Add FreeRTOS + MIP tutorial on TM4C

This commit is contained in:
Sergio R. Caprile 2022-11-24 16:32:05 -03:00
parent cd4b9aeafe
commit 716ffbb945
10 changed files with 713 additions and 43 deletions

View File

@ -0,0 +1,37 @@
#pragma once
#include "mcu.h"
#define configUSE_PREEMPTION 1
#define configCPU_CLOCK_HZ FREQ
#define configTICK_RATE_HZ 1000
#define configMAX_PRIORITIES 5
#define configUSE_16_BIT_TICKS 0
#define configUSE_TICK_HOOK 0
#define configUSE_IDLE_HOOK 0
#define configUSE_TIMERS 0
#define configUSE_CO_ROUTINES 0
#define configUSE_MALLOC_FAILED_HOOK 0
#define configMINIMAL_STACK_SIZE 128
#define configTOTAL_HEAP_SIZE (1024 * 128)
#define INCLUDE_vTaskDelay 1
#ifdef __NVIC_PRIO_BITS
#define configPRIO_BITS __NVIC_PRIO_BITS
#else
#define configPRIO_BITS 3
#endif
#define configLIBRARY_LOWEST_INTERRUPT_PRIORITY 15
#define configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY 5
#define configKERNEL_INTERRUPT_PRIORITY \
(configLIBRARY_LOWEST_INTERRUPT_PRIORITY << (8 - configPRIO_BITS))
#define configMAX_SYSCALL_INTERRUPT_PRIORITY \
(configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY << (8 - configPRIO_BITS))
#define configASSERT(expr) \
if (!(expr)) printf("FAILURE %s:%d: %s\n", __FILE__, __LINE__, #expr)
#define vPortSVCHandler SVC_Handler
#define xPortPendSVHandler PendSV_Handler
#define xPortSysTickHandler SysTick_Handler

View File

@ -0,0 +1,33 @@
ROOT ?= $(realpath $(CURDIR)/../../..)
DOCKER ?= docker run --platform linux/amd64 --rm -v $(ROOT):$(ROOT) -w $(CURDIR) mdashnet/armgcc
CFLAGS ?= -W -Wall -Wextra -Werror -Wundef -Wshadow -Wdouble-promotion \
-Wformat-truncation -fno-common -Wconversion \
-g3 -Os -ffunction-sections -fdata-sections \
-mcpu=cortex-m4 -mthumb -mfloat-abi=hard -mfpu=fpv4-sp-d16 \
-I. -I../../../ $(EXTRA_CFLAGS)
LDFLAGS ?= -Tlink.ld -nostartfiles -nostdlib --specs nano.specs -lc -lgcc -Wl,--gc-sections -Wl,-Map=$@.map
SOURCES = main.c boot.c syscalls.c ../../../mongoose.c
FREERTOS_VERSION ?= V10.5.0
FREERTOS_REPO ?= https://github.com/FreeRTOS/FreeRTOS-Kernel
build example: firmware.bin
firmware.elf: FreeRTOS-Kernel $(SOURCES)
$(DOCKER) arm-none-eabi-gcc -o $@ $(SOURCES) $(CFLAGS)\
-IFreeRTOS-Kernel/include \
-IFreeRTOS-Kernel/portable/GCC/ARM_CM4F \
-Wno-conversion \
$(wildcard FreeRTOS-Kernel/*.c) \
FreeRTOS-Kernel/portable/MemMang/heap_4.c \
FreeRTOS-Kernel/portable/GCC/ARM_CM4F/port.c \
$(LDFLAGS)
firmware.bin: firmware.elf
$(DOCKER) arm-none-eabi-objcopy -O binary $< $@
FreeRTOS-Kernel:
git clone --depth 1 -b $(FREERTOS_VERSION) $(FREERTOS_REPO) $@
clean:
rm -rf firmware.* FreeRTOS-Kernel

