-builtin
- path: stm32/nucleo-h743zi-make-freertos-builtin
- path: ti/ti-ek-tm4c1294xl-http-server

View File

@ -10,7 +10,7 @@ SOURCES += cmsis_mcu/devices/MIMXRT1021/gcc/startup_MIMXRT1021.S
CFLAGS += -D__ATOLLIC__ -D__STARTUP_CLEAR_BSS # Make startup code work as expected
# Mongoose-specific. See https://mongoose.ws/documentation/#build-options
SOURCES += mongoose.c #net.c packed_fs.c
SOURCES += mongoose.c
CFLAGS += -DMG_ENABLE_TCPIP=1 -DMG_ARCH=MG_ARCH_NEWLIB -DMG_ENABLE_CUSTOM_MILLIS=1
CFLAGS += -DMG_ENABLE_CUSTOM_RANDOM=1 -DMG_ENABLE_PACKED_FS=1 -DMG_ENABLE_DRIVER_IMXRT1020=1
@ -57,9 +57,9 @@ endif
DEVICE_URL ?= https://dash.vcon.io/api/v3/devices/4
update: firmware.bin
curl --fail-with-body -su :$(VCON_API_KEY) $(DEVICE_URL)/ota --data-binary @$<
curl -su :$(VCON_API_KEY) https://dash.vcon.io/api/v3/devices/4/rpc/swd.exec -d '{"req":"init"}'
curl -su :$(VCON_API_KEY) https://dash.vcon.io/api/v3/devices/4/rpc/swd.exec -d '{"req":"wm,e000edf0,a05f0003 wm,e000edfc,1 wm,e000ed0c,5fa0004"}'
curl -su :$(VCON_API_KEY) https://dash.vcon.io/api/v3/devices/4/rpc/swd.exec -d '{"req":"init"}'
curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"init"}'
curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"wm,e000edf0,a05f0003 wm,e000edfc,1 wm,e000ed0c,5fa0004"}'
curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"init"}'
PC=`curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"rm,4"}' | jq -r .resp[5:]` && \
SP=`curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"rm,0"}' | jq -r .resp[5:]` && \
REQ="wm,e000ed08,0 wr,d,$$SP wr,f,$$PC" && \

View File

@ -281,8 +281,10 @@ static inline void ethernet_init(void) {
NVIC_EnableIRQ(ENET_IRQn); // Setup Ethernet IRQ handler
}
// Helper macro for MAC generation
#define GENERATE_LOCALLY_ADMINISTERED_MAC() \
{ 2, 0, 2, 5, 7, 91 }
// *((uint32_t *)(uintptr_t)&uid[0]) = OCOTP->CFG0;
// *((uint32_t *)(uintptr_t)&uid[4]) = OCOTP->CFG1;
// Helper macro for MAC generation, byte reads not allowed
#define GENERATE_LOCALLY_ADMINISTERED_MAC() \
{ \
2, OCOTP->CFG0 & 255, (OCOTP->CFG0 >> 10) & 255, \
((OCOTP->CFG0 >> 19) ^ (OCOTP->CFG1 >> 19)) & 255, \
(OCOTP->CFG1 >> 10) & 255, OCOTP->CFG1 & 255 \
}

View File

@ -31,6 +31,29 @@ static void timer_fn(void *arg) {
ifp->ndrop, ifp->nerr));
}
static void fn(struct mg_connection *c, int ev, void *ev_data, void *fn_data) {
struct mg_tcpip_if *ifp = (struct mg_tcpip_if *) fn_data;
if (ev == MG_EV_HTTP_MSG) {
struct mg_http_message *hm = (struct mg_http_message *) ev_data;
if (mg_http_match_uri(hm, "/api/hello")) { // Request to /api/hello
mg_http_reply(c, 200, "", "{%m:%u,%m:%u,%m:%u,%m:%u,%m:%u}\n",
MG_ESC("eth"), ifp->state, MG_ESC("frames_received"),
ifp->nrecv, MG_ESC("frames_sent"), ifp->nsent,
MG_ESC("frames_dropped"), ifp->ndrop,
MG_ESC("interface_errors"), ifp->nerr);
} else if (mg_http_match_uri(hm, "/")) { // Index page
mg_http_reply(
c, 200, "", "%s",
"<html><head><link rel='icon' href='data:;base64,='></head><body>"
"<h1>Welcome to Mongoose</h1>"
"See <a href=/api/hello>/api/hello</a> for REST example"
"</body></html>");
} else { // All other URIs
mg_http_reply(c, 404, "", "Not Found\n");
}
}
}
int main(void) {
gpio_output(LED); // Setup blue LED
uart_init(UART_DEBUG, 115200); // Initialise debug printf
@ -42,7 +65,7 @@ int main(void) {
mg_log_set(MG_LL_DEBUG); // Set log level
// Initialise Mongoose network stack
struct mg_tcpip_driver_imxrt1020_data driver_data = {.mdc_cr = 4};
struct mg_tcpip_driver_imxrt1020_data driver_data = {.mdc_cr = 24};
struct mg_tcpip_if mif = {.mac = GENERATE_LOCALLY_ADMINISTERED_MAC(),
// Uncomment below for static configuration:
// .ip = mg_htonl(MG_U32(192, 168, 0, 223)),
@ -59,7 +82,7 @@ int main(void) {
}
MG_INFO(("Initialising application..."));
// web_init(&mgr);
mg_http_listen(&mgr, "http://0.0.0.0:80", fn, &mif);
MG_INFO(("Starting event loop"));
for (;;) {

View File

@ -8391,16 +8391,30 @@ size_t mg_ws_wrap(struct mg_connection *c, size_t len, int op) {
#endif
/*
* Todo
* This driver doesn't support 10M line autoconfiguration yet.
* Packets aren't sent if the link negociated 10M line.
* todo: MAC back auto reconfiguration.
