Merge pull request #2402 from cesanta/bcast

send broadcasts in MIP
This commit is contained in:
Sergey Lyubka 2023-10-03 13:53:58 +01:00 committed by GitHub
commit 79d6017c56
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 542 additions and 275 deletions

View File

@ -4017,273 +4017,6 @@ struct mg_connection *mg_mqtt_listen(struct mg_mgr *mgr, const char *url,
return c;
}
#ifdef MG_ENABLE_LINES
#line 1 "src/net.c"
#endif
size_t mg_vprintf(struct mg_connection *c, const char *fmt, va_list *ap) {
size_t old = c->send.len;
mg_vxprintf(mg_pfn_iobuf, &c->send, fmt, ap);
return c->send.len - old;
}
size_t mg_printf(struct mg_connection *c, const char *fmt, ...) {
size_t len = 0;
va_list ap;
va_start(ap, fmt);
len = mg_vprintf(c, fmt, &ap);
va_end(ap);
return len;
}
static bool mg_atonl(struct mg_str str, struct mg_addr *addr) {
uint32_t localhost = mg_htonl(0x7f000001);
if (mg_vcasecmp(&str, "localhost") != 0) return false;
memcpy(addr->ip, &localhost, sizeof(uint32_t));
addr->is_ip6 = false;
return true;
}
static bool mg_atone(struct mg_str str, struct mg_addr *addr) {
if (str.len > 0) return false;
memset(addr->ip, 0, sizeof(addr->ip));
addr->is_ip6 = false;
return true;
}
static bool mg_aton4(struct mg_str str, struct mg_addr *addr) {
uint8_t data[4] = {0, 0, 0, 0};
size_t i, num_dots = 0;
for (i = 0; i < str.len; i++) {
if (str.ptr[i] >= '0' && str.ptr[i] <= '9') {
int octet = data[num_dots] * 10 + (str.ptr[i] - '0');
if (octet > 255) return false;
data[num_dots] = (uint8_t) octet;
} else if (str.ptr[i] == '.') {
if (num_dots >= 3 || i == 0 || str.ptr[i - 1] == '.') return false;
num_dots++;
} else {
return false;
}
}
if (num_dots != 3 || str.ptr[i - 1] == '.') return false;
memcpy(&addr->ip, data, sizeof(data));
addr->is_ip6 = false;
return true;
}
static bool mg_v4mapped(struct mg_str str, struct mg_addr *addr) {
int i;
uint32_t ipv4;
if (str.len < 14) return false;
if (str.ptr[0] != ':' || str.ptr[1] != ':' || str.ptr[6] != ':') return false;
for (i = 2; i < 6; i++) {
if (str.ptr[i] != 'f' && str.ptr[i] != 'F') return false;
}
// struct mg_str s = mg_str_n(&str.ptr[7], str.len - 7);
if (!mg_aton4(mg_str_n(&str.ptr[7], str.len - 7), addr)) return false;
memcpy(&ipv4, addr->ip, sizeof(ipv4));
memset(addr->ip, 0, sizeof(addr->ip));
addr->ip[10] = addr->ip[11] = 255;
memcpy(&addr->ip[12], &ipv4, 4);
addr->is_ip6 = true;
return true;
}
static bool mg_aton6(struct mg_str str, struct mg_addr *addr) {
size_t i, j = 0, n = 0, dc = 42;
addr->scope_id = 0;
if (str.len > 2 && str.ptr[0] == '[') str.ptr++, str.len -= 2;
if (mg_v4mapped(str, addr)) return true;
for (i = 0; i < str.len; i++) {
if ((str.ptr[i] >= '0' && str.ptr[i] <= '9') ||
(str.ptr[i] >= 'a' && str.ptr[i] <= 'f') ||
(str.ptr[i] >= 'A' && str.ptr[i] <= 'F')) {
unsigned long val;
if (i > j + 3) return false;
// MG_DEBUG(("%lu %lu [%.*s]", i, j, (int) (i - j + 1), &str.ptr[j]));
val = mg_unhexn(&str.ptr[j], i - j + 1);
addr->ip[n] = (uint8_t) ((val >> 8) & 255);
addr->ip[n + 1] = (uint8_t) (val & 255);
} else if (str.ptr[i] == ':') {
j = i + 1;
if (i > 0 && str.ptr[i - 1] == ':') {
dc = n; // Double colon
if (i > 1 && str.ptr[i - 2] == ':') return false;
} else if (i > 0) {
n += 2;
}
if (n > 14) return false;
addr->ip[n] = addr->ip[n + 1] = 0; // For trailing ::
} else if (str.ptr[i] == '%') { // Scope ID
for (i = i + 1; i < str.len; i++) {
if (str.ptr[i] < '0' || str.ptr[i] > '9') return false;
addr->scope_id *= 10, addr->scope_id += (uint8_t) (str.ptr[i] - '0');
}
} else {
return false;
}
}
if (n < 14 && dc == 42) return false;
if (n < 14) {
memmove(&addr->ip[dc + (14 - n)], &addr->ip[dc], n - dc + 2);
memset(&addr->ip[dc], 0, 14 - n);
}
addr->is_ip6 = true;
return true;
}
bool mg_aton(struct mg_str str, struct mg_addr *addr) {
// MG_INFO(("[%.*s]", (int) str.len, str.ptr));
return mg_atone(str, addr) || mg_atonl(str, addr) || mg_aton4(str, addr) ||