View File

@ -0,0 +1,162 @@
// Copyright (c) 2022 Cesanta Software Limited
// All rights reserved
// Startup code
__attribute__((naked, noreturn)) void _reset(void) {
// Initialise memory
extern long _sbss, _ebss, _sdata, _edata, _sidata;
for (long *src = &_sbss; src < &_ebss; src++) *src = 0;
for (long *src = &_sdata, *dst = &_sidata; src < &_edata;) *src++ = *dst++;
// Call main()
extern void main(void);
main();
for (;;) (void) 0;
}
void __attribute__((weak)) DefaultIRQHandler(void) {
for (;;) (void) 0;
}
#define WEAK_ALIAS __attribute__((weak, alias("DefaultIRQHandler")))
WEAK_ALIAS void NMI_Handler(void);
WEAK_ALIAS void HardFault_Handler(void);
WEAK_ALIAS void MemManage_Handler(void);
WEAK_ALIAS void BusFault_Handler(void);
WEAK_ALIAS void UsageFault_Handler(void);
WEAK_ALIAS void SVC_Handler(void);
WEAK_ALIAS void DebugMon_Handler(void);
WEAK_ALIAS void PendSV_Handler(void);
WEAK_ALIAS void SysTick_Handler(void);
WEAK_ALIAS void GPIOA_Handler(void);
WEAK_ALIAS void GPIOB_Handler(void);
WEAK_ALIAS void GPIOC_Handler(void);
WEAK_ALIAS void GPIOD_Handler(void);
WEAK_ALIAS void GPIOE_Handler(void);
WEAK_ALIAS void UART0_Handler(void);
WEAK_ALIAS void UART1_Handler(void);
WEAK_ALIAS void SSI0_Handler(void);
WEAK_ALIAS void I2C0_Handler(void);
WEAK_ALIAS void PMW0_FAULT_Handler(void);
WEAK_ALIAS void PWM0_0_Handler(void);
WEAK_ALIAS void PWM0_1_Handler(void);
WEAK_ALIAS void PWM0_2_Handler(void);
WEAK_ALIAS void QEI0_Handler(void);
WEAK_ALIAS void ADC0SS0_Handler(void);
WEAK_ALIAS void ADC0SS1_Handler(void);
WEAK_ALIAS void ADC0SS2_Handler(void);
WEAK_ALIAS void ADC0SS3_Handler(void);
WEAK_ALIAS void WDT0_Handler(void);
WEAK_ALIAS void TIMER0A_Handler(void);
WEAK_ALIAS void TIMER0B_Handler(void);
WEAK_ALIAS void TIMER1A_Handler(void);
WEAK_ALIAS void TIMER1B_Handler(void);
WEAK_ALIAS void TIMER2A_Handler(void);
WEAK_ALIAS void TIMER2B_Handler(void);
WEAK_ALIAS void COMP0_Handler(void);
WEAK_ALIAS void COMP1_Handler(void);
WEAK_ALIAS void COMP2_Handler(void);
WEAK_ALIAS void SYSCTL_Handler(void);
WEAK_ALIAS void FLASH_Handler(void);
WEAK_ALIAS void GPIOF_Handler(void);
WEAK_ALIAS void GPIOG_Handler(void);
WEAK_ALIAS void GPIOH_Handler(void);
WEAK_ALIAS void UART2_Handler(void);
WEAK_ALIAS void SSI1_Handler(void);
WEAK_ALIAS void TIMER3A_Handler(void);
WEAK_ALIAS void TIMER3B_Handler(void);
WEAK_ALIAS void I2C1_Handler(void);
WEAK_ALIAS void CAN0_Handler(void);
WEAK_ALIAS void CAN1_Handler(void);
WEAK_ALIAS void EMAC0_IRQHandler(void);
WEAK_ALIAS void HIB_Handler(void);
WEAK_ALIAS void USB0_Handler(void);
WEAK_ALIAS void PWM0_3_Handler(void);
WEAK_ALIAS void UDMA_Handler(void);
WEAK_ALIAS void UDMAERR_Handler(void);
WEAK_ALIAS void ADC1SS0_Handler(void);
WEAK_ALIAS void ADC1SS1_Handler(void);
WEAK_ALIAS void ADC1SS2_Handler(void);
WEAK_ALIAS void ADC1SS3_Handler(void);
WEAK_ALIAS void EPI0_Handler(void);
WEAK_ALIAS void GPIOJ_Handler(void);
WEAK_ALIAS void GPIOK_Handler(void);
WEAK_ALIAS void GPIOL_Handler(void);
WEAK_ALIAS void SSI2_Handler(void);
WEAK_ALIAS void SSI3_Handler(void);
WEAK_ALIAS void UART3_Handler(void);
WEAK_ALIAS void UART4_Handler(void);
WEAK_ALIAS void UART5_Handler(void);
WEAK_ALIAS void UART6_Handler(void);
WEAK_ALIAS void UART7_Handler(void);
WEAK_ALIAS void I2C2_Handler(void);
WEAK_ALIAS void I2C3_Handler(void);
WEAK_ALIAS void TIMER4A_Handler(void);
WEAK_ALIAS void TIMER4B_Handler(void);
WEAK_ALIAS void TIMER5A_Handler(void);
WEAK_ALIAS void TIMER5B_Handler(void);
WEAK_ALIAS void FPU_Handler(void);
WEAK_ALIAS void I2C4_Handler(void);
WEAK_ALIAS void I2C5_Handler(void);
WEAK_ALIAS void GPIOM_Handler(void);
WEAK_ALIAS void GPION_Handler(void);
WEAK_ALIAS void TAMPER_Handler(void);
WEAK_ALIAS void GPIOP0_Handler(void);
WEAK_ALIAS void GPIOP1_Handler(void);
WEAK_ALIAS void GPIOP2_Handler(void);
WEAK_ALIAS void GPIOP3_Handler(void);
WEAK_ALIAS void GPIOP4_Handler(void);
WEAK_ALIAS void GPIOP5_Handler(void);
WEAK_ALIAS void GPIOP6_Handler(void);
WEAK_ALIAS void GPIOP7_Handler(void);
WEAK_ALIAS void GPIOQ0_Handler(void);
WEAK_ALIAS void GPIOQ1_Handler(void);
WEAK_ALIAS void GPIOQ2_Handler(void);
WEAK_ALIAS void GPIOQ3_Handler(void);
WEAK_ALIAS void GPIOQ4_Handler(void);
WEAK_ALIAS void GPIOQ5_Handler(void);
WEAK_ALIAS void GPIOQ6_Handler(void);
WEAK_ALIAS void GPIOQ7_Handler(void);
WEAK_ALIAS void TIMER6A_Handler(void);
WEAK_ALIAS void TIMER6B_Handler(void);
WEAK_ALIAS void TIMER7A_Handler(void);
WEAK_ALIAS void TIMER7B_Handler(void);
WEAK_ALIAS void I2C6_Handler(void);
WEAK_ALIAS void I2C7_Handler(void);
WEAK_ALIAS void I2C8_Handler(void);
WEAK_ALIAS void I2C9_Handler(void);
// IRQ table, 2.5.1 Table 2-9
extern void _estack();
__attribute__((section(".vectors"))) void (*tab[16 + 114])(void) = {
// Cortex interrupts
_estack, _reset, NMI_Handler, HardFault_Handler, MemManage_Handler,
BusFault_Handler, UsageFault_Handler, 0, 0, 0, 0, SVC_Handler,
DebugMon_Handler, 0, PendSV_Handler, SysTick_Handler,
// Interrupts from peripherals
GPIOA_Handler, GPIOB_Handler, GPIOC_Handler, GPIOD_Handler, GPIOE_Handler,
UART0_Handler, UART1_Handler, SSI0_Handler, I2C0_Handler,
PMW0_FAULT_Handler, PWM0_0_Handler, PWM0_1_Handler, PWM0_2_Handler,
QEI0_Handler, ADC0SS0_Handler, ADC0SS1_Handler, ADC0SS2_Handler,
ADC0SS3_Handler, WDT0_Handler, TIMER0A_Handler, TIMER0B_Handler,
TIMER1A_Handler, TIMER1B_Handler, TIMER2A_Handler, TIMER2B_Handler,
COMP0_Handler, COMP1_Handler, COMP2_Handler, SYSCTL_Handler, FLASH_Handler,
GPIOF_Handler, GPIOG_Handler, GPIOH_Handler, UART2_Handler, SSI1_Handler,
TIMER3A_Handler, TIMER3B_Handler, I2C1_Handler, CAN0_Handler, CAN1_Handler,
EMAC0_IRQHandler, HIB_Handler, USB0_Handler, PWM0_3_Handler, UDMA_Handler,
UDMAERR_Handler, ADC1SS0_Handler, ADC1SS1_Handler, ADC1SS2_Handler,
ADC1SS3_Handler, EPI0_Handler, GPIOJ_Handler, GPIOK_Handler, GPIOL_Handler,
SSI2_Handler, SSI3_Handler, UART3_Handler, UART4_Handler, UART5_Handler,
UART6_Handler, UART7_Handler, I2C2_Handler, I2C3_Handler, TIMER4A_Handler,
TIMER4B_Handler, TIMER5A_Handler, TIMER5B_Handler, FPU_Handler, 0, 0,
I2C4_Handler, I2C5_Handler, GPIOM_Handler, GPION_Handler, 0, TAMPER_Handler,
GPIOP0_Handler, GPIOP1_Handler, GPIOP2_Handler, GPIOP3_Handler,
GPIOP4_Handler, GPIOP5_Handler, GPIOP6_Handler, GPIOP7_Handler,
GPIOQ0_Handler, GPIOQ1_Handler, GPIOQ2_Handler, GPIOQ3_Handler,
GPIOQ4_Handler, GPIOQ5_Handler, GPIOQ6_Handler, GPIOQ7_Handler, 0, 0, 0, 0,
0, 0, TIMER6A_Handler, TIMER6B_Handler, TIMER7A_Handler, TIMER7B_Handler,
I2C6_Handler, I2C7_Handler, 0, 0, 0, 0, 0, I2C8_Handler, I2C9_Handler, 0, 0,
0};

