Merge pull request #2717 from cesanta/xmc7

XMC7 full working example
This commit is contained in:
Sergey Lyubka 2024-04-22 09:42:42 +01:00 committed by GitHub
commit 59020e0d5d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
18 changed files with 1156 additions and 0 deletions

View File

@ -0,0 +1,41 @@
CFLAGS = -W -Wall -Werror -Wextra -Wundef -Wshadow -Wdouble-promotion
CFLAGS += -Wformat-truncation -fno-common # -Wconversion is not SDK-friendly
CFLAGS += -g3 -Os -ffunction-sections -fdata-sections
CFLAGS += -I. -Icmsis_core/CMSIS/Core/Include -Icmsis_xmc7/devices/COMPONENT_CAT1C/include/
CFLAGS += -Icmsis_xmc7/devices/COMPONENT_CAT1C/include/ip/
CFLAGS += -mcpu=cortex-m7 -mthumb -mfloat-abi=hard -mfpu=fpv5-d16 $(CFLAGS_EXTRA)
LDSCRIPT = link.ld
LDFLAGS ?= -T$(LDSCRIPT) -nostdlib -nostartfiles --specs nano.specs -lc -lgcc -Wl,--gc-sections -Wl,-Map=$@.map
SOURCES = main.c hal.c startup.c
CFLAGS += -D__ATOLLIC__ -D__STARTUP_CLEAR_BSS # Make startup code work as expected
# Mongoose options are defined in mongoose_custom.h
SOURCES += mongoose.c net.c packed_fs.c
# Example specific build options. See README.md
CFLAGS += -DHTTP_URL=\"http://0.0.0.0/\" -DHTTPS_URL=\"https://0.0.0.0/\"
ifeq ($(OS),Windows_NT)
RM = cmd /C del /Q /F /S
else
RM = rm -rf
endif
all build example: firmware.bin
firmware.bin: firmware.elf
arm-none-eabi-objcopy -O binary $< $@
firmware.elf: cmsis_core cmsis_xmc7 $(SOURCES) hal.h link.ld Makefile
arm-none-eabi-gcc $(SOURCES) $(CFLAGS) $(LDFLAGS) -o $@
arm-none-eabi-size $@
cmsis_core: # ARM CMSIS core headers
git clone -q --depth 1 -b 5.9.0 https://github.com/ARM-software/CMSIS_5 $@
cmsis_xmc7:
git clone https://github.com/Infineon/mtb-pdl-cat1.git $@
echo "" > cmsis_xmc7/devices/COMPONENT_CAT1C/include/ip/system_cat1c.h
clean:
$(RM) firmware.* *.su cmsis_core cmsis_xmc7 *.zip

View File

@ -0,0 +1,146 @@
// Copyright (c) 2024 Cesanta Software Limited
// All rights reserved
#include "hal.h"
static volatile uint64_t s_ticks; // Milliseconds since boot
void SysTick_Handler(void) { // SyStick IRQ handler, triggered every 1ms
s_ticks++;
}
void mg_random(void *buf, size_t len) { // Use on-board RNG
for (size_t n = 0; n < len; n += sizeof(uint32_t)) {
uint32_t r = rng_read();
memcpy((char *) buf + n, &r, n + sizeof(r) > len ? len - n : sizeof(r));
}
}
uint64_t mg_millis(void) { // Let Mongoose use our uptime function
return s_ticks; // Return number of milliseconds since boot
}
void hal_init(void) {
clock_init(); // Set system clock to SYS_FREQUENCY
SystemCoreClock = SYS_FREQUENCY; // Update SystemCoreClock global var
SysTick_Config(SystemCoreClock / 1000); // Sys tick every 1ms
rng_init(); // Initialise random number generator
uart_init(UART_DEBUG, 115200); // Initialise UART
gpio_output(LED1); // Initialise LED1
gpio_output(LED2); // Initialise LED2
gpio_output(LED3); // Initialise LED3
ethernet_init(); // Initialise Ethernet pins
}
#if defined(__ARMCC_VERSION)
// Keil specific - implement IO printf redirection
int fputc(int c, FILE *stream) {
if (stream == stdout || stream == stderr) uart_write_byte(UART_DEBUG, c);
return c;
}
#elif defined(__GNUC__)
// ARM GCC specific. ARM GCC is shipped with Newlib C library.
// Implement newlib syscalls:
// _sbrk() for malloc
// _write() for printf redirection
// the rest are just stubs
#include <sys/stat.h> // For _fstat()
uint32_t SystemCoreClock;
void SystemInit(void) { // Called automatically by startup code
}
int _fstat(int fd, struct stat *st) {
(void) fd, (void) st;
return -1;
}
extern unsigned char _end[]; // End of data section, start of heap. See link.ld
static unsigned char *s_current_heap_end = _end;
size_t hal_ram_used(void) {
return (size_t) (s_current_heap_end - _end);
}
size_t hal_ram_free(void) {
unsigned char endofstack;
return (size_t) (&endofstack - s_current_heap_end);
}
void *_sbrk(int incr) {
unsigned char *prev_heap;
unsigned char *heap_end = (unsigned char *) ((size_t) &heap_end - 256);
prev_heap = s_current_heap_end;
// Check how much space we got from the heap end to the stack end
if (s_current_heap_end + incr > heap_end) return (void *) -1;
s_current_heap_end += incr;
return prev_heap;
}
int _open(const char *path) {
(void) path;
return -1;
}
int _close(int fd) {
(void) fd;
return -1;
}
int _isatty(int fd) {
(void) fd;
return 1;
}
int _lseek(int fd, int ptr, int dir) {
(void) fd, (void) ptr, (void) dir;
return 0;
}
void _exit(int status) {
(void) status;
for (;;) asm volatile("BKPT #0");
}
void _kill(int pid, int sig) {
(void) pid, (void) sig;
}
int _getpid(void) {
return -1;
}
int _write(int fd, char *ptr, int len) {
(void) fd, (void) ptr, (void) len;
if (fd == 1) uart_write_buf(UART_DEBUG, ptr, (size_t) len);
return -1;
}
int _read(int fd, char *ptr, int len) {
(void) fd, (void) ptr, (void) len;
return -1;
}
int _link(const char *a, const char *b) {
(void) a, (void) b;
return -1;
}
int _unlink(const char *a) {
(void) a;
return -1;
}
int _stat(const char *path, struct stat *st) {
(void) path, (void) st;
return -1;
}
int mkdir(const char *path, mode_t mode) {
(void) path, (void) mode;
return -1;
}
void _init(void) {
}
#endif // __GNUC__