*/
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_IMXRT1020)
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_IMXRT1020) && \
MG_ENABLE_DRIVER_IMXRT1020
struct imx_rt1020_enet {
volatile uint32_t RESERVED0, EIR, EIMR, RESERVED1, RDAR, TDAR, RESERVED2[3], ECR, RESERVED3[6], MMFR, MSCR, RESERVED4[7], MIBC, RESERVED5[7], RCR, RESERVED6[15], TCR, RESERVED7[7], PALR, PAUR, OPD, TXIC0, TXIC1, TXIC2, RESERVED8, RXIC0, RXIC1, RXIC2, RESERVED9[3], IAUR, IALR, GAUR, GALR, RESERVED10[7], TFWR, RESERVED11[14], RDSR, TDSR, MRBR[2], RSFL, RSEM, RAEM, RAFL, TSEM, TAEM, TAFL, TIPG, FTRL, RESERVED12[3], TACC, RACC, RESERVED13[15], RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2048, RMON_T_GTE2048, RMON_T_OCTETS, IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, IEEE_T_FDXFC, IEEE_T_OCTETS_OK, RESERVED14[3], RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, RESERVED15, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, RMON_R_GTE2048, RMON_R_OCTETS, IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, IEEE_R_FDXFC, IEEE_R_OCTETS_OK, RESERVED16[71], ATCR, ATVR, ATOFF, ATPER, ATCOR, ATINC, ATSTMP, RESERVED17[122], TGSR, TCSR0, TCCR0, TCSR1, TCCR1, TCSR2, TCCR2, TCSR3;
volatile uint32_t RESERVED0, EIR, EIMR, RESERVED1, RDAR, TDAR, RESERVED2[3],
ECR, RESERVED3[6], MMFR, MSCR, RESERVED4[7], MIBC, RESERVED5[7], RCR,
RESERVED6[15], TCR, RESERVED7[7], PALR, PAUR, OPD, TXIC0, TXIC1, TXIC2,
RESERVED8, RXIC0, RXIC1, RXIC2, RESERVED9[3], IAUR, IALR, GAUR, GALR,
RESERVED10[7], TFWR, RESERVED11[14], RDSR, TDSR, MRBR[2], RSFL, RSEM,
RAEM, RAFL, TSEM, TAEM, TAFL, TIPG, FTRL, RESERVED12[3], TACC, RACC,
RESERVED13[15], RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2048, RMON_T_GTE2048,
RMON_T_OCTETS, IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL,
IEEE_T_DEF, IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR,
IEEE_T_SQE, IEEE_T_FDXFC, IEEE_T_OCTETS_OK, RESERVED14[3], RMON_R_PACKETS,
RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, RMON_R_UNDERSIZE,
RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, RESERVED15, RMON_R_P64,
RMON_R_P65TO127, RMON_R_P128TO255, RMON_R_P256TO511, RMON_R_P512TO1023,
RMON_R_P1024TO2047, RMON_R_GTE2048, RMON_R_OCTETS, IEEE_R_DROP,
IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, IEEE_R_FDXFC,
IEEE_R_OCTETS_OK, RESERVED16[71], ATCR, ATVR, ATOFF, ATPER, ATCOR, ATINC,
ATSTMP, RESERVED17[122], TGSR, TCSR0, TCCR0, TCSR1, TCCR1, TCSR2, TCCR2,
TCSR3;
};
#undef ENET
@ -8409,249 +8423,159 @@ volatile uint32_t RESERVED0, EIR, EIMR, RESERVED1, RDAR, TDAR, RESERVED2[3], ECR
#undef BIT
#define BIT(x) ((uint32_t) 1 << (x))
#define ENET_RXBUFF_SIZE 1536 // 1522 Buffer must be 64bits aligned
#define ENET_TXBUFF_SIZE 1536 // 1522 hence set to 0x600 (1536)
#define ENET_RXBD_NUM (4)
#define ENET_TXBD_NUM (4)
// Max frame size, every buffer must be 64-bit aligned (1536 = 0x600)
#define ETH_PKT_SIZE 1536
#define ETH_DESC_CNT 4 // Descriptors count
const uint32_t EIMR_RX_ERR = 0x2400000; // Intr mask RXF+EBERR
typedef struct {
uint16_t length; // Data length
uint16_t control; // Control and status
uint32_t *buffer; // Data ptr
} enet_bd_t;
void ETH_IRQHandler(void);
static bool mg_tcpip_driver_imxrt1020_init(struct mg_tcpip_if *ifp);
static void wait_phy_complete(void);
static struct mg_tcpip_if *s_ifp; // MIP interface
static size_t mg_tcpip_driver_imxrt1020_tx(const void *, size_t , struct mg_tcpip_if *);
static bool mg_tcpip_driver_imxrt1020_up(struct mg_tcpip_if *ifp);
enum { IMXRT1020_PHY_ADDR = 0x02, IMXRT1020_PHY_BCR = 0, IMXRT1020_PHY_BSR = 1 }; // PHY constants
void delay(uint32_t);
void delay (uint32_t di) {
volatile int dno = 0; // Prevent optimization
for (uint32_t i = 0; i < di; i++)
for (int j=0; j<20; j++) // PLLx20 (500 MHz/24MHz)
dno++;
}
static void wait_phy_complete(void) {
delay(0x00010000);
const uint32_t delay_max = 0x00100000;
uint32_t delay_cnt = 0;
while (!(ENET->EIR & BIT(23)) && (delay_cnt < delay_max))
{delay_cnt++;}
ENET->EIR |= BIT(23); // MII interrupt clear
}
static uint32_t imxrt1020_eth_read_phy(uint8_t addr, uint8_t reg) {
ENET->EIR |= BIT(23); // MII interrupt clear
uint32_t mask_phy_adr_reg = 0x1f; // 0b00011111: Ensure we write 5 bits (Phy address & register)
uint32_t phy_transaction = 0x00;
phy_transaction = (0x1 << 30) \
| (0x2 << 28) \
| ((uint32_t)(addr & mask_phy_adr_reg) << 23) \
| ((uint32_t)(reg & mask_phy_adr_reg) << 18) \
| (0x2 << 16);
ENET->MMFR = phy_transaction;
wait_phy_complete();
return (ENET->MMFR & 0x0000ffff);
}
static void imxrt1020_eth_write_phy(uint8_t addr, uint8_t reg, uint32_t val) {
ENET->EIR |= BIT(23); // MII interrupt clear
uint8_t mask_phy_adr_reg = 0x1f; // 0b00011111: Ensure we write 5 bits (Phy address & register)
uint32_t mask_phy_data = 0x0000ffff; // Ensure we write 16 bits (data)
addr &= mask_phy_adr_reg;
reg &= mask_phy_adr_reg;
val &= mask_phy_data;
uint32_t phy_transaction = 0x00;
phy_transaction = (uint32_t)(0x1 << 30) \
| (uint32_t)(0x1 << 28) \
| (uint32_t)(addr << 23) \
| (uint32_t)(reg << 18) \
| (uint32_t)(0x2 << 16) \
| (uint32_t)(val);
ENET->MMFR = phy_transaction;
wait_phy_complete();
}
// FEC RX/TX descriptors (Enhanced descriptor not enabled)
// Descriptor buffer structure, little endian
typedef struct enet_bd_struct_def
{
uint16_t length; // Data length
uint16_t control; // Control and status
uint32_t *buffer; // Data ptr
} enet_bd_struct_t;
// Descriptor and buffer globals, in non-cached area, 64 bits aligned.