View File

@ -0,0 +1,29 @@
ENTRY(_reset);
MEMORY {
flash(rx) : ORIGIN = 0x00000000, LENGTH = 1024k
sram(rwx) : ORIGIN = 0x20000000, LENGTH = 256k
}
_estack = ORIGIN(sram) + LENGTH(sram); /* stack points to end of SRAM */
SECTIONS {
.vectors : { KEEP(*(.vectors)) } > flash
.text : { *(.text*) } > flash
.rodata : { *(.rodata*) } > flash
.data : {
_sdata = .; /* for init_ram() */
*(.first_data)
*(.data SORT(.data.*))
_edata = .; /* for init_ram() */
} > sram AT > flash
_sidata = LOADADDR(.data);
.bss : {
_sbss = .; /* for init_ram() */
*(.bss SORT(.bss.*) COMMON)
_ebss = .; /* for init_ram() */
} > sram
. = ALIGN(8);
_end = .; /* for cmsis_gcc.h and init_ram() */
}

View File

@ -0,0 +1,102 @@
// Copyright (c) 2022 Cesanta Software Limited
// All rights reserved
#include "mcu.h"
#include "mongoose.h"
#define LED1 PIN('N', 1) // On-board LED pin
#define LED2 PIN('N', 0) // On-board LED pin
#define LED3 PIN('F', 4) // On-board LED pin
#define LED4 PIN('F', 0) // On-board LED pin
// HTTP server event handler function
static void fn(struct mg_connection *c, int ev, void *ev_data, void *fn_data) {
if (ev == MG_EV_HTTP_MSG) {
struct mg_http_message *hm = (struct mg_http_message *) ev_data;
if (mg_http_match_uri(hm, "/api/debug")) {
int level = mg_json_get_long(hm->body, "$.level", MG_LL_DEBUG);
mg_log_set(level);
mg_http_reply(c, 200, "", "Debug level set to %d\n", level);
} else {
mg_http_reply(c, 200, "", "%s\n", "hi");
}
}
(void) fn_data;
}
static void ethernet_init(void) {
// See datasheet: https://www.ti.com/lit/pdf/spms433
// Assign LED3 and LED4 to the EPHY, "activity" and "link", respectively.
// (20.4.2.4)
gpio_init(LED3, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH,
GPIO_PULL_NONE, 5); // EN0LED1
gpio_init(LED4, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH,
GPIO_PULL_NONE, 5); // EN0LED0
nvic_enable_irq(40); // Setup Ethernet IRQ handler
// Initialize Ethernet clocks, see datasheet section 5
// Turn Flash Prefetch off (silicon errata ETH#02)
volatile uint32_t *IMC = (uint32_t *) 0x400FD000;
uint32_t val = IMC[0xFC8 / sizeof(*IMC)];
val &= ~BIT(17);
val |= BIT(16);
IMC[0xFC8 / sizeof(*IMC)] = val;
SYSCTL->RCGCEMAC |= BIT(0); // Enable EMAC clock
SYSCTL->SREMAC |= BIT(0); // Reset EMAC
SYSCTL->SREMAC &= ~BIT(0);
SYSCTL->RCGCEPHY |= BIT(0); // Enable EPHY clock
SYSCTL->SREPHY |= BIT(0); // Reset EPHY
SYSCTL->SREPHY &= ~BIT(0);
while (!(SYSCTL->PREMAC & BIT(0)) || !(SYSCTL->PREPHY & BIT(0)))
spin(1); // Wait for reset to complete
}
static void server(void *args) {
struct mg_mgr mgr; // Initialise Mongoose event manager
mg_mgr_init(&mgr); // and attach it to the MIP interface
mg_log_set(MG_LL_DEBUG); // Set log level
// Initialise Mongoose network stack
// Specify MAC address, either set use_dhcp or enter a static config.
// For static configuration, specify IP/mask/GW in network byte order
MG_INFO(("Initializing Ethernet driver"));
ethernet_init();
struct mip_driver_tm4c driver_data = {.mdc_cr = 1}; // See driver_tm4c.h
struct mip_if mif = {
.mac = {2, 0, 1, 2, 3, 5},
.use_dhcp = true,
.driver = &mip_driver_tm4c,
.driver_data = &driver_data,
};
mip_init(&mgr, &mif);
volatile uint32_t *IMC = (uint32_t *) 0x400FD000;
uint32_t val = IMC[0xFC8 / sizeof(*IMC)]; // Turn Flash Prefetch on again
val &= ~BIT(16);
val |= BIT(17);
IMC[0xFC8 / sizeof(*IMC)] = val;
MG_INFO(("Starting Mongoose v%s", MG_VERSION)); // Tell the world
mg_http_listen(&mgr, "http://0.0.0.0", fn, &mgr); // Web listener
while (args == NULL) mg_mgr_poll(&mgr, 1000); // Infinite event loop
mg_mgr_free(&mgr); // Unreachable
}
static void blinker(void *args) {
gpio_init(LED1, GPIO_MODE_OUTPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH,
GPIO_PULL_NONE, 0);
for (;;) {
gpio_toggle(LED1);
vTaskDelay(pdMS_TO_TICKS(750));
(void)args;//MG_INFO(("blink %s, RAM: %u", (char *) args, xPortGetFreeHeapSize()));
}
}
int main(void) {
static struct uart *uart = UART0; // Use UART0 (attached to ICDI)
clock_init(); // Set clock to 120MHz
systick_init(FREQ / 1000); // Tick every 1 ms
uart_init(uart, 115200); // Initialise UART
xTaskCreate(blinker, "blinker", 128, ":)", configMAX_PRIORITIES - 1, NULL);
xTaskCreate(server, "server", 2048, 0, configMAX_PRIORITIES - 1, NULL);
vTaskStartScheduler(); // This blocks
return 0;
}