mg_aton6(str, addr);
}
struct mg_connection *mg_alloc_conn(struct mg_mgr *mgr) {
struct mg_connection *c =
(struct mg_connection *) calloc(1, sizeof(*c) + mgr->extraconnsize);
if (c != NULL) {
c->mgr = mgr;
c->send.align = c->recv.align = MG_IO_SIZE;
c->id = ++mgr->nextid;
}
return c;
}
void mg_close_conn(struct mg_connection *c) {
mg_resolve_cancel(c); // Close any pending DNS query
LIST_DELETE(struct mg_connection, &c->mgr->conns, c);
if (c == c->mgr->dns4.c) c->mgr->dns4.c = NULL;
if (c == c->mgr->dns6.c) c->mgr->dns6.c = NULL;
// Order of operations is important. `MG_EV_CLOSE` event must be fired
// before we deallocate received data, see #1331
mg_call(c, MG_EV_CLOSE, NULL);
MG_DEBUG(("%lu %ld closed", c->id, c->fd));
mg_tls_free(c);
mg_iobuf_free(&c->recv);
mg_iobuf_free(&c->send);
mg_bzero((unsigned char *) c, sizeof(*c));
free(c);
}
struct mg_connection *mg_connect(struct mg_mgr *mgr, const char *url,
mg_event_handler_t fn, void *fn_data) {
struct mg_connection *c = NULL;
if (url == NULL || url[0] == '\0') {
MG_ERROR(("null url"));
} else if ((c = mg_alloc_conn(mgr)) == NULL) {
MG_ERROR(("OOM"));
} else {
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
c->is_udp = (strncmp(url, "udp:", 4) == 0);
c->fd = (void *) (size_t) MG_INVALID_SOCKET;
c->fn = fn;
c->is_client = true;
c->fn_data = fn_data;
MG_DEBUG(("%lu %ld %s", c->id, c->fd, url));
mg_call(c, MG_EV_OPEN, (void *) url);
mg_resolve(c, url);
}
return c;
}
struct mg_connection *mg_listen(struct mg_mgr *mgr, const char *url,
mg_event_handler_t fn, void *fn_data) {
struct mg_connection *c = NULL;
if ((c = mg_alloc_conn(mgr)) == NULL) {
MG_ERROR(("OOM %s", url));
} else if (!mg_open_listener(c, url)) {
MG_ERROR(("Failed: %s, errno %d", url, errno));
free(c);
c = NULL;
} else {
c->is_listening = 1;
c->is_udp = strncmp(url, "udp:", 4) == 0;
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
c->fn = fn;
c->fn_data = fn_data;
mg_call(c, MG_EV_OPEN, NULL);
if (mg_url_is_ssl(url)) c->is_tls = 1; // Accepted connection must
MG_DEBUG(("%lu %ld %s", c->id, c->fd, url));
}
return c;
}
struct mg_connection *mg_wrapfd(struct mg_mgr *mgr, int fd,
mg_event_handler_t fn, void *fn_data) {
struct mg_connection *c = mg_alloc_conn(mgr);
if (c != NULL) {
c->fd = (void *) (size_t) fd;
c->fn = fn;
c->fn_data = fn_data;
MG_EPOLL_ADD(c);
mg_call(c, MG_EV_OPEN, NULL);
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
}
return c;
}
struct mg_timer *mg_timer_add(struct mg_mgr *mgr, uint64_t milliseconds,
unsigned flags, void (*fn)(void *), void *arg) {
struct mg_timer *t = (struct mg_timer *) calloc(1, sizeof(*t));
if (t != NULL) {
mg_timer_init(&mgr->timers, t, milliseconds, flags, fn, arg);
t->id = mgr->timerid++;
}
return t;
}
void mg_mgr_free(struct mg_mgr *mgr) {
struct mg_connection *c;
struct mg_timer *tmp, *t = mgr->timers;
while (t != NULL) tmp = t->next, free(t), t = tmp;
mgr->timers = NULL; // Important. Next call to poll won't touch timers
for (c = mgr->conns; c != NULL; c = c->next) c->is_closing = 1;
mg_mgr_poll(mgr, 0);
#if MG_ENABLE_FREERTOS_TCP
FreeRTOS_DeleteSocketSet(mgr->ss);
#endif
MG_DEBUG(("All connections closed"));
#if MG_ENABLE_EPOLL
if (mgr->epoll_fd >= 0) close(mgr->epoll_fd), mgr->epoll_fd = -1;
#endif
mg_tls_ctx_free(mgr);
}
void mg_mgr_init(struct mg_mgr *mgr) {
memset(mgr, 0, sizeof(*mgr));
#if MG_ENABLE_EPOLL
if ((mgr->epoll_fd = epoll_create1(EPOLL_CLOEXEC)) < 0)
MG_ERROR(("epoll_create1 errno %d", errno));
#else
mgr->epoll_fd = -1;
#endif
#if MG_ARCH == MG_ARCH_WIN32 && MG_ENABLE_WINSOCK
// clang-format off
{ WSADATA data; WSAStartup(MAKEWORD(2, 2), &data); }
// clang-format on
#elif MG_ENABLE_FREERTOS_TCP
mgr->ss = FreeRTOS_CreateSocketSet();
#elif defined(__unix) || defined(__unix__) || defined(__APPLE__)
// Ignore SIGPIPE signal, so if client cancels the request, it
// won't kill the whole process.