// TODO(): handle these in a portable compiler-independent CMSIS-friendly way
/*__attribute__((section("NonCacheable,\"aw\",%nobits @")))*/ enet_bd_struct_t rx_buffer_descriptor[(ENET_RXBD_NUM)] __attribute__((aligned((64U))));
/*__attribute__((section("NonCacheable,\"aw\",%nobits @")))*/ enet_bd_struct_t tx_buffer_descriptor[(ENET_TXBD_NUM)] __attribute__((aligned((64U))));
// Descriptors: in non-cached area (TODO(scaprile)), 64-bit aligned
enet_bd_t s_rxdesc[ETH_DESC_CNT] __attribute__((aligned((64U))));
enet_bd_t s_txdesc[ETH_DESC_CNT] __attribute__((aligned((64U))));
// Buffers: 64-bit aligned
uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE] __attribute__((aligned((64U))));
uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE] __attribute__((aligned((64U))));
uint8_t rx_data_buffer[(ENET_RXBD_NUM)][((unsigned int)(((ENET_RXBUFF_SIZE)) + (((64U))-1U)) & (unsigned int)(~(unsigned int)(((64U))-1U)))] __attribute__((aligned((64U))));
uint8_t tx_data_buffer[(ENET_TXBD_NUM)][((unsigned int)(((ENET_TXBUFF_SIZE)) + (((64U))-1U)) & (unsigned int)(~(unsigned int)(((64U))-1U)))] __attribute__((aligned((64U))));
static struct mg_tcpip_if *s_ifp; // MIP interface
// Initialise driver imx_rt1020
enum { PHY_ADDR = 2, PHY_BCR = 0, PHY_BSR = 1, PHY_PC1R = 30, PHY_PC2R = 31 };
// static bool mg_tcpip_driver_imxrt1020_init(uint8_t *mac, void *data) { // VO
static uint32_t eth_read_phy(uint8_t addr, uint8_t reg) {
ENET->EIR |= BIT(23); // MII interrupt clear
ENET->MMFR = (1 << 30) | (2 << 28) | (addr << 23) | (reg << 18) | (2 << 16);
while ((ENET->EIR & BIT(23)) == 0) (void) 0;
return ENET->MMFR & 0xffff;
}
static void eth_write_phy(uint8_t addr, uint8_t reg, uint32_t val) {
ENET->EIR |= BIT(23); // MII interrupt clear
ENET->MMFR =
(1 << 30) | (1 << 28) | (addr << 23) | (reg << 18) | (2 << 16) | val;
while ((ENET->EIR & BIT(23)) == 0) (void) 0;
}
// MDC clock is generated from IPS Bus clock (ipg_clk); as per 802.3,
// it must not exceed 2.5MHz
// The PHY receives the PLL6-generated 50MHz clock
static bool mg_tcpip_driver_imxrt1020_init(struct mg_tcpip_if *ifp) {
// TODO(scaprile): struct mg_tcpip_driver_imxrt1020_data *d = (struct mg_tcpip_driver_imxrt1020_data *) ifp->driver_data;
struct mg_tcpip_driver_imxrt1020_data *d =
(struct mg_tcpip_driver_imxrt1020_data *) ifp->driver_data;
s_ifp = ifp;
// ENET Reset, wait complete
ENET->ECR |= BIT(0);
while((ENET->ECR & BIT(0)) != 0) {}
// Re-latches the pin strapping pin values
ENET->ECR |= BIT(0);
while((ENET->ECR & BIT(0)) != 0) {}
// Setup MII/RMII MDC clock divider (<= 2.5MHz).
ENET->MSCR = 0x130; // HOLDTIME 2 clk, Preamble enable, MDC MII_Speed Div 0x30
imxrt1020_eth_write_phy(IMXRT1020_PHY_ADDR, IMXRT1020_PHY_BCR, 0x8000); // PHY W @0x00 D=0x8000 Soft reset
while (imxrt1020_eth_read_phy(IMXRT1020_PHY_ADDR, IMXRT1020_PHY_BSR) & BIT(15)) {delay(0x5000);} // Wait finished poll 10ms
// PHY: Start Link
{
imxrt1020_eth_write_phy(IMXRT1020_PHY_ADDR, IMXRT1020_PHY_BCR, 0x1200); // PHY W @0x00 D=0x1200 Autonego enable + start
imxrt1020_eth_write_phy(IMXRT1020_PHY_ADDR, 0x1f, 0x8180); // PHY W @0x1f D=0x8180 Ref clock 50 MHz at XI input
uint32_t bcr = imxrt1020_eth_read_phy(IMXRT1020_PHY_ADDR, IMXRT1020_PHY_BCR);
bcr &= ~BIT(10); // Isolation -> Normal
imxrt1020_eth_write_phy(IMXRT1020_PHY_ADDR, IMXRT1020_PHY_BCR, bcr);
// Init RX descriptors
for (int i = 0; i < ETH_DESC_CNT; i++) {
s_rxdesc[i].control = BIT(15); // Own (E)
s_rxdesc[i].buffer = (uint32_t *) s_rxbuf[i]; // Point to data buffer
}
s_rxdesc[ETH_DESC_CNT - 1].control |= BIT(13); // Wrap last descriptor
// Disable ENET
ENET->ECR = 0x0; // Disable before configuration
// Configure ENET
ENET->RCR = 0x05ee0104; // #CRCFWD=0 (CRC kept in frame) + RMII + MII Enable
//ENET->RCR |= BIT(3); // Receive all
ENET->TCR = BIT(8) | BIT(2); // Addins (MAC address from PAUR+PALR) + Full duplex enable
//ENET->TFWR = BIT(8); // Store And Forward Enable, 64 bytes (minimize tx latency)
// Configure descriptors and buffers
// RX
for (int i = 0; i < ENET_RXBD_NUM; i++) {
// Wrap last descriptor buffer ptr
rx_buffer_descriptor[i].control = (BIT(15) | ((i<(ENET_RXBD_NUM-1))?0:BIT(13))); // E+(W*)
rx_buffer_descriptor[i].buffer = (uint32_t *)rx_data_buffer[i];
// Init TX descriptors
for (int i = 0; i < ETH_DESC_CNT; i++) {
s_txdesc[i].control = BIT(10); // Own (TC)
s_txdesc[i].buffer = (uint32_t *) s_txbuf[i];
}
s_txdesc[ETH_DESC_CNT - 1].control |= BIT(13); // Wrap last descriptor
// TX
for (int i = 0; i < ENET_TXBD_NUM; i++) {
// Wrap last descriptor buffer ptr
tx_buffer_descriptor[i].control = ((i<(ENET_RXBD_NUM-1))?0:BIT(13)) | BIT(10); // (W*)+TC
tx_buffer_descriptor[i].buffer = (uint32_t *)tx_data_buffer[i];
}
ENET->ECR = BIT(0); // Software reset, disable
while ((ENET->ECR & BIT(0))) (void) 0; // Wait until done
// Continue ENET configuration
ENET->RDSR = (uint32_t)(uintptr_t)rx_buffer_descriptor;
ENET->TDSR = (uint32_t)(uintptr_t)tx_buffer_descriptor;
ENET->MRBR[0] = ENET_RXBUFF_SIZE; // Same size for RX/TX buffers
// Set MDC clock divider. If user told us the value, use it.