View File

@ -0,0 +1,257 @@
// Copyright (c) 2022 Cesanta Software Limited
// All rights reserved
// https://www.ti.com/lit/pdf/spms433
#pragma once
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#define BIT(x) (1UL << (x))
#define SETBITS(R, CLEARMASK, SETMASK) (R) = ((R) & ~(CLEARMASK)) | (SETMASK)
#define PIN(bank, num) ((bank << 8) | (num))
#define PINNO(pin) (pin & 255)
#define PINBANK(pin) pinbank(pin >> 8)
// This MCU doesn't have GPIOI nor GPIOO
static inline unsigned int pinbank(unsigned int bank) {
bank = bank > 'O' ? bank - 2 : bank > 'I' ? bank - 1 : bank;
return bank - 'A';
}
// 5.5, Table 5-12: configure flash (and EEPROM) timing in accordance to clock
// freq
enum {
PLL_CLK = 25,
PLL_M = 96,
PLL_N = 5,
PLL_Q = 1,
PSYSDIV = 4
}; // Run at 120 Mhz
#define PLL_FREQ (PLL_CLK * PLL_M / PLL_N / PLL_Q / PSYSDIV)
#define FLASH_CLKHIGH 6
#define FLASH_WAITST 5
#define FREQ (PLL_FREQ * 1000000)
static inline void spin(volatile uint32_t count) {
while (count--) asm("nop");
}
struct systick {
volatile uint32_t CTRL, LOAD, VAL, CALIB;
};
#define SYSTICK ((struct systick *) 0xe000e010)
static inline void systick_init(uint32_t ticks) {
if ((ticks - 1) > 0xffffff) return; // Systick timer is 24 bit
SYSTICK->LOAD = ticks - 1;
SYSTICK->VAL = 0;
SYSTICK->CTRL = BIT(0) | BIT(1) | BIT(2); // Enable systick
}
struct nvic {
volatile uint32_t ISER[8], RESERVED0[24], ICER[8], RSERVED1[24], ISPR[8],
RESERVED2[24], ICPR[8], RESERVED3[24], IABR[8], RESERVED4[56], IP[240],
RESERVED5[644], STIR;
};
#define NVIC ((struct nvic *) 0xe000e100)
static inline void nvic_set_prio(int irq, uint32_t prio) {
NVIC->IP[irq] = prio << 4;
}
static inline void nvic_enable_irq(int irq) {
NVIC->ISER[irq >> 5] = (uint32_t) (1 << (irq & 31));
}
struct scb {
volatile uint32_t CPUID, ICSR, VTOR, AIRCR, SCR, CCR, SHPR[3], SHCSR, CFSR,
HFSR, DFSR, MMFAR, BFAR, AFSR, ID_PFR[2], ID_DFR, ID_AFR, ID_MFR[4],
ID_ISAR[5], RESERVED0[1], CLIDR, CTR, CCSIDR, CSSELR, CPACR,
RESERVED3[93], STIR, RESERVED4[15], MVFR0, MVFR1, MVFR2, RESERVED5[1],
ICIALLU, RESERVED6[1], ICIMVAU, DCIMVAC, DCISW, DCCMVAU, DCCMVAC, DCCSW,
DCCIMVAC, DCCISW, RESERVED7[6], ITCMCR, DTCMCR, AHBPCR, CACR, AHBSCR,
RESERVED8[1], ABFSR;
};
#define SCB ((struct scb *) 0xe000ed00)
struct sysctl {
volatile uint32_t DONTCARE0[31], MOSCCTL, RESERVED0[12], RSCLKCFG,
RESERVED1[3], MEMTIM0, DONTCARE1[39], PLLFREQ0, PLLFREQ1, PLLSTAT,
DONTCARE2[241], SREPHY, DONTCARE3[26], SREMAC, DONTCARE4[26], RCGCGPIO,
DONTCARE5[3], RCGCUART, DONTCARE6[5], RCGCEPHY, DONTCARE7[26], RCGCEMAC,
DONTCARE8[228], PREPHY, DONTCARE9[26], PREMAC;
};
#define SYSCTL ((struct sysctl *) 0x400FE000)
enum { GPIO_MODE_INPUT, GPIO_MODE_OUTPUT, GPIO_MODE_AF, GPIO_MODE_ANALOG };
enum { GPIO_OTYPE_PUSH_PULL, GPIO_OTYPE_OPEN_DRAIN };
enum { GPIO_SPEED_LOW, GPIO_SPEED_HIGH };
enum { GPIO_PULL_NONE, GPIO_PULL_UP, GPIO_PULL_DOWN };
// 10.3, 10.6
struct gpio {
volatile uint32_t GPIODATA[256], GPIODIR, GPIOIS, GPIOIBE, GPIOIEV, GPIOIM,
GPIORIS, GPIOMIS, GPIOICR, GPIOAFSEL, RESERVED1[55], GPIODR2R, GPIODR4R,
GPIODR8R, GPIOODR, GPIOPUR, GPIOPDR, GPIOSLR, GPIODEN, GPIOLOCK, GPIOCR,
GPIOAMSEL, GPIOPCTL, GPIOADCCTL, GPIODMACTL, GPIOSI, GPIODR12R,
GPIOWAKEPEN, GPIOWAKELVL, GPIOWAKESTAT, RESERVED2[669], GPIOPP, GPIOPC,
RESERVED3[2], GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, GPIOPeriphID7,
GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, GPIOPeriphID3, GPIOPCellID0,
GPIOPCellID1, GPIOPCellID2, GPIOPCellID3;
};
#define GPIO(N) ((struct gpio *) (0x40058000 + 0x1000 * (N)))
static struct gpio *gpio_bank(uint16_t pin) {
return GPIO(PINBANK(pin));
}
static inline void gpio_toggle(uint16_t pin) {
struct gpio *gpio = gpio_bank(pin);
uint8_t mask = BIT(PINNO(pin));
gpio->GPIODATA[mask] ^= mask;
}
static inline int gpio_read(uint16_t pin) {
return gpio_bank(pin)->GPIODATA[BIT(PINNO(pin))] ? 1 : 0;
}
static inline void gpio_write(uint16_t pin, bool val) {
struct gpio *gpio = gpio_bank(pin);
uint8_t mask = BIT(PINNO(pin));
gpio->GPIODATA[mask] = val ? mask : 0;
}
static inline void gpio_init(uint16_t pin, uint8_t mode, uint8_t type,
uint8_t speed, uint8_t pull, uint8_t af) {
struct gpio *gpio = gpio_bank(pin);
uint8_t n = (uint8_t) (PINNO(pin));
SYSCTL->RCGCGPIO |= BIT(PINBANK(pin)); // Enable GPIO clock
if (mode == GPIO_MODE_ANALOG) {
gpio->GPIOAMSEL |= BIT(PINNO(pin));
return;
}
if (mode == GPIO_MODE_INPUT) {
gpio->GPIODIR &= ~BIT(PINNO(pin));
} else if (mode == GPIO_MODE_OUTPUT) {
gpio->GPIODIR |= BIT(PINNO(pin));
} else { // GPIO_MODE_AF
SETBITS(gpio->GPIOPCTL, 15UL << ((n & 7) * 4),
((uint32_t) af) << ((n & 7) * 4));
gpio->GPIOAFSEL |= BIT(PINNO(pin));
}