signal(SIGPIPE, SIG_IGN);
#endif
mgr->dnstimeout = 3000;
mgr->dns4.url = "udp://8.8.8.8:53";
mgr->dns6.url = "udp://[2001:4860:4860::8888]:53";
mg_tls_ctx_init(mgr);
}
#ifdef MG_ENABLE_LINES
#line 1 "src/net_builtin.c"
#endif
@ -5294,16 +5027,16 @@ void mg_connect_resolved(struct mg_connection *c) {
MG_DEBUG(("%lu %M -> %M", c->id, mg_print_ip_port, &c->loc, mg_print_ip_port,
&c->rem));
mg_call(c, MG_EV_RESOLVE, NULL);
if (((rem_ip & ifp->mask) == (ifp->ip & ifp->mask))) {
if (c->is_udp && (rem_ip == 0xffffffff || rem_ip == (ifp->ip | ~ifp->mask))) {
struct connstate *s = (struct connstate *) (c + 1);
memset(s->mac, 0xFF, sizeof(s->mac)); // global or local broadcast
} else if (((rem_ip & ifp->mask) == (ifp->ip & ifp->mask))) {
// If we're in the same LAN, fire an ARP lookup.
MG_DEBUG(("%lu ARP lookup...", c->id));
arp_ask(ifp, rem_ip);
settmout(c, MIP_TTYPE_ARP);
c->is_arplooking = 1;
c->is_connecting = 1;
} else if (rem_ip == (ifp->ip | ~ifp->mask)) {
struct connstate *s = (struct connstate *) (c + 1);
memset(s->mac, 0xFF, sizeof(s->mac)); // local broadcast
} else if ((*((uint8_t *) &rem_ip) & 0xE0) == 0xE0) {
struct connstate *s = (struct connstate *) (c + 1); // 224 to 239, E0 to EF
uint8_t mcastp[3] = {0x01, 0x00, 0x5E}; // multicast group
@ -5402,6 +5135,273 @@ bool mg_send(struct mg_connection *c, const void *buf, size_t len) {
}
#endif // MG_ENABLE_TCPIP
#ifdef MG_ENABLE_LINES
#line 1 "src/net.c"
#endif
size_t mg_vprintf(struct mg_connection *c, const char *fmt, va_list *ap) {
size_t old = c->send.len;
mg_vxprintf(mg_pfn_iobuf, &c->send, fmt, ap);
return c->send.len - old;
}
size_t mg_printf(struct mg_connection *c, const char *fmt, ...) {
size_t len = 0;
va_list ap;
va_start(ap, fmt);
len = mg_vprintf(c, fmt, &ap);
va_end(ap);
return len;
}
static bool mg_atonl(struct mg_str str, struct mg_addr *addr) {
uint32_t localhost = mg_htonl(0x7f000001);
if (mg_vcasecmp(&str, "localhost") != 0) return false;
memcpy(addr->ip, &localhost, sizeof(uint32_t));
addr->is_ip6 = false;
return true;
}
static bool mg_atone(struct mg_str str, struct mg_addr *addr) {
if (str.len > 0) return false;
memset(addr->ip, 0, sizeof(addr->ip));
addr->is_ip6 = false;
return true;
}
static bool mg_aton4(struct mg_str str, struct mg_addr *addr) {
uint8_t data[4] = {0, 0, 0, 0};
size_t i, num_dots = 0;
for (i = 0; i < str.len; i++) {
if (str.ptr[i] >= '0' && str.ptr[i] <= '9') {
int octet = data[num_dots] * 10 + (str.ptr[i] - '0');
if (octet > 255) return false;
data[num_dots] = (uint8_t) octet;
} else if (str.ptr[i] == '.') {
if (num_dots >= 3 || i == 0 || str.ptr[i - 1] == '.') return false;
num_dots++;
} else {
return false;
}
}
if (num_dots != 3 || str.ptr[i - 1] == '.') return false;
memcpy(&addr->ip, data, sizeof(data));
addr->is_ip6 = false;
return true;
}
static bool mg_v4mapped(struct mg_str str, struct mg_addr *addr) {
int i;
uint32_t ipv4;
if (str.len < 14) return false;
if (str.ptr[0] != ':' || str.ptr[1] != ':' || str.ptr[6] != ':') return false;
for (i = 2; i < 6; i++) {
if (str.ptr[i] != 'f' && str.ptr[i] != 'F') return false;
}