// TODO(): Otherwise, guess (currently assuming max freq)
int cr = (d == NULL || d->mdc_cr < 0) ? 24 : d->mdc_cr;
ENET->MSCR = (1 << 8) | ((cr & 0x3f) << 1); // HOLDTIME 2 clks
eth_write_phy(PHY_ADDR, PHY_BCR, BIT(15)); // Reset PHY
eth_write_phy(PHY_ADDR, PHY_BCR, BIT(12)); // Set autonegotiation
// PHY: Enable 50 MHz external ref clock at XI (preserve defaults)
eth_write_phy(PHY_ADDR, PHY_PC2R, BIT(15) | BIT(8) | BIT(7));
// Select RMII mode, 100M, keep CRC, set max rx length, disable loop
ENET->RCR = (1518 << 16) | BIT(8) | BIT(2);
// ENET->RCR |= BIT(3); // Receive all
ENET->TCR = BIT(2); // Full-duplex
ENET->RDSR = (uint32_t) (uintptr_t) s_rxdesc;
ENET->TDSR = (uint32_t) (uintptr_t) s_txdesc;
ENET->MRBR[0] = ETH_PKT_SIZE; // Same size for RX/TX buffers
// MAC address filtering (bytes in reversed order)
ENET->PAUR = ((uint32_t) ifp->mac[4] << 24U) | (uint32_t) ifp->mac[5] << 16U;
ENET->PALR = (uint32_t) (ifp->mac[0] << 24U) | ((uint32_t) ifp->mac[1] << 16U) |
((uint32_t) ifp->mac[2] << 8U) | ifp->mac[3];
// Init Hash tables (mac filtering)
ENET->IAUR = 0; // Unicast
ENET->IALR = 0;
ENET->GAUR = 0; // Multicast
ENET->GALR = 0;
// Set ENET Online
ENET->ECR |= BIT(8); // ENET Set Little-endian + (FEC buffer desc.)
ENET->ECR |= BIT(1); // Enable
// Set interrupt mask
ENET->EIMR = EIMR_RX_ERR;
// RX Descriptor activation
ENET->RDAR = BIT(24); // Activate Receive Descriptor
ENET->PALR = (uint32_t) (ifp->mac[0] << 24U) |
((uint32_t) ifp->mac[1] << 16U) |
((uint32_t) ifp->mac[2] << 8U) | ifp->mac[3];
ENET->ECR = BIT(8) | BIT(1); // Little-endian CPU, Enable
ENET->EIMR = BIT(25); // Set interrupt mask
ENET->RDAR = BIT(24); // Receive Descriptors have changed
return true;
}
// Transmit frame
static uint32_t s_rt1020_txno;
static uint32_t s_txno;
static size_t mg_tcpip_driver_imxrt1020_tx(const void *buf, size_t len, struct mg_tcpip_if *ifp) {
if (len > sizeof(tx_data_buffer[ENET_TXBD_NUM])) {
// MG_ERROR(("Frame too big, %ld", (long) len));
len = 0; // Frame is too big
} else if ((tx_buffer_descriptor[s_rt1020_txno].control & BIT(15))) {
MG_ERROR(("No free descriptors"));
// printf("D0 %lx SR %lx\n", (long) s_txdesc[0][0], (long) ETH->DMASR);
len = 0; // All descriptors are busy, fail
static size_t mg_tcpip_driver_imxrt1020_tx(const void *buf, size_t len,
struct mg_tcpip_if *ifp) {
if (len > sizeof(s_txbuf[ETH_DESC_CNT])) {
MG_ERROR(("Frame too big, %ld", (long) len));
len = 0; // fail
} else if ((s_txdesc[s_txno].control & BIT(15))) {
ifp->nerr++;
MG_ERROR(("No descriptors available"));
len = 0; // fail
} else {
memcpy(tx_data_buffer[s_rt1020_txno], buf, len); // Copy data
tx_buffer_descriptor[s_rt1020_txno].length = (uint16_t) len; // Set data len
tx_buffer_descriptor[s_rt1020_txno].control |= (uint16_t)(BIT(10)); // TC (transmit CRC)
// tx_buffer_descriptor[s_rt1020_txno].control &= (uint16_t)(BIT(14) | BIT(12)); // Own doesn't affect HW
tx_buffer_descriptor[s_rt1020_txno].control |= (uint16_t)(BIT(15) | BIT(11)); // R+L (ready+last)
ENET->TDAR = BIT(24); // Descriptor updated. Hand over to DMA.
// INFO
// Relevant Descriptor bits: 15(R) Ready
// 11(L) last in frame
// 10(TC) transmis CRC
// __DSB(); // ARM errata 838869 Cortex-M4, M4F, M7, M7F: "store immediate overlapping
// exception" return might vector to incorrect interrupt.
if (++s_rt1020_txno >= ENET_TXBD_NUM) s_rt1020_txno = 0;
memcpy(s_txbuf[s_txno], buf, len); // Copy data
s_txdesc[s_txno].length = (uint16_t) len; // Set data len
// Table 37-34, R, L, TC (Ready, last, transmit CRC after frame
s_txdesc[s_txno].control |= (uint16_t) (BIT(15) | BIT(11) | BIT(10));
ENET->TDAR = BIT(24); // Descriptor ring updated
if (++s_txno >= ETH_DESC_CNT) s_txno = 0;
}
(void) ifp;
return len;
}
// IRQ (RX)
static uint32_t s_rt1020_rxno;
void ENET_IRQHandler(void) {
ENET->EIMR = 0; // Mask interrupts.
uint32_t eir = ENET->EIR; // Read EIR
ENET->EIR = 0xffffffff; // Clear interrupts
if (eir & EIMR_RX_ERR) // Global mask used
{
if (rx_buffer_descriptor[s_rt1020_rxno].control & BIT(15)) {
ENET->EIMR = EIMR_RX_ERR; // Enable interrupts
return; // Empty? -> exit.