gpio->GPIODEN |= BIT(PINNO(pin)); // Enable pin as digital function
if (type == GPIO_OTYPE_OPEN_DRAIN)
gpio->GPIOODR |= BIT(PINNO(pin));
else // GPIO_OTYPE_PUSH_PULL
gpio->GPIOODR &= ~BIT(PINNO(pin));
if (speed == GPIO_SPEED_LOW)
gpio->GPIOSLR |= BIT(PINNO(pin));
else // GPIO_SPEED_HIGH
gpio->GPIOSLR &= ~BIT(PINNO(pin));
if (pull == GPIO_PULL_UP) {
gpio->GPIOPUR |= BIT(PINNO(pin)); // setting one...
} else if (pull == GPIO_PULL_DOWN) {
gpio->GPIOPDR |= BIT(PINNO(pin)); // ...just clears the other
} else {
gpio->GPIOPUR &= ~BIT(PINNO(pin));
gpio->GPIOPDR &= ~BIT(PINNO(pin));
}
}
static inline void gpio_input(uint16_t pin) {
gpio_init(pin, GPIO_MODE_INPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH,
GPIO_PULL_UP, 0); // EK does not have pull-up resistors
}
static inline void gpio_output(uint16_t pin) {
gpio_init(pin, GPIO_MODE_OUTPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_HIGH,
GPIO_PULL_NONE, 0);
}
static inline void gpio_irq_attach(uint16_t pin) {
uint8_t irqvecs[] = {16, 17, 18, 19, 20, 30, 31, 32,
51, 52, 53, 72, 73, 76, 84};
struct gpio *gpio = gpio_bank(pin);
gpio->GPIOIS &= ~BIT(PINNO(pin)); // edge sensitive
gpio->GPIOIBE |= BIT(PINNO(pin)); // both edges
gpio->GPIOIM |= BIT(PINNO(pin)); // enable pin irq
int irqvec = irqvecs[PINBANK(pin)]; // IRQ vector index, 2.5.2
nvic_set_prio(irqvec, 3);
nvic_enable_irq(irqvec);
}
struct uart {
volatile uint32_t UARTDR, UARTRSR, RESERVED0[4], UARTFR, RESERVED1, UARTILPR,
UARTIBRD, UARTFBRD, UARTLCRH, UARTCTL, UARTIFLS, UARTIM, UARTRIS, UARTMIS,
UARTICR, UARTDMACTL, RESERVED2[22], UART9BITADDR, UART9BITAMASK,
RESERVED3[965], UARTPP, RESERVED4, UARTCC, RESERVED5, UARTPeriphID4,
UARTPeriphID5, UARTPeriphID6, UARTPeriphID7, UARTPeriphID0, UARTPeriphID1,
UARTPeriphID2, UARTPeriphID3, UARTPCellID0, UARTPCellID1, UARTPCellID2,
UARTPCellID3;
};
#define UARTECR UARTRSR
#define USART_BASE 0x4000C000
#define USART_OFFSET 0x1000
#define USART(N) ((struct uart *) (USART_BASE + USART_OFFSET * (N)))
#define UARTNO(u) ((uint8_t)(((unsigned int) (u) - USART_BASE) / USART_OFFSET))
#define UART0 USART(0)
static inline void uart_init(struct uart *uart, unsigned long baud) {
struct uarthw {
uint16_t rx, tx; // pins
uint8_t af; // Alternate function
};
// af, rx, tx for UART0
struct uarthw uarthw[1] = {{PIN('A', 0), PIN('A', 1), 1}};
if (uart != UART0) return; // uarthw is not populated for other UARTs
uint8_t uartno = UARTNO(uart);
SYSCTL->RCGCUART |= BIT(uartno); // Enable peripheral clock
gpio_init(uarthw[uartno].tx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, 0, uarthw[uartno].af);
gpio_init(uarthw[uartno].rx, GPIO_MODE_AF, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, 0, uarthw[uartno].af);
// (16.3.2) ClkDiv = 16 (HSE=0)
// BRD = BRDI + BRDF = UARTSysClk / (ClkDiv * Baud Rate)
// UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5)
// must write in this order
uart->UARTCTL = 0; // Disable this UART, clear HSE
uart->UARTIBRD = FREQ / (16 * baud); // Baud rate, integer part
uart->UARTFBRD =
((FREQ % (16 * baud)) >> 26) & 0x3F; // Baud rate, fractional part
uart->UARTLCRH = (3 << 5); // 8N1, no FIFOs;
uart->UARTCTL |= BIT(0) | BIT(9) | BIT(8); // Set UARTEN, RXE, TXE
}
static inline void uart_write_byte(struct uart *uart, uint8_t byte) {
uart->UARTDR = byte;
while ((uart->UARTFR & BIT(7)) == 0) spin(1);
}
static inline void uart_write_buf(struct uart *uart, char *buf, size_t len) {
while (len-- > 0) uart_write_byte(uart, *(uint8_t *) buf++);
}
static inline int uart_read_ready(struct uart *uart) {
return uart->UARTFR & BIT(6); // If RXFF bit is set, data is ready
}
static inline uint8_t uart_read_byte(struct uart *uart) {
return (uint8_t) (uart->UARTDR & 0xFF);
}
static inline void clock_init(void) { // Set clock frequency
SCB->CPACR |= ((3UL << 10 * 2) | (3UL << 11 * 2)); // Enable FPU
asm("DSB");
asm("ISB");
SETBITS(SYSCTL->MOSCCTL, BIT(3) | BIT(2),
BIT(4)); // Enable MOSC circuit (clear NOXTAL and PWRDN, set >10MHz
// range)
SETBITS(SYSCTL->MEMTIM0,
BIT(21) | BIT(5) | 0x1F << 21 | 0xF << 16 | 0x1F << 5 | 0xF << 0,
FLASH_CLKHIGH << 22 | FLASH_WAITST << 16 | FLASH_CLKHIGH << 5 |
FLASH_WAITST << 0); // Configure flash timing (not yet applied)
SETBITS(SYSCTL->RSCLKCFG, 0xF << 24 | (BIT(9) - 1),
3 << 24); // Clear PLL divider, set MOSC as PLL source
SYSCTL->PLLFREQ1 = (PLL_Q - 1) << 8 | (PLL_N - 1)
<< 0; // Set PLL_Q and PLL_N
SYSCTL->PLLFREQ0 =
BIT(23) | PLL_M << 0; // Set PLL_Q, power up PLL (if it were on, we'd
// need to set NEWFREQ in RSCLKCFG instead)
while ((SYSCTL->PLLSTAT & BIT(0)) == 0) spin(1); // Wait for lock
SYSCTL->RSCLKCFG |=
BIT(31) | BIT(28) |
(PSYSDIV - 1) << 0; // Update memory timing, use PLL, set clock divisor
}