// struct mg_str s = mg_str_n(&str.ptr[7], str.len - 7);
if (!mg_aton4(mg_str_n(&str.ptr[7], str.len - 7), addr)) return false;
memcpy(&ipv4, addr->ip, sizeof(ipv4));
memset(addr->ip, 0, sizeof(addr->ip));
addr->ip[10] = addr->ip[11] = 255;
memcpy(&addr->ip[12], &ipv4, 4);
addr->is_ip6 = true;
return true;
}
static bool mg_aton6(struct mg_str str, struct mg_addr *addr) {
size_t i, j = 0, n = 0, dc = 42;
addr->scope_id = 0;
if (str.len > 2 && str.ptr[0] == '[') str.ptr++, str.len -= 2;
if (mg_v4mapped(str, addr)) return true;
for (i = 0; i < str.len; i++) {
if ((str.ptr[i] >= '0' && str.ptr[i] <= '9') ||
(str.ptr[i] >= 'a' && str.ptr[i] <= 'f') ||
(str.ptr[i] >= 'A' && str.ptr[i] <= 'F')) {
unsigned long val;
if (i > j + 3) return false;
// MG_DEBUG(("%lu %lu [%.*s]", i, j, (int) (i - j + 1), &str.ptr[j]));
val = mg_unhexn(&str.ptr[j], i - j + 1);
addr->ip[n] = (uint8_t) ((val >> 8) & 255);
addr->ip[n + 1] = (uint8_t) (val & 255);
} else if (str.ptr[i] == ':') {
j = i + 1;
if (i > 0 && str.ptr[i - 1] == ':') {
dc = n; // Double colon
if (i > 1 && str.ptr[i - 2] == ':') return false;
} else if (i > 0) {
n += 2;
}
if (n > 14) return false;
addr->ip[n] = addr->ip[n + 1] = 0; // For trailing ::
} else if (str.ptr[i] == '%') { // Scope ID
for (i = i + 1; i < str.len; i++) {
if (str.ptr[i] < '0' || str.ptr[i] > '9') return false;
addr->scope_id *= 10, addr->scope_id += (uint8_t) (str.ptr[i] - '0');
}
} else {
return false;
}
}
if (n < 14 && dc == 42) return false;
if (n < 14) {
memmove(&addr->ip[dc + (14 - n)], &addr->ip[dc], n - dc + 2);
memset(&addr->ip[dc], 0, 14 - n);
}
addr->is_ip6 = true;
return true;
}
bool mg_aton(struct mg_str str, struct mg_addr *addr) {
// MG_INFO(("[%.*s]", (int) str.len, str.ptr));
return mg_atone(str, addr) || mg_atonl(str, addr) || mg_aton4(str, addr) ||
mg_aton6(str, addr);
}
struct mg_connection *mg_alloc_conn(struct mg_mgr *mgr) {
struct mg_connection *c =
(struct mg_connection *) calloc(1, sizeof(*c) + mgr->extraconnsize);
if (c != NULL) {
c->mgr = mgr;
c->send.align = c->recv.align = MG_IO_SIZE;
c->id = ++mgr->nextid;
}
return c;
}
void mg_close_conn(struct mg_connection *c) {
mg_resolve_cancel(c); // Close any pending DNS query
LIST_DELETE(struct mg_connection, &c->mgr->conns, c);
if (c == c->mgr->dns4.c) c->mgr->dns4.c = NULL;
if (c == c->mgr->dns6.c) c->mgr->dns6.c = NULL;
// Order of operations is important. `MG_EV_CLOSE` event must be fired
// before we deallocate received data, see #1331
mg_call(c, MG_EV_CLOSE, NULL);
MG_DEBUG(("%lu %ld closed", c->id, c->fd));
mg_tls_free(c);
mg_iobuf_free(&c->recv);
mg_iobuf_free(&c->send);
mg_bzero((unsigned char *) c, sizeof(*c));
free(c);
}
struct mg_connection *mg_connect(struct mg_mgr *mgr, const char *url,
mg_event_handler_t fn, void *fn_data) {
struct mg_connection *c = NULL;
if (url == NULL || url[0] == '\0') {
MG_ERROR(("null url"));
} else if ((c = mg_alloc_conn(mgr)) == NULL) {
MG_ERROR(("OOM"));
} else {
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
c->is_udp = (strncmp(url, "udp:", 4) == 0);
c->fd = (void *) (size_t) MG_INVALID_SOCKET;
c->fn = fn;