}
// Read inframes
else { // Frame received, loop
for (uint32_t i = 0; i < 10; i++) { // read as they arrive but not forever
if (rx_buffer_descriptor[s_rt1020_rxno].control & BIT(15)) break; // exit when done
// Process if CRC OK and frame not truncated
if (!(rx_buffer_descriptor[s_rt1020_rxno].control & (BIT(2) | BIT(0)))) {
uint32_t len = (rx_buffer_descriptor[s_rt1020_rxno].length);
mg_tcpip_qwrite(rx_buffer_descriptor[s_rt1020_rxno].buffer, len > 4 ? len - 4 : len, s_ifp);
}
rx_buffer_descriptor[s_rt1020_rxno].control |= BIT(15); // Inform DMA RX is empty
if (++s_rt1020_rxno >= ENET_RXBD_NUM) s_rt1020_rxno = 0;
}
}
}
ENET->EIMR = EIMR_RX_ERR; // Enable interrupts
}
// Up/down status
static bool mg_tcpip_driver_imxrt1020_up(struct mg_tcpip_if *ifp) {
uint32_t bsr = imxrt1020_eth_read_phy(IMXRT1020_PHY_ADDR, IMXRT1020_PHY_BSR);
(void) ifp;
return bsr & BIT(2) ? 1 : 0;
uint32_t bsr = eth_read_phy(PHY_ADDR, PHY_BSR);
bool up = bsr & BIT(2) ? 1 : 0;
if ((ifp->state == MG_TCPIP_STATE_DOWN) && up) { // link state just went up
uint32_t pc1r = eth_read_phy(PHY_ADDR, PHY_PC1R);
uint32_t tcr = ENET->TCR |= BIT(2); // Full-duplex
uint32_t rcr = ENET->RCR &= ~BIT(9); // 100M
if ((pc1r & 3) == 1) rcr |= BIT(9); // 10M
if ((pc1r & BIT(2)) == 0) tcr &= ~BIT(2); // Half-duplex
ENET->TCR = tcr; // IRQ handler does not fiddle with these registers
ENET->RCR = rcr;
MG_DEBUG(("Link is %uM %s-duplex", rcr & BIT(9) ? 10 : 100,
tcr & BIT(2) ? "full" : "half"));
}
return up;
}
void ENET_IRQHandler(void);
static uint32_t s_rxno;
void ENET_IRQHandler(void) {
ENET->EIR = BIT(25); // Ack IRQ
// Frame received, loop
for (uint32_t i = 0; i < 10; i++) { // read as they arrive but not forever
if (s_rxdesc[s_rxno].control & BIT(15)) break; // exit when done
// skip partial/errored frames (Table 37-32)
if ((s_rxdesc[s_rxno].control & BIT(11)) &&
!(s_rxdesc[s_rxno].control &
(BIT(5) | BIT(4) | BIT(2) | BIT(1) | BIT(0)))) {
uint32_t len = (s_rxdesc[s_rxno].length);
mg_tcpip_qwrite(s_rxbuf[s_rxno], len > 4 ? len - 4 : len, s_ifp);
}
s_rxdesc[s_rxno].control |= BIT(15);
if (++s_rxno >= ETH_DESC_CNT) s_rxno = 0;
}
ENET->RDAR = BIT(24); // Receive Descriptors have changed
// If b24 == 0, descriptors were exhausted and probably frames were dropped
}
// API
struct mg_tcpip_driver mg_tcpip_driver_imxrt1020 = {
mg_tcpip_driver_imxrt1020_init, mg_tcpip_driver_imxrt1020_tx, NULL,
mg_tcpip_driver_imxrt1020_up};
mg_tcpip_driver_imxrt1020_init, mg_tcpip_driver_imxrt1020_tx, NULL,
mg_tcpip_driver_imxrt1020_up};
#endif

View File

@ -1800,15 +1800,16 @@ struct mg_tcpip_spi {
struct mg_tcpip_driver_imxrt1020_data {
// MDC clock divider. MDC clock is derived from IPS Bus clock (ipg_clk),
// must not exceed 2.5MHz. Configuration for clock range 2.36~2.50 MHz
// ipg_clk MSCR mdc_cr VALUE
// -------------------------------------
// -1 <-- tell driver to guess the value
// 25 MHz 0x04 0
// 33 MHz 0x06 1
// 40 MHz 0x07 2
// 50 MHz 0x09 3
// 66 MHz 0x0D 4 <-- value for iMXRT1020-EVK at max freq.
int mdc_cr; // Valid values: -1, 0, 1, 2, 3, 4
// 37.5.1.8.2, Table 37-46 : f = ipg_clk / (2(mdc_cr + 1))
// ipg_clk mdc_cr VALUE
// --------------------------
// -1 <-- TODO() tell driver to guess the value
// 25 MHz 4
// 33 MHz 6
// 40 MHz 7
// 50 MHz 9
// 66 MHz 13
int mdc_cr; // Valid values: -1 to 63
};

View File

@ -1,15 +1,29 @@
#include "tcpip.h"
/*
* Todo
* This driver doesn't support 10M line autoconfiguration yet.
* Packets aren't sent if the link negociated 10M line.
* todo: MAC back auto reconfiguration.
*/
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_IMXRT1020)
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_IMXRT1020) && \
MG_ENABLE_DRIVER_IMXRT1020
struct imx_rt1020_enet {
volatile uint32_t RESERVED0, EIR, EIMR, RESERVED1, RDAR, TDAR, RESERVED2[3], ECR, RESERVED3[6], MMFR, MSCR, RESERVED4[7], MIBC, RESERVED5[7], RCR, RESERVED6[15], TCR, RESERVED7[7], PALR, PAUR, OPD, TXIC0, TXIC1, TXIC2, RESERVED8, RXIC0, RXIC1, RXIC2, RESERVED9[3], IAUR, IALR, GAUR, GALR, RESERVED10[7], TFWR, RESERVED11[14], RDSR, TDSR, MRBR[2], RSFL, RSEM, RAEM, RAFL, TSEM, TAEM, TAFL, TIPG, FTRL, RESERVED12[3], TACC, RACC, RESERVED13[15], RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2048, RMON_T_GTE2048, RMON_T_OCTETS, IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, IEEE_T_FDXFC, IEEE_T_OCTETS_OK, RESERVED14[3], RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, RESERVED15, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, RMON_R_GTE2048, RMON_R_OCTETS, IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, IEEE_R_FDXFC, IEEE_R_OCTETS_OK, RESERVED16[71], ATCR, ATVR, ATOFF, ATPER, ATCOR, ATINC, ATSTMP, RESERVED17[122], TGSR, TCSR0, TCCR0, TCSR1, TCCR1, TCSR2, TCCR2, TCSR3;
volatile uint32_t RESERVED0, EIR, EIMR, RESERVED1, RDAR, TDAR, RESERVED2[3],
ECR, RESERVED3[6], MMFR, MSCR, RESERVED4[7], MIBC, RESERVED5[7], RCR,
RESERVED6[15], TCR, RESERVED7[7], PALR, PAUR, OPD, TXIC0, TXIC1, TXIC2,
RESERVED8, RXIC0, RXIC1, RXIC2, RESERVED9[3], IAUR, IALR, GAUR, GALR,
RESERVED10[7], TFWR, RESERVED11[14], RDSR, TDSR, MRBR[2], RSFL, RSEM,
RAEM, RAFL, TSEM, TAEM, TAFL, TIPG, FTRL, RESERVED12[3], TACC, RACC,
RESERVED13[15], RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2048, RMON_T_GTE2048,
RMON_T_OCTETS, IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL,
IEEE_T_DEF, IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR,
IEEE_T_SQE, IEEE_T_FDXFC, IEEE_T_OCTETS_OK, RESERVED14[3], RMON_R_PACKETS,
RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, RMON_R_UNDERSIZE,
RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, RESERVED15, RMON_R_P64,
RMON_R_P65TO127, RMON_R_P128TO255, RMON_R_P256TO511, RMON_R_P512TO1023,
RMON_R_P1024TO2047, RMON_R_GTE2048, RMON_R_OCTETS, IEEE_R_DROP,
IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, IEEE_R_FDXFC,
IEEE_R_OCTETS_OK, RESERVED16[71], ATCR, ATVR, ATOFF, ATPER, ATCOR, ATINC,
ATSTMP, RESERVED17[122], TGSR, TCSR0, TCCR0, TCSR1, TCCR1, TCSR2, TCCR2,
TCSR3;
};
#undef ENET
@ -18,248 +32,158 @@ volatile uint32_t RESERVED0, EIR, EIMR, RESERVED1, RDAR, TDAR, RESERVED2[3], ECR
#undef BIT
#define BIT(x) ((uint32_t) 1 << (x))
#define ENET_RXBUFF_SIZE 1536 // 1522 Buffer must be 64bits aligned
#define ENET_TXBUFF_SIZE 1536 // 1522 hence set to 0x600 (1536)
#define ENET_RXBD_NUM (4)
#define ENET_TXBD_NUM (4)
// Max frame size, every buffer must be 64-bit aligned (1536 = 0x600)
#define ETH_PKT_SIZE 1536
#define ETH_DESC_CNT 4 // Descriptors count
const uint32_t EIMR_RX_ERR = 0x2400000; // Intr mask RXF+EBERR
typedef struct {
uint16_t length; // Data length
uint16_t control; // Control and status
uint32_t *buffer; // Data ptr
} enet_bd_t;
void ETH_IRQHandler(void);
static bool mg_tcpip_driver_imxrt1020_init(struct mg_tcpip_if *ifp);
static void wait_phy_complete(void);
static struct mg_tcpip_if *s_ifp; // MIP interface
static size_t mg_tcpip_driver_imxrt1020_tx(const void *, size_t , struct mg_tcpip_if *);
static bool mg_tcpip_driver_imxrt1020_up(struct mg_tcpip_if *ifp);
enum { IMXRT1020_PHY_ADDR = 0x02, IMXRT1020_PHY_BCR = 0, IMXRT1020_PHY_BSR = 1 }; // PHY constants
void delay(uint32_t);
void delay (uint32_t di) {
volatile int dno = 0; // Prevent optimization
for (uint32_t i = 0; i < di; i++)
for (int j=0; j<20; j++) // PLLx20 (500 MHz/24MHz)
dno++;
}
static void wait_phy_complete(void) {
delay(0x00010000);
const uint32_t delay_max = 0x00100000;
uint32_t delay_cnt = 0;
while (!(ENET->EIR & BIT(23)) && (delay_cnt < delay_max))
{delay_cnt++;}
ENET->EIR |= BIT(23); // MII interrupt clear
}
static uint32_t imxrt1020_eth_read_phy(uint8_t addr, uint8_t reg) {
ENET->EIR |= BIT(23); // MII interrupt clear
uint32_t mask_phy_adr_reg = 0x1f; // 0b00011111: Ensure we write 5 bits (Phy address & register)
uint32_t phy_transaction = 0x00;
phy_transaction = (0x1 << 30) \
| (0x2 << 28) \
| ((uint32_t)(addr & mask_phy_adr_reg) << 23) \
| ((uint32_t)(reg & mask_phy_adr_reg) << 18) \
| (0x2 << 16);
ENET->MMFR = phy_transaction;
wait_phy_complete();
return (ENET->MMFR & 0x0000ffff);
}
static void imxrt1020_eth_write_phy(uint8_t addr, uint8_t reg, uint32_t val) {
ENET->EIR |= BIT(23); // MII interrupt clear
uint8_t mask_phy_adr_reg = 0x1f; // 0b00011111: Ensure we write 5 bits (Phy address & register)
uint32_t mask_phy_data = 0x0000ffff; // Ensure we write 16 bits (data)
addr &= mask_phy_adr_reg;
reg &= mask_phy_adr_reg;
val &= mask_phy_data;
uint32_t phy_transaction = 0x00;
phy_transaction = (uint32_t)(0x1 << 30) \
| (uint32_t)(0x1 << 28) \
| (uint32_t)(addr << 23) \
| (uint32_t)(reg << 18) \
| (uint32_t)(0x2 << 16) \
| (uint32_t)(val);
ENET->MMFR = phy_transaction;
wait_phy_complete();
}
// FEC RX/TX descriptors (Enhanced descriptor not enabled)
// Descriptor buffer structure, little endian
typedef struct enet_bd_struct_def
{
uint16_t length; // Data length
uint16_t control; // Control and status
uint32_t *buffer; // Data ptr
} enet_bd_struct_t;
// Descriptor and buffer globals, in non-cached area, 64 bits aligned.
// TODO(): handle these in a portable compiler-independent CMSIS-friendly way
/*__attribute__((section("NonCacheable,\"aw\",%nobits @")))*/ enet_bd_struct_t rx_buffer_descriptor[(ENET_RXBD_NUM)] __attribute__((aligned((64U))));
/*__attribute__((section("NonCacheable,\"aw\",%nobits @")))*/ enet_bd_struct_t tx_buffer_descriptor[(ENET_TXBD_NUM)] __attribute__((aligned((64U))));
// Descriptors: in non-cached area (TODO(scaprile)), 64-bit aligned
enet_bd_t s_rxdesc[ETH_DESC_CNT] __attribute__((aligned((64U))));
enet_bd_t s_txdesc[ETH_DESC_CNT] __attribute__((aligned((64U))));
// Buffers: 64-bit aligned
uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE] __attribute__((aligned((64U))));
uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE] __attribute__((aligned((64U))));
uint8_t rx_data_buffer[(ENET_RXBD_NUM)][((unsigned int)(((ENET_RXBUFF_SIZE)) + (((64U))-1U)) & (unsigned int)(~(unsigned int)(((64U))-1U)))] __attribute__((aligned((64U))));
uint8_t tx_data_buffer[(ENET_TXBD_NUM)][((unsigned int)(((ENET_TXBUFF_SIZE)) + (((64U))-1U)) & (unsigned int)(~(unsigned int)(((64U))-1U)))] __attribute__((aligned((64U))));
static struct mg_tcpip_if *s_ifp; // MIP interface
// Initialise driver imx_rt1020
enum { PHY_ADDR = 2, PHY_BCR = 0, PHY_BSR = 1, PHY_PC1R = 30, PHY_PC2R = 31 };
// static bool mg_tcpip_driver_imxrt1020_init(uint8_t *mac, void *data) { // VO
static uint32_t eth_read_phy(uint8_t addr, uint8_t reg) {
ENET->EIR |= BIT(23); // MII interrupt clear
ENET->MMFR = (1 << 30) | (2 << 28) | (addr << 23) | (reg << 18) | (2 << 16);
while ((ENET->EIR & BIT(23)) == 0) (void) 0;
return ENET->MMFR & 0xffff;
}
static void eth_write_phy(uint8_t addr, uint8_t reg, uint32_t val) {
ENET->EIR |= BIT(23); // MII interrupt clear
ENET->MMFR =
(1 << 30) | (1 << 28) | (addr << 23) | (reg << 18) | (2 << 16) | val;
while ((ENET->EIR & BIT(23)) == 0) (void) 0;
}
// MDC clock is generated from IPS Bus clock (ipg_clk); as per 802.3,
// it must not exceed 2.5MHz
// The PHY receives the PLL6-generated 50MHz clock
static bool mg_tcpip_driver_imxrt1020_init(struct mg_tcpip_if *ifp) {
// TODO(scaprile): struct mg_tcpip_driver_imxrt1020_data *d = (struct mg_tcpip_driver_imxrt1020_data *) ifp->driver_data;
struct mg_tcpip_driver_imxrt1020_data *d =
(struct mg_tcpip_driver_imxrt1020_data *) ifp->driver_data;
s_ifp = ifp;
// ENET Reset, wait complete
ENET->ECR |= BIT(0);
while((ENET->ECR & BIT(0)) != 0) {}
// Re-latches the pin strapping pin values
ENET->ECR |= BIT(0);
while((ENET->ECR & BIT(0)) != 0) {}
// Setup MII/RMII MDC clock divider (<= 2.5MHz).