View File

@ -0,0 +1,8 @@
#pragma once
#include <errno.h> // we are not using lwIP
#define MG_ARCH MG_ARCH_FREERTOS
#define MG_ENABLE_MIP 1
#define MG_ENABLE_DRIVER_TM4C 1
#define MG_IO_SIZE 256

View File

@ -0,0 +1,45 @@
#include <sys/stat.h>
#include "mcu.h"
int _fstat(int fd, struct stat *st) {
if (fd < 0) return -1;
st->st_mode = S_IFCHR;
return 0;
}
int _write(int fd, char *ptr, int len) {
(void) fd, (void) ptr, (void) len;
if (fd == 1) uart_write_buf(UART0, ptr, (size_t) len);
return len;
}
void *_sbrk(int incr) {
extern char _end;
static unsigned char *heap = NULL;
unsigned char *prev_heap;
if (heap == NULL) heap = (unsigned char *) &_end;
prev_heap = heap;
heap += incr;
return prev_heap;
}
int _close(int fd) {
(void) fd;
return -1;
}
int _isatty(int fd) {
(void) fd;
return 1;
}
int _read(int fd, char *ptr, int len) {
(void) fd, (void) ptr, (void) len;
return -1;
}
int _lseek(int fd, int ptr, int dir) {
(void) fd, (void) ptr, (void) dir;
return 0;
}