View File

@ -0,0 +1,244 @@
// Copyright (c) 2023 Cesanta Software Limited
// All rights reserved
#pragma once
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#define LED1 PIN(16, 1)
#define LED2 PIN(16, 2)
#define LED3 PIN(16, 3)
#include "xmc7200d_e272k8384.h"
#define BIT(x) (1UL << (x))
#define CLRSET(reg, clear, set) ((reg) = ((reg) & ~(clear)) | (set))
#define PIN(bank, num) ((bank << 8) | (num))
#define PINNO(pin) (pin & 255)
#define PINBANK(pin) (pin >> 8)
void hal_init(void);
size_t hal_ram_free(void);
size_t hal_ram_used(void);
static inline void spin(volatile uint32_t count) {
while (count--) (void) 0;
}
extern uint32_t SystemCoreClock;
enum {PLL_FEEDBACK = 50, PLL_REF = 1, PLL_OUT = 4};
#define CLK_IMO 8000000UL
#define SYS_FREQUENCY ((CLK_IMO * PLL_FEEDBACK) / (PLL_REF * PLL_OUT))
#ifndef UART_DEBUG
#define UART_DEBUG SCB3
#endif
enum { GPIO_MODE_INPUT, GPIO_MODE_OUTPUT, GPIO_MODE_AF, GPIO_MODE_ANALOG };
enum { GPIO_HIGHZ = 0, GPIO_PULLUP = 2, GPIO_PULLDOWN = 3, GPIO_OPENDRAIN_LOW = 4,
GPIO_OPENDRAIN_HIGH = 5, GPIO_STRONG = 6, GPIO_PULLUP_DOWN = 7};
enum { GPIO_SPEED_LOW = 3, GPIO_SPEED_MEDIUM = 2, GPIO_SPEED_HIGH = 0};
#undef GPIO
#define GPIO_TypeDef GPIO_PRT_Type
#define GPIO(N) ((GPIO_TypeDef *) (GPIO_BASE + 0x80 * (N)))
static GPIO_TypeDef *gpio_bank(uint16_t pin) { return GPIO(PINBANK(pin)); }
static inline void gpio_init(uint16_t pin, uint8_t mode, uint8_t type,
uint8_t speed, uint8_t pull, uint8_t af) {
(void) pin, (void) mode, (void) type, (void) speed, (void) pull, (void) af;
GPIO_TypeDef *gpio = gpio_bank(pin);
uint8_t pinno = PINNO(pin);
uint32_t msk, pos;
// configure input / output direction
if (mode == GPIO_MODE_INPUT) {
gpio->CFG |= 1 << (4 * pinno + 3); // enable input buffer (IN_ENx)
}
if (af || (mode == GPIO_MODE_AF && af)) {
// configure alternate function
HSIOM_PRT_Type* hsiom = ((HSIOM_PRT_Type*) HSIOM) + PINBANK(pin);
volatile uint32_t *port_sel = pinno < 4 ? &hsiom->PORT_SEL0 : &hsiom->PORT_SEL1;
pos = 8 * (pinno % 4), msk = 0x1f << pos;
*port_sel &= ~msk, *port_sel |= af << pos;
}
// configure driver mode
msk = 7, pos = 4 * pinno;
CLRSET(gpio->CFG, msk << pos, type << pos);
// configure speed
msk = 3, pos = 2 * pinno + 16;
CLRSET(gpio->CFG_OUT, msk << pos, speed << pos);
if (mode == GPIO_MODE_OUTPUT /*&& af == 0*/) {
gpio->OUT_SET = (1 << pinno);
}
}
static inline void gpio_input(uint16_t pin) {