c->is_client = true;
c->fn_data = fn_data;
MG_DEBUG(("%lu %ld %s", c->id, c->fd, url));
mg_call(c, MG_EV_OPEN, (void *) url);
mg_resolve(c, url);
}
return c;
}
struct mg_connection *mg_listen(struct mg_mgr *mgr, const char *url,
mg_event_handler_t fn, void *fn_data) {
struct mg_connection *c = NULL;
if ((c = mg_alloc_conn(mgr)) == NULL) {
MG_ERROR(("OOM %s", url));
} else if (!mg_open_listener(c, url)) {
MG_ERROR(("Failed: %s, errno %d", url, errno));
free(c);
c = NULL;
} else {
c->is_listening = 1;
c->is_udp = strncmp(url, "udp:", 4) == 0;
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
c->fn = fn;
c->fn_data = fn_data;
mg_call(c, MG_EV_OPEN, NULL);
if (mg_url_is_ssl(url)) c->is_tls = 1; // Accepted connection must
MG_DEBUG(("%lu %ld %s", c->id, c->fd, url));
}
return c;
}
struct mg_connection *mg_wrapfd(struct mg_mgr *mgr, int fd,
mg_event_handler_t fn, void *fn_data) {
struct mg_connection *c = mg_alloc_conn(mgr);
if (c != NULL) {
c->fd = (void *) (size_t) fd;
c->fn = fn;
c->fn_data = fn_data;
MG_EPOLL_ADD(c);
mg_call(c, MG_EV_OPEN, NULL);
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
}
return c;
}
struct mg_timer *mg_timer_add(struct mg_mgr *mgr, uint64_t milliseconds,
unsigned flags, void (*fn)(void *), void *arg) {
struct mg_timer *t = (struct mg_timer *) calloc(1, sizeof(*t));
if (t != NULL) {
mg_timer_init(&mgr->timers, t, milliseconds, flags, fn, arg);
t->id = mgr->timerid++;
}
return t;
}
void mg_mgr_free(struct mg_mgr *mgr) {
struct mg_connection *c;
struct mg_timer *tmp, *t = mgr->timers;
while (t != NULL) tmp = t->next, free(t), t = tmp;
mgr->timers = NULL; // Important. Next call to poll won't touch timers
for (c = mgr->conns; c != NULL; c = c->next) c->is_closing = 1;
mg_mgr_poll(mgr, 0);
#if MG_ENABLE_FREERTOS_TCP
FreeRTOS_DeleteSocketSet(mgr->ss);
#endif
MG_DEBUG(("All connections closed"));
#if MG_ENABLE_EPOLL
if (mgr->epoll_fd >= 0) close(mgr->epoll_fd), mgr->epoll_fd = -1;
#endif
mg_tls_ctx_free(mgr);
}
void mg_mgr_init(struct mg_mgr *mgr) {
memset(mgr, 0, sizeof(*mgr));
#if MG_ENABLE_EPOLL
if ((mgr->epoll_fd = epoll_create1(EPOLL_CLOEXEC)) < 0)
MG_ERROR(("epoll_create1 errno %d", errno));
#else
mgr->epoll_fd = -1;
#endif
#if MG_ARCH == MG_ARCH_WIN32 && MG_ENABLE_WINSOCK
// clang-format off
{ WSADATA data; WSAStartup(MAKEWORD(2, 2), &data); }
// clang-format on
#elif MG_ENABLE_FREERTOS_TCP
mgr->ss = FreeRTOS_CreateSocketSet();
#elif defined(__unix) || defined(__unix__) || defined(__APPLE__)
// Ignore SIGPIPE signal, so if client cancels the request, it
// won't kill the whole process.
signal(SIGPIPE, SIG_IGN);
#endif
mgr->dnstimeout = 3000;
mgr->dns4.url = "udp://8.8.8.8:53";
mgr->dns6.url = "udp://[2001:4860:4860::8888]:53";
mg_tls_ctx_init(mgr);
}
#ifdef MG_ENABLE_LINES
#line 1 "src/ota_dummy.c"
#endif
@ -8651,6 +8651,273 @@ struct mg_tcpip_driver mg_tcpip_driver_imxrt1020 = {
#endif
#ifdef MG_ENABLE_LINES
#line 1 "src/drivers/rt1020_.c"
#endif
/*
* Todo
* This driver doesn't support 10M line autoconfiguration yet.
* Packets aren't sent if the link negociated 10M line.
* todo: MAC back auto reconfiguration.