View File

@ -1,6 +1,6 @@
#include "mip.h"
#if MG_ENABLE_MIP && defined(MG_ENABLE_DRIVER_TM4C) && MG_ENABLE_DRIVER_TM4C
#if MG_ENABLE_MIP && defined(MG_ENABLE_DRIVER_TM4C) && MG_ENABLE_DRIVER_TM4C
struct tm4c_emac {
volatile uint32_t EMACCFG, EMACFRAMEFLTR, EMACHASHTBLH, EMACHASHTBLL,
EMACMIIADDR, EMACMIIDATA, EMACFLOWCTL, EMACVLANTG, RESERVED0, EMACSTATUS,
@ -21,8 +21,10 @@ struct tm4c_emac {
RESERVED15[218], EMACPP, EMACPC, EMACCC, RESERVED16, EMACEPHYRIS,
EMACEPHYIM, EMACEPHYIMSC;
};
#undef EMAC
#define EMAC ((struct tm4c_emac *) (uintptr_t) 0x400EC000)
#undef BIT
#define BIT(x) ((uint32_t) 1 << (x))
#define ETH_PKT_SIZE 1540 // Max frame size
#define ETH_DESC_CNT 4 // Descriptors count
@ -36,7 +38,7 @@ static void (*s_rx)(void *, size_t, void *); // Recv callback
static void *s_rxdata; // Recv callback data
enum { EPHY_ADDR = 0, EPHYBMCR = 0, EPHYBMSR = 1 }; // PHY constants
static inline void spin(volatile uint32_t count) {
static inline void tm4cspin(volatile uint32_t count) {
while (count--) (void) 0;
}
@ -44,7 +46,7 @@ static uint32_t emac_read_phy(uint8_t addr, uint8_t reg) {
EMAC->EMACMIIADDR &= (0xf << 2);
EMAC->EMACMIIADDR |= ((uint32_t) addr << 11) | ((uint32_t) reg << 6);
EMAC->EMACMIIADDR |= BIT(0);
while (EMAC->EMACMIIADDR & BIT(0)) spin(1);
while (EMAC->EMACMIIADDR & BIT(0)) tm4cspin(1);
return EMAC->EMACMIIDATA;
}
@ -53,7 +55,7 @@ static void emac_write_phy(uint8_t addr, uint8_t reg, uint32_t val) {
EMAC->EMACMIIADDR &= (0xf << 2);
EMAC->EMACMIIADDR |= ((uint32_t) addr << 11) | ((uint32_t) reg << 6) | BIT(1);
EMAC->EMACMIIADDR |= BIT(0);
while (EMAC->EMACMIIADDR & BIT(0)) spin(1);
while (EMAC->EMACMIIADDR & BIT(0)) tm4cspin(1);
}
// TODO(scaprile) TEST
@ -61,27 +63,27 @@ static uint32_t get_sysclk(void) {
struct sysctl {
volatile uint32_t DONTCARE0[44], RSCLKCFG, DONTCARE1[43], PLLFREQ0,
PLLFREQ1;
} *SYSCTL = (struct sysctl *) 0x400FE000;
} *sysctl = (struct sysctl *) 0x400FE000;
uint32_t clk = 0, piosc = 16000000 /* 16 MHz */, mosc = 25000000 /* 25MHz */;
uint32_t oscsrc = (SYSCTL->RSCLKCFG & (0xf << 20)) >> 20;
uint32_t oscsrc = (sysctl->RSCLKCFG & (0xf << 20)) >> 20;
if (oscsrc == 0)
clk = piosc;
else if (oscsrc == 3)
clk = mosc;
else
MG_ERROR(("Unsupported clock source"));
if (SYSCTL->RSCLKCFG & (1 << 28)) { // USEPLL
if (sysctl->RSCLKCFG & (1 << 28)) { // USEPLL
uint32_t fin, vco, mdiv, n, q, psysdiv;
q = (SYSCTL->PLLFREQ1 & (0x1f << 8)) >> 8;
n = (SYSCTL->PLLFREQ1 & (0x1f << 0)) >> 0;
q = (sysctl->PLLFREQ1 & (0x1f << 8)) >> 8;
n = (sysctl->PLLFREQ1 & (0x1f << 0)) >> 0;
fin = clk / ((q + 1) * (n + 1));
mdiv = (SYSCTL->PLLFREQ0 & (0x3ff << 0)) >>
mdiv = (sysctl->PLLFREQ0 & (0x3ff << 0)) >>
0; // mint + (mfrac / 1024); MFRAC not supported
psysdiv = (SYSCTL->RSCLKCFG & (0x3f << 0)) >> 0;
psysdiv = (sysctl->RSCLKCFG & (0x3f << 0)) >> 0;
vco = (uint32_t) ((uint64_t) fin * mdiv);
return vco / (psysdiv + 1);
}
uint32_t osysdiv = (SYSCTL->RSCLKCFG & (0xf << 16)) >> 16;
uint32_t osysdiv = (sysctl->RSCLKCFG & (0xf << 16)) >> 16;
return clk / (osysdiv + 1);
}
@ -133,8 +135,8 @@ static bool mip_driver_tm4c_init(uint8_t *mac, void *userdata) {
(uint32_t) (uintptr_t) s_txdesc[(i + 1) % ETH_DESC_CNT]; // Chain
}
EMAC->EMACDMABUSMOD |= BIT(0); // Software reset
while ((EMAC->EMACDMABUSMOD & BIT(0)) != 0) spin(1); // Wait until done
EMAC->EMACDMABUSMOD |= BIT(0); // Software reset
while ((EMAC->EMACDMABUSMOD & BIT(0)) != 0) tm4cspin(1); // Wait until done
// Set MDC clock divider. If user told us the value, use it. Otherwise, guess
int cr = (d == NULL || d->mdc_cr < 0) ? guess_mdc_cr() : d->mdc_cr;
@ -150,17 +152,11 @@ static bool mip_driver_tm4c_init(uint8_t *mac, void *userdata) {
emac_write_phy(EPHY_ADDR, EPHYBMCR, BIT(15)); // Reset internal PHY (EPHY)
emac_write_phy(EPHY_ADDR, EPHYBMCR, BIT(12)); // Set autonegotiation
EMAC->EMACRXDLADDR = (uint32_t) (uintptr_t) s_rxdesc; // RX descriptors
EMAC->EMACTXDLADDR = (uint32_t) (uintptr_t) s_txdesc; // RX descriptors
EMAC->EMACTXDLADDR = (uint32_t) (uintptr_t) s_txdesc; // TX descriptors
EMAC->EMACDMAIM = BIT(6) | BIT(16); // RIE, NIE
EMAC->EMACCFG = BIT(2) | BIT(3) | BIT(11) | BIT(14); // RE, TE, Duplex, Fast
EMAC->EMACDMAOPMODE =
BIT(1) | BIT(13) | BIT(21) | BIT(25); // SR, ST, TSF, RSF
// TODO(scaprile) we are not using EPHY interrupts, we could probably use
// them, have a status flag, and avoid polling the PHY
// MAC address filtering NOTE(scaprile): This is currently ignored by
// configuration of EMACFRAMEFLTR above; MIP receives all frames. This also
// applies to the STM32 driver (Nov 1st 2022)
EMAC->EMACADDR0H = ((uint32_t) mac[5] << 8U) | mac[4];
EMAC->EMACADDR0L = (uint32_t) (mac[3] << 24) | ((uint32_t) mac[2] << 16) |
((uint32_t) mac[1] << 8) | mac[0];