ENET->MSCR = 0x130; // HOLDTIME 2 clk, Preamble enable, MDC MII_Speed Div 0x30
imxrt1020_eth_write_phy(IMXRT1020_PHY_ADDR, IMXRT1020_PHY_BCR, 0x8000); // PHY W @0x00 D=0x8000 Soft reset
while (imxrt1020_eth_read_phy(IMXRT1020_PHY_ADDR, IMXRT1020_PHY_BSR) & BIT(15)) {delay(0x5000);} // Wait finished poll 10ms
// PHY: Start Link
{
imxrt1020_eth_write_phy(IMXRT1020_PHY_ADDR, IMXRT1020_PHY_BCR, 0x1200); // PHY W @0x00 D=0x1200 Autonego enable + start
imxrt1020_eth_write_phy(IMXRT1020_PHY_ADDR, 0x1f, 0x8180); // PHY W @0x1f D=0x8180 Ref clock 50 MHz at XI input
uint32_t bcr = imxrt1020_eth_read_phy(IMXRT1020_PHY_ADDR, IMXRT1020_PHY_BCR);
bcr &= ~BIT(10); // Isolation -> Normal
imxrt1020_eth_write_phy(IMXRT1020_PHY_ADDR, IMXRT1020_PHY_BCR, bcr);
// Init RX descriptors
for (int i = 0; i < ETH_DESC_CNT; i++) {
s_rxdesc[i].control = BIT(15); // Own (E)
s_rxdesc[i].buffer = (uint32_t *) s_rxbuf[i]; // Point to data buffer
}
s_rxdesc[ETH_DESC_CNT - 1].control |= BIT(13); // Wrap last descriptor
// Disable ENET
ENET->ECR = 0x0; // Disable before configuration
// Configure ENET
ENET->RCR = 0x05ee0104; // #CRCFWD=0 (CRC kept in frame) + RMII + MII Enable
//ENET->RCR |= BIT(3); // Receive all
ENET->TCR = BIT(8) | BIT(2); // Addins (MAC address from PAUR+PALR) + Full duplex enable
//ENET->TFWR = BIT(8); // Store And Forward Enable, 64 bytes (minimize tx latency)
// Configure descriptors and buffers
// RX
for (int i = 0; i < ENET_RXBD_NUM; i++) {
// Wrap last descriptor buffer ptr
rx_buffer_descriptor[i].control = (BIT(15) | ((i<(ENET_RXBD_NUM-1))?0:BIT(13))); // E+(W*)
rx_buffer_descriptor[i].buffer = (uint32_t *)rx_data_buffer[i];
// Init TX descriptors
for (int i = 0; i < ETH_DESC_CNT; i++) {
s_txdesc[i].control = BIT(10); // Own (TC)
s_txdesc[i].buffer = (uint32_t *) s_txbuf[i];
}
s_txdesc[ETH_DESC_CNT - 1].control |= BIT(13); // Wrap last descriptor
// TX
for (int i = 0; i < ENET_TXBD_NUM; i++) {
// Wrap last descriptor buffer ptr
tx_buffer_descriptor[i].control = ((i<(ENET_RXBD_NUM-1))?0:BIT(13)) | BIT(10); // (W*)+TC
tx_buffer_descriptor[i].buffer = (uint32_t *)tx_data_buffer[i];
}
ENET->ECR = BIT(0); // Software reset, disable
while ((ENET->ECR & BIT(0))) (void) 0; // Wait until done
// Continue ENET configuration
ENET->RDSR = (uint32_t)(uintptr_t)rx_buffer_descriptor;
ENET->TDSR = (uint32_t)(uintptr_t)tx_buffer_descriptor;
ENET->MRBR[0] = ENET_RXBUFF_SIZE; // Same size for RX/TX buffers
// Set MDC clock divider. If user told us the value, use it.
// TODO(): Otherwise, guess (currently assuming max freq)
int cr = (d == NULL || d->mdc_cr < 0) ? 24 : d->mdc_cr;
ENET->MSCR = (1 << 8) | ((cr & 0x3f) << 1); // HOLDTIME 2 clks
eth_write_phy(PHY_ADDR, PHY_BCR, BIT(15)); // Reset PHY
eth_write_phy(PHY_ADDR, PHY_BCR, BIT(12)); // Set autonegotiation
// PHY: Enable 50 MHz external ref clock at XI (preserve defaults)
eth_write_phy(PHY_ADDR, PHY_PC2R, BIT(15) | BIT(8) | BIT(7));
// Select RMII mode, 100M, keep CRC, set max rx length, disable loop
ENET->RCR = (1518 << 16) | BIT(8) | BIT(2);
// ENET->RCR |= BIT(3); // Receive all
ENET->TCR = BIT(2); // Full-duplex
ENET->RDSR = (uint32_t) (uintptr_t) s_rxdesc;
ENET->TDSR = (uint32_t) (uintptr_t) s_txdesc;
ENET->MRBR[0] = ETH_PKT_SIZE; // Same size for RX/TX buffers
// MAC address filtering (bytes in reversed order)
ENET->PAUR = ((uint32_t) ifp->mac[4] << 24U) | (uint32_t) ifp->mac[5] << 16U;
ENET->PALR = (uint32_t) (ifp->mac[0] << 24U) | ((uint32_t) ifp->mac[1] << 16U) |
((uint32_t) ifp->mac[2] << 8U) | ifp->mac[3];
// Init Hash tables (mac filtering)
ENET->IAUR = 0; // Unicast
ENET->IALR = 0;
ENET->GAUR = 0; // Multicast
ENET->GALR = 0;
// Set ENET Online
ENET->ECR |= BIT(8); // ENET Set Little-endian + (FEC buffer desc.)
ENET->ECR |= BIT(1); // Enable
// Set interrupt mask
ENET->EIMR = EIMR_RX_ERR;
// RX Descriptor activation
ENET->RDAR = BIT(24); // Activate Receive Descriptor
ENET->PALR = (uint32_t) (ifp->mac[0] << 24U) |
((uint32_t) ifp->mac[1] << 16U) |
((uint32_t) ifp->mac[2] << 8U) | ifp->mac[3];
ENET->ECR = BIT(8) | BIT(1); // Little-endian CPU, Enable
ENET->EIMR = BIT(25); // Set interrupt mask
ENET->RDAR = BIT(24); // Receive Descriptors have changed
return true;
}
// Transmit frame
static uint32_t s_rt1020_txno;
static uint32_t s_txno;
static size_t mg_tcpip_driver_imxrt1020_tx(const void *buf, size_t len, struct mg_tcpip_if *ifp) {
if (len > sizeof(tx_data_buffer[ENET_TXBD_NUM])) {
// MG_ERROR(("Frame too big, %ld", (long) len));
len = 0; // Frame is too big
} else if ((tx_buffer_descriptor[s_rt1020_txno].control & BIT(15))) {
MG_ERROR(("No free descriptors"));
// printf("D0 %lx SR %lx\n", (long) s_txdesc[0][0], (long) ETH->DMASR);
len = 0; // All descriptors are busy, fail
static size_t mg_tcpip_driver_imxrt1020_tx(const void *buf, size_t len,
struct mg_tcpip_if *ifp) {
if (len > sizeof(s_txbuf[ETH_DESC_CNT])) {
MG_ERROR(("Frame too big, %ld", (long) len));
len = 0; // fail
} else if ((s_txdesc[s_txno].control & BIT(15))) {
ifp->nerr++;
MG_ERROR(("No descriptors available"));
len = 0; // fail
} else {
memcpy(tx_data_buffer[s_rt1020_txno], buf, len); // Copy data
tx_buffer_descriptor[s_rt1020_txno].length = (uint16_t) len; // Set data len
tx_buffer_descriptor[s_rt1020_txno].control |= (uint16_t)(BIT(10)); // TC (transmit CRC)
// tx_buffer_descriptor[s_rt1020_txno].control &= (uint16_t)(BIT(14) | BIT(12)); // Own doesn't affect HW
tx_buffer_descriptor[s_rt1020_txno].control |= (uint16_t)(BIT(15) | BIT(11)); // R+L (ready+last)
ENET->TDAR = BIT(24); // Descriptor updated. Hand over to DMA.