*/
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_IMXRT1020)
struct imx_rt1020_enet {
volatile uint32_t RESERVED0, EIR, EIMR, RESERVED1, RDAR, TDAR, RESERVED2[3], ECR, RESERVED3[6], MMFR, MSCR, RESERVED4[7], MIBC, RESERVED5[7], RCR, RESERVED6[15], TCR, RESERVED7[7], PALR, PAUR, OPD, TXIC0, TXIC1, TXIC2, RESERVED8, RXIC0, RXIC1, RXIC2, RESERVED9[3], IAUR, IALR, GAUR, GALR, RESERVED10[7], TFWR, RESERVED11[14], RDSR, TDSR, MRBR[2], RSFL, RSEM, RAEM, RAFL, TSEM, TAEM, TAFL, TIPG, FTRL, RESERVED12[3], TACC, RACC, RESERVED13[15], RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2048, RMON_T_GTE2048, RMON_T_OCTETS, IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, IEEE_T_FDXFC, IEEE_T_OCTETS_OK, RESERVED14[3], RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, RESERVED15, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, RMON_R_GTE2048, RMON_R_OCTETS, IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, IEEE_R_FDXFC, IEEE_R_OCTETS_OK, RESERVED16[71], ATCR, ATVR, ATOFF, ATPER, ATCOR, ATINC, ATSTMP, RESERVED17[122], TGSR, TCSR0, TCCR0, TCSR1, TCCR1, TCSR2, TCCR2, TCSR3;
};
#undef ENET
#define ENET ((struct imx_rt1020_enet *) (uintptr_t) 0x402D8000u)
#undef BIT
#define BIT(x) ((uint32_t) 1 << (x))
#define ENET_RXBUFF_SIZE 1536 // 1522 Buffer must be 64bits aligned
#define ENET_TXBUFF_SIZE 1536 // 1522 hence set to 0x600 (1536)
#define ENET_RXBD_NUM (4)
#define ENET_TXBD_NUM (4)
const uint32_t EIMR_RX_ERR = 0x2400000; // Intr mask RXF+EBERR
void ETH_IRQHandler(void);
static bool mg_tcpip_driver_imxrt1020_init(struct mg_tcpip_if *ifp);
static void wait_phy_complete(void);
static struct mg_tcpip_if *s_ifp; // MIP interface
static size_t mg_tcpip_driver_imxrt1020_tx(const void *, size_t , struct mg_tcpip_if *);
static bool mg_tcpip_driver_imxrt1020_up(struct mg_tcpip_if *ifp);
enum { IMXRT1020_PHY_ADDR = 0x02, IMXRT1020_PHY_BCR = 0, IMXRT1020_PHY_BSR = 1 }; // PHY constants
void delay(uint32_t);
void delay (uint32_t di) {
volatile int dno = 0; // Prevent optimization
for (uint32_t i = 0; i < di; i++)
for (int j=0; j<20; j++) // PLLx20 (500 MHz/24MHz)
dno++;
}
static void wait_phy_complete(void) {
delay(0x00010000);
const uint32_t delay_max = 0x00100000;
uint32_t delay_cnt = 0;
while (!(ENET->EIR & BIT(23)) && (delay_cnt < delay_max))
{delay_cnt++;}
ENET->EIR |= BIT(23); // MII interrupt clear
}
static uint32_t eth_read_phy(uint8_t addr, uint8_t reg) {
ENET->EIR |= BIT(23); // MII interrupt clear
uint32_t mask_phy_adr_reg = 0x1f; // 0b00011111: Ensure we write 5 bits (Phy address & register)
uint32_t phy_transaction = 0x00;
phy_transaction = (0x1 << 30) \
| (0x2 << 28) \
| ((uint32_t)(addr & mask_phy_adr_reg) << 23) \
| ((uint32_t)(reg & mask_phy_adr_reg) << 18) \
| (0x2 << 16);
ENET->MMFR = phy_transaction;
wait_phy_complete();
return (ENET->MMFR & 0x0000ffff);
}
static void eth_write_phy(uint8_t addr, uint8_t reg, uint32_t val) {
ENET->EIR |= BIT(23); // MII interrupt clear
uint8_t mask_phy_adr_reg = 0x1f; // 0b00011111: Ensure we write 5 bits (Phy address & register)
uint32_t mask_phy_data = 0x0000ffff; // Ensure we write 16 bits (data)
addr &= mask_phy_adr_reg;
reg &= mask_phy_adr_reg;
val &= mask_phy_data;
uint32_t phy_transaction = 0x00;
phy_transaction = (uint32_t)(0x1 << 30) \
| (uint32_t)(0x1 << 28) \
| (uint32_t)(addr << 23) \
| (uint32_t)(reg << 18) \
| (uint32_t)(0x2 << 16) \
| (uint32_t)(val);
ENET->MMFR = phy_transaction;
wait_phy_complete();
}
// FEC RX/TX descriptors (Enhanced descriptor not enabled)
// Descriptor buffer structure, little endian
typedef struct enet_bd_struct_def
{
uint16_t length; // Data length
uint16_t control; // Control and status
uint32_t *buffer; // Data ptr
} enet_bd_struct_t;
// Descriptor and buffer globals, in non-cached area, 64 bits aligned.
__attribute__((section("NonCacheable,\"aw\",%nobits @"))) enet_bd_struct_t rx_buffer_descriptor[(ENET_RXBD_NUM)] __attribute__((aligned((64U))));
__attribute__((section("NonCacheable,\"aw\",%nobits @"))) enet_bd_struct_t tx_buffer_descriptor[(ENET_TXBD_NUM)] __attribute__((aligned((64U))));
uint8_t rx_data_buffer[(ENET_RXBD_NUM)][((unsigned int)(((ENET_RXBUFF_SIZE)) + (((64U))-1U)) & (unsigned int)(~(unsigned int)(((64U))-1U)))] __attribute__((aligned((64U))));
uint8_t tx_data_buffer[(ENET_TXBD_NUM)][((unsigned int)(((ENET_TXBUFF_SIZE)) + (((64U))-1U)) & (unsigned int)(~(unsigned int)(((64U))-1U)))] __attribute__((aligned((64U))));
static bool mg_tcpip_driver_imxrt1020_init(struct mg_tcpip_if *ifp) {
// TODO(scaprile): struct mg_tcpip_driver_imxrt1020_data *d = (struct mg_tcpip_driver_imxrt1020_data *) ifp->driver_data;
s_ifp = ifp;
ENET->ECR |= BIT(0); // Software reset
while((ENET->ECR & BIT(0))) (void) 0; // Wait until done
// Re-latches the pin strapping pin values TODO(scaprile): WHAT ??!?