View File

@ -6194,7 +6194,7 @@ struct mip_driver mip_driver_stm32 = {
#endif
#if MG_ENABLE_MIP && defined(MG_ENABLE_DRIVER_TM4C) && MG_ENABLE_DRIVER_TM4C
#if MG_ENABLE_MIP && defined(MG_ENABLE_DRIVER_TM4C) && MG_ENABLE_DRIVER_TM4C
struct tm4c_emac {
volatile uint32_t EMACCFG, EMACFRAMEFLTR, EMACHASHTBLH, EMACHASHTBLL,
EMACMIIADDR, EMACMIIDATA, EMACFLOWCTL, EMACVLANTG, RESERVED0, EMACSTATUS,
@ -6215,8 +6215,10 @@ struct tm4c_emac {
RESERVED15[218], EMACPP, EMACPC, EMACCC, RESERVED16, EMACEPHYRIS,
EMACEPHYIM, EMACEPHYIMSC;
};
#undef EMAC
#define EMAC ((struct tm4c_emac *) (uintptr_t) 0x400EC000)
#undef BIT
#define BIT(x) ((uint32_t) 1 << (x))
#define ETH_PKT_SIZE 1540 // Max frame size
#define ETH_DESC_CNT 4 // Descriptors count
@ -6230,7 +6232,7 @@ static void (*s_rx)(void *, size_t, void *); // Recv callback
static void *s_rxdata; // Recv callback data
enum { EPHY_ADDR = 0, EPHYBMCR = 0, EPHYBMSR = 1 }; // PHY constants
static inline void spin(volatile uint32_t count) {
static inline void tm4cspin(volatile uint32_t count) {
while (count--) (void) 0;
}
@ -6238,7 +6240,7 @@ static uint32_t emac_read_phy(uint8_t addr, uint8_t reg) {
EMAC->EMACMIIADDR &= (0xf << 2);
EMAC->EMACMIIADDR |= ((uint32_t) addr << 11) | ((uint32_t) reg << 6);
EMAC->EMACMIIADDR |= BIT(0);
while (EMAC->EMACMIIADDR & BIT(0)) spin(1);
while (EMAC->EMACMIIADDR & BIT(0)) tm4cspin(1);
return EMAC->EMACMIIDATA;
}
@ -6247,7 +6249,7 @@ static void emac_write_phy(uint8_t addr, uint8_t reg, uint32_t val) {
EMAC->EMACMIIADDR &= (0xf << 2);
EMAC->EMACMIIADDR |= ((uint32_t) addr << 11) | ((uint32_t) reg << 6) | BIT(1);
EMAC->EMACMIIADDR |= BIT(0);
while (EMAC->EMACMIIADDR & BIT(0)) spin(1);
while (EMAC->EMACMIIADDR & BIT(0)) tm4cspin(1);
}
// TODO(scaprile) TEST
@ -6255,27 +6257,27 @@ static uint32_t get_sysclk(void) {
struct sysctl {
volatile uint32_t DONTCARE0[44], RSCLKCFG, DONTCARE1[43], PLLFREQ0,
PLLFREQ1;
} *SYSCTL = (struct sysctl *) 0x400FE000;
} *sysctl = (struct sysctl *) 0x400FE000;
uint32_t clk = 0, piosc = 16000000 /* 16 MHz */, mosc = 25000000 /* 25MHz */;
uint32_t oscsrc = (SYSCTL->RSCLKCFG & (0xf << 20)) >> 20;
uint32_t oscsrc = (sysctl->RSCLKCFG & (0xf << 20)) >> 20;
if (oscsrc == 0)
clk = piosc;
else if (oscsrc == 3)
clk = mosc;
else
MG_ERROR(("Unsupported clock source"));
if (SYSCTL->RSCLKCFG & (1 << 28)) { // USEPLL
if (sysctl->RSCLKCFG & (1 << 28)) { // USEPLL
uint32_t fin, vco, mdiv, n, q, psysdiv;
q = (SYSCTL->PLLFREQ1 & (0x1f << 8)) >> 8;
n = (SYSCTL->PLLFREQ1 & (0x1f << 0)) >> 0;
q = (sysctl->PLLFREQ1 & (0x1f << 8)) >> 8;
n = (sysctl->PLLFREQ1 & (0x1f << 0)) >> 0;
fin = clk / ((q + 1) * (n + 1));
mdiv = (SYSCTL->PLLFREQ0 & (0x3ff << 0)) >>
mdiv = (sysctl->PLLFREQ0 & (0x3ff << 0)) >>
0; // mint + (mfrac / 1024); MFRAC not supported
psysdiv = (SYSCTL->RSCLKCFG & (0x3f << 0)) >> 0;
psysdiv = (sysctl->RSCLKCFG & (0x3f << 0)) >> 0;
vco = (uint32_t) ((uint64_t) fin * mdiv);
return vco / (psysdiv + 1);
}
uint32_t osysdiv = (SYSCTL->RSCLKCFG & (0xf << 16)) >> 16;
uint32_t osysdiv = (sysctl->RSCLKCFG & (0xf << 16)) >> 16;
return clk / (osysdiv + 1);
}
@ -6327,8 +6329,8 @@ static bool mip_driver_tm4c_init(uint8_t *mac, void *userdata) {
(uint32_t) (uintptr_t) s_txdesc[(i + 1) % ETH_DESC_CNT]; // Chain
}
EMAC->EMACDMABUSMOD |= BIT(0); // Software reset
while ((EMAC->EMACDMABUSMOD & BIT(0)) != 0) spin(1); // Wait until done
EMAC->EMACDMABUSMOD |= BIT(0); // Software reset
while ((EMAC->EMACDMABUSMOD & BIT(0)) != 0) tm4cspin(1); // Wait until done
// Set MDC clock divider. If user told us the value, use it. Otherwise, guess
int cr = (d == NULL || d->mdc_cr < 0) ? guess_mdc_cr() : d->mdc_cr;
@ -6344,17 +6346,11 @@ static bool mip_driver_tm4c_init(uint8_t *mac, void *userdata) {
emac_write_phy(EPHY_ADDR, EPHYBMCR, BIT(15)); // Reset internal PHY (EPHY)
emac_write_phy(EPHY_ADDR, EPHYBMCR, BIT(12)); // Set autonegotiation
EMAC->EMACRXDLADDR = (uint32_t) (uintptr_t) s_rxdesc; // RX descriptors
EMAC->EMACTXDLADDR = (uint32_t) (uintptr_t) s_txdesc; // RX descriptors
EMAC->EMACTXDLADDR = (uint32_t) (uintptr_t) s_txdesc; // TX descriptors
EMAC->EMACDMAIM = BIT(6) | BIT(16); // RIE, NIE
EMAC->EMACCFG = BIT(2) | BIT(3) | BIT(11) | BIT(14); // RE, TE, Duplex, Fast
EMAC->EMACDMAOPMODE =
BIT(1) | BIT(13) | BIT(21) | BIT(25); // SR, ST, TSF, RSF
// TODO(scaprile) we are not using EPHY interrupts, we could probably use
// them, have a status flag, and avoid polling the PHY
// MAC address filtering NOTE(scaprile): This is currently ignored by
// configuration of EMACFRAMEFLTR above; MIP receives all frames. This also
// applies to the STM32 driver (Nov 1st 2022)
EMAC->EMACADDR0H = ((uint32_t) mac[5] << 8U) | mac[4];
EMAC->EMACADDR0L = (uint32_t) (mac[3] << 24) | ((uint32_t) mac[2] << 16) |
((uint32_t) mac[1] << 8) | mac[0];
@ -7013,7 +7009,7 @@ static size_t tx_tcp(struct mip_if *ifp, uint32_t dst_ip, uint8_t flags,
struct ip *ip = tx_ip(ifp, 6, ifp->ip, dst_ip, sizeof(struct tcp) + len);
struct tcp *tcp = (struct tcp *) (ip + 1);
memset(tcp, 0, sizeof(*tcp));
memmove(tcp + 1, buf, len);
if (buf != NULL && len) memmove(tcp + 1, buf, len);
tcp->sport = sport;
tcp->dport = dport;
tcp->seq = seq;
@ -7380,6 +7376,11 @@ void mip_init(struct mg_mgr *mgr, struct mip_if *ifp) {
}
}
void mip_free(struct mip_if *ifp) {
free((char *) ifp->rx.ptr);
free((char *) ifp->tx.ptr);
}
int mg_mkpipe(struct mg_mgr *m, mg_event_handler_t fn, void *d, bool udp) {
(void) m, (void) fn, (void) d, (void) udp;
MG_ERROR(("Not implemented"));