// INFO
// Relevant Descriptor bits: 15(R) Ready
// 11(L) last in frame
// 10(TC) transmis CRC
// __DSB(); // ARM errata 838869 Cortex-M4, M4F, M7, M7F: "store immediate overlapping
// exception" return might vector to incorrect interrupt.
if (++s_rt1020_txno >= ENET_TXBD_NUM) s_rt1020_txno = 0;
memcpy(s_txbuf[s_txno], buf, len); // Copy data
s_txdesc[s_txno].length = (uint16_t) len; // Set data len
// Table 37-34, R, L, TC (Ready, last, transmit CRC after frame
s_txdesc[s_txno].control |= (uint16_t) (BIT(15) | BIT(11) | BIT(10));
ENET->TDAR = BIT(24); // Descriptor ring updated
if (++s_txno >= ETH_DESC_CNT) s_txno = 0;
}
(void) ifp;
return len;
}
// IRQ (RX)
static uint32_t s_rt1020_rxno;
void ENET_IRQHandler(void) {
ENET->EIMR = 0; // Mask interrupts.
uint32_t eir = ENET->EIR; // Read EIR
ENET->EIR = 0xffffffff; // Clear interrupts
if (eir & EIMR_RX_ERR) // Global mask used
{
if (rx_buffer_descriptor[s_rt1020_rxno].control & BIT(15)) {
ENET->EIMR = EIMR_RX_ERR; // Enable interrupts
return; // Empty? -> exit.
}
// Read inframes
else { // Frame received, loop
for (uint32_t i = 0; i < 10; i++) { // read as they arrive but not forever
if (rx_buffer_descriptor[s_rt1020_rxno].control & BIT(15)) break; // exit when done
// Process if CRC OK and frame not truncated
if (!(rx_buffer_descriptor[s_rt1020_rxno].control & (BIT(2) | BIT(0)))) {
uint32_t len = (rx_buffer_descriptor[s_rt1020_rxno].length);
mg_tcpip_qwrite(rx_buffer_descriptor[s_rt1020_rxno].buffer, len > 4 ? len - 4 : len, s_ifp);
}
rx_buffer_descriptor[s_rt1020_rxno].control |= BIT(15); // Inform DMA RX is empty
if (++s_rt1020_rxno >= ENET_RXBD_NUM) s_rt1020_rxno = 0;
}
}
}
ENET->EIMR = EIMR_RX_ERR; // Enable interrupts
}
// Up/down status
static bool mg_tcpip_driver_imxrt1020_up(struct mg_tcpip_if *ifp) {
uint32_t bsr = imxrt1020_eth_read_phy(IMXRT1020_PHY_ADDR, IMXRT1020_PHY_BSR);
(void) ifp;
return bsr & BIT(2) ? 1 : 0;
uint32_t bsr = eth_read_phy(PHY_ADDR, PHY_BSR);
bool up = bsr & BIT(2) ? 1 : 0;
if ((ifp->state == MG_TCPIP_STATE_DOWN) && up) { // link state just went up
uint32_t pc1r = eth_read_phy(PHY_ADDR, PHY_PC1R);
uint32_t tcr = ENET->TCR |= BIT(2); // Full-duplex
uint32_t rcr = ENET->RCR &= ~BIT(9); // 100M
if ((pc1r & 3) == 1) rcr |= BIT(9); // 10M
if ((pc1r & BIT(2)) == 0) tcr &= ~BIT(2); // Half-duplex
ENET->TCR = tcr; // IRQ handler does not fiddle with these registers
ENET->RCR = rcr;
MG_DEBUG(("Link is %uM %s-duplex", rcr & BIT(9) ? 10 : 100,
tcr & BIT(2) ? "full" : "half"));
}
return up;
}
void ENET_IRQHandler(void);
static uint32_t s_rxno;
void ENET_IRQHandler(void) {
ENET->EIR = BIT(25); // Ack IRQ
// Frame received, loop
for (uint32_t i = 0; i < 10; i++) { // read as they arrive but not forever
if (s_rxdesc[s_rxno].control & BIT(15)) break; // exit when done
// skip partial/errored frames (Table 37-32)
if ((s_rxdesc[s_rxno].control & BIT(11)) &&
!(s_rxdesc[s_rxno].control &
(BIT(5) | BIT(4) | BIT(2) | BIT(1) | BIT(0)))) {
uint32_t len = (s_rxdesc[s_rxno].length);
mg_tcpip_qwrite(s_rxbuf[s_rxno], len > 4 ? len - 4 : len, s_ifp);
}
s_rxdesc[s_rxno].control |= BIT(15);
if (++s_rxno >= ETH_DESC_CNT) s_rxno = 0;
}
ENET->RDAR = BIT(24); // Receive Descriptors have changed
// If b24 == 0, descriptors were exhausted and probably frames were dropped
}
// API
struct mg_tcpip_driver mg_tcpip_driver_imxrt1020 = {
mg_tcpip_driver_imxrt1020_init, mg_tcpip_driver_imxrt1020_tx, NULL,
mg_tcpip_driver_imxrt1020_up};
mg_tcpip_driver_imxrt1020_init, mg_tcpip_driver_imxrt1020_tx, NULL,
mg_tcpip_driver_imxrt1020_up};
#endif

View File

@ -3,13 +3,14 @@
struct mg_tcpip_driver_imxrt1020_data {
// MDC clock divider. MDC clock is derived from IPS Bus clock (ipg_clk),
// must not exceed 2.5MHz. Configuration for clock range 2.36~2.50 MHz
// ipg_clk MSCR mdc_cr VALUE
// -------------------------------------
// -1 <-- tell driver to guess the value
// 25 MHz 0x04 0
// 33 MHz 0x06 1
// 40 MHz 0x07 2
// 50 MHz 0x09 3
// 66 MHz 0x0D 4 <-- value for iMXRT1020-EVK at max freq.
int mdc_cr; // Valid values: -1, 0, 1, 2, 3, 4
// 37.5.1.8.2, Table 37-46 : f = ipg_clk / (2(mdc_cr + 1))
// ipg_clk mdc_cr VALUE
// --------------------------
// -1 <-- TODO() tell driver to guess the value
// 25 MHz 4
// 33 MHz 6
// 40 MHz 7
// 50 MHz 9
// 66 MHz 13
int mdc_cr; // Valid values: -1 to 63
};