ENET->ECR |= BIT(0); // Software reset
while((ENET->ECR & BIT(0))) (void) 0; // Wait until done
// Setup MII/RMII MDC clock divider (<= 2.5MHz).
ENET->MSCR = 0x130; // HOLDTIME 2 clk, Preamble enable, MDC MII_Speed Div 0x30
eth_write_phy(PHY_ADDR, PHY_BCR, BIT(15)); // Reset PHY
eth_write_phy(PHY_ADDR, PHY_BCR, BIT(12)); // Set autonegotiation
eth_write_phy(IMXRT1020_PHY_ADDR, IMXRT1020_PHY_BCR, 0x8000); // PHY W @0x00 D=0x8000 Soft reset
//while (eth_read_phy(IMXRT1020_PHY_ADDR, IMXRT1020_PHY_BSR) & BIT(15)) {delay(0x5000);} // Wait finished poll 10ms
// PHY: Start Link
{
eth_write_phy(IMXRT1020_PHY_ADDR, IMXRT1020_PHY_BCR, 0x1200); // PHY W @0x00 D=0x1200 Autonego enable + start
eth_write_phy(IMXRT1020_PHY_ADDR, 0x1f, 0x8180); // PHY W @0x1f D=0x8180 Ref clock 50 MHz at XI input
uint32_t bcr = eth_read_phy(IMXRT1020_PHY_ADDR, IMXRT1020_PHY_BCR);
bcr &= ~BIT(10); // Isolation -> Normal
eth_write_phy(IMXRT1020_PHY_ADDR, IMXRT1020_PHY_BCR, bcr);
}
// Disable ENET
ENET->ECR = 0x0; // Disable before configuration
// Configure ENET
ENET->RCR = 0x05ee0104; // #CRCFWD=0 (CRC kept in frame) + RMII + MII Enable
ENET->TCR = BIT(8) | BIT(2); // Addins (MAC address from PAUR+PALR) + Full duplex enable
//ENET->TFWR = BIT(8); // Store And Forward Enable, 64 bytes (minimize tx latency)
// Configure descriptors and buffers
// RX
for (int i = 0; i < ENET_RXBD_NUM; i++) {
// Wrap last descriptor buffer ptr
rx_buffer_descriptor[i].control = (BIT(15) | ((i<(ENET_RXBD_NUM-1))?0:BIT(13))); // E+(W*)
rx_buffer_descriptor[i].buffer = (uint32_t *)rx_data_buffer[i];
}
// TX
for (int i = 0; i < ENET_TXBD_NUM; i++) {
// Wrap last descriptor buffer ptr
tx_buffer_descriptor[i].control = ((i<(ENET_RXBD_NUM-1))?0:BIT(13)) | BIT(10); // (W*)+TC
tx_buffer_descriptor[i].buffer = (uint32_t *)tx_data_buffer[i];
}
// Continue ENET configuration
ENET->RDSR = (uint32_t)(uintptr_t)rx_buffer_descriptor;
ENET->TDSR = (uint32_t)(uintptr_t)tx_buffer_descriptor;
ENET->MRBR[0] = ENET_RXBUFF_SIZE; // Same size for RX/TX buffers
// MAC address filtering (bytes in reversed order)
ENET->PAUR = ((uint32_t) ifp->mac[4] << 24U) | (uint32_t) ifp->mac[5] << 16U;
ENET->PALR = (uint32_t) (ifp->mac[0] << 24U) | ((uint32_t) ifp->mac[1] << 16U) |
((uint32_t) ifp->mac[2] << 8U) | ifp->mac[3];
// Init Hash tables (mac filtering)
ENET->IAUR = 0; // Unicast
ENET->IALR = 0;
ENET->GAUR = 0; // Multicast
ENET->GALR = 0;
// Set ENET Online
ENET->ECR |= BIT(8); // ENET Set Little-endian + (FEC buffer desc.)
ENET->ECR |= BIT(1); // Enable
// Set interrupt mask
ENET->EIMR = EIMR_RX_ERR;
// RX Descriptor activation
ENET->RDAR = BIT(24); // Activate Receive Descriptor
return true;
}
// Transmit frame
static uint32_t s_rt1020_txno;
static size_t mg_tcpip_driver_imxrt1020_tx(const void *buf, size_t len, struct mg_tcpip_if *ifp) {
if (len > sizeof(tx_data_buffer[ENET_TXBD_NUM])) {
// MG_ERROR(("Frame too big, %ld", (long) len));
len = 0; // Frame is too big
} else if ((tx_buffer_descriptor[s_rt1020_txno].control & BIT(15))) {
MG_ERROR(("No free descriptors"));
// printf("D0 %lx SR %lx\n", (long) s_txdesc[0][0], (long) ETH->DMASR);
len = 0; // All descriptors are busy, fail
} else {
memcpy(tx_data_buffer[s_rt1020_txno], buf, len); // Copy data
tx_buffer_descriptor[s_rt1020_txno].length = (uint16_t) len; // Set data len
tx_buffer_descriptor[s_rt1020_txno].control |= (uint16_t)(BIT(10)); // TC (transmit CRC)
// tx_buffer_descriptor[s_rt1020_txno].control &= (uint16_t)(BIT(14) | BIT(12)); // Own doesn't affect HW
tx_buffer_descriptor[s_rt1020_txno].control |= (uint16_t)(BIT(15) | BIT(11)); // R+L (ready+last)
ENET->TDAR = BIT(24); // Descriptor updated. Hand over to DMA.
// INFO
// Relevant Descriptor bits: 15(R) Ready
// 11(L) last in frame
// 10(TC) transmis CRC
// __DSB(); // ARM errata 838869 Cortex-M4, M4F, M7, M7F: "store immediate overlapping
// exception" return might vector to incorrect interrupt.
if (++s_rt1020_txno >= ENET_TXBD_NUM) s_rt1020_txno = 0;
}
(void) ifp;
return len;
}
// IRQ (RX)
static uint32_t s_rt1020_rxno;
void ENET_IRQHandler(void) {
ENET->EIMR = 0; // Mask interrupts.
uint32_t eir = ENET->EIR; // Read EIR
ENET->EIR = 0xffffffff; // Clear interrupts
if (eir & EIMR_RX_ERR) // Global mask used
{
if (rx_buffer_descriptor[s_rt1020_rxno].control & BIT(15)) {
ENET->EIMR = EIMR_RX_ERR; // Enable interrupts
return; // Empty? -> exit.
}
// Read inframes
else { // Frame received, loop
for (uint32_t i = 0; i < 10; i++) { // read as they arrive but not forever
if (rx_buffer_descriptor[s_rt1020_rxno].control & BIT(15)) break; // exit when done
// Process if CRC OK and frame not truncated
if (!(rx_buffer_descriptor[s_rt1020_rxno].control & (BIT(2) | BIT(0)))) {
uint32_t len = (rx_buffer_descriptor[s_rt1020_rxno].length);
mg_tcpip_qwrite(rx_buffer_descriptor[s_rt1020_rxno].buffer, len > 4 ? len - 4 : len, s_ifp);
}
rx_buffer_descriptor[s_rt1020_rxno].control |= BIT(15); // Inform DMA RX is empty
if (++s_rt1020_rxno >= ENET_RXBD_NUM) s_rt1020_rxno = 0;
}
}
}
ENET->EIMR = EIMR_RX_ERR; // Enable interrupts
}
// Up/down status
static bool mg_tcpip_driver_imxrt1020_up(struct mg_tcpip_if *ifp) {
uint32_t bsr = eth_read_phy(IMXRT1020_PHY_ADDR, IMXRT1020_PHY_BSR);
(void) ifp;
return bsr & BIT(2) ? 1 : 0;
// ENET->RCR |= BIT(9) sets 10Mbps operation
}
// API
struct mg_tcpip_driver mg_tcpip_driver_imxrt1020 = {
mg_tcpip_driver_imxrt1020_init, mg_tcpip_driver_imxrt1020_tx, NULL,
mg_tcpip_driver_imxrt1020_up};
#endif
#ifdef MG_ENABLE_LINES
#line 1 "src/drivers/same54.c"
#endif

View File

@ -1005,16 +1005,16 @@ void mg_connect_resolved(struct mg_connection *c) {
MG_DEBUG(("%lu %M -> %M", c->id, mg_print_ip_port, &c->loc, mg_print_ip_port,
&c->rem));
mg_call(c, MG_EV_RESOLVE, NULL);
if (((rem_ip & ifp->mask) == (ifp->ip & ifp->mask))) {
if (c->is_udp && (rem_ip == 0xffffffff || rem_ip == (ifp->ip | ~ifp->mask))) {
struct connstate *s = (struct connstate *) (c + 1);
memset(s->mac, 0xFF, sizeof(s->mac)); // global or local broadcast
} else if (((rem_ip & ifp->mask) == (ifp->ip & ifp->mask))) {
// If we're in the same LAN, fire an ARP lookup.
MG_DEBUG(("%lu ARP lookup...", c->id));
arp_ask(ifp, rem_ip);
settmout(c, MIP_TTYPE_ARP);
c->is_arplooking = 1;
c->is_connecting = 1;
} else if (rem_ip == (ifp->ip | ~ifp->mask)) {
struct connstate *s = (struct connstate *) (c + 1);
memset(s->mac, 0xFF, sizeof(s->mac)); // local broadcast
} else if ((*((uint8_t *) &rem_ip) & 0xE0) == 0xE0) {
struct connstate *s = (struct connstate *) (c + 1); // 224 to 239, E0 to EF
uint8_t mcastp[3] = {0x01, 0x00, 0x5E}; // multicast group