gpio_init(pin, GPIO_MODE_INPUT, GPIO_HIGHZ, GPIO_SPEED_HIGH,
0, 0);
}
static inline void gpio_output(uint16_t pin) {
gpio_init(pin, GPIO_MODE_OUTPUT, GPIO_STRONG, GPIO_SPEED_MEDIUM,
0, 0);
}
static inline bool gpio_read(uint16_t pin) {
GPIO_TypeDef *gpio = gpio_bank(pin);
uint8_t pinno = PINNO(pin);
if (gpio->CFG & (1 << (4 * pinno + 3))) {
// pin mode is input, reading from GPIO_PRT_IN
return gpio->IN & (1 << pinno);
} else {
// pin mode is output, reading from GPIO_PRT_OUT
return gpio->OUT & (1 << pinno);
}
}
static inline void gpio_write(uint16_t pin, bool value) {
GPIO_TypeDef *gpio = gpio_bank(pin);
uint8_t pinno = PINNO(pin);
if (value) {
gpio->OUT_SET = 1 << pinno;
} else {
gpio->OUT_CLR = 1 << pinno;
}
}
static inline void gpio_toggle(uint16_t pin) {
gpio_write(pin, !gpio_read(pin));
}
static inline void uart_init(volatile CySCB_Type *uart, unsigned long baud) {
(void) uart, (void) baud;
uint16_t rx = 0, tx = 0;
if (uart == SCB3) {
rx = PIN(13, 0), tx = PIN(13, 1);
} else {
return; // unsupported uart
}
// set pins
gpio_init(rx, GPIO_MODE_INPUT, GPIO_HIGHZ, GPIO_SPEED_HIGH, 0, 17);
gpio_init(tx, GPIO_MODE_OUTPUT, GPIO_STRONG, GPIO_SPEED_HIGH, 0, 17);
// enable peripheral clock (18.6.2)
// compute divider first (we choose 24 bit divider 0)
unsigned long div = 0, frac = 0, ovs = 16;
div = SYS_FREQUENCY / (baud * ovs);
if (div == 0) div = 1;
frac = SYS_FREQUENCY % (baud * ovs);
frac = (frac * 100) / (baud * ovs);
PERI_PCLK->GR[1].DIV_CMD = (3 << PERI_PCLK_GR_DIV_CMD_TYPE_SEL_Pos) |
PERI_PCLK_GR_DIV_CMD_PA_DIV_SEL_Msk |
PERI_PCLK_GR_DIV_CMD_PA_TYPE_SEL_Msk;
PERI_PCLK->GR[1].DIV_CMD |= PERI_PCLK_GR_DIV_CMD_DISABLE_Msk; // disable divider
PERI_PCLK->GR[1].DIV_24_5_CTL[0] = (((uint8_t) (div - 1)) << PERI_PCLK_GR_DIV_24_5_CTL_INT24_DIV_Pos) |
(frac << PERI_PCLK_GR_DIV_24_5_CTL_FRAC5_DIV_Pos);
PERI_PCLK->GR[1].DIV_CMD = (3 << PERI_PCLK_GR_DIV_CMD_TYPE_SEL_Pos) |
PERI_PCLK_GR_DIV_CMD_PA_DIV_SEL_Msk |
PERI_PCLK_GR_DIV_CMD_PA_TYPE_SEL_Msk;;
PERI_PCLK->GR[1].DIV_CMD |= PERI_PCLK_GR_DIV_CMD_ENABLE_Msk; // enable divider
PERI_PCLK->GR[1].CLOCK_CTL[PCLK_SCB3_CLOCK & 0xff] = 3 << PERI_PCLK_GR_CLOCK_CTL_TYPE_SEL_Pos; // connect SCB3 to div_24_5_ctl[0]
// configure UART interface
uart->CTRL = ((ovs - 1) << SCB_CTRL_OVS_Pos) | (2 << SCB_CTRL_MODE_Pos);
uart->UART_CTRL = 0;
uart->UART_RX_CTRL = 1 << SCB_UART_RX_CTRL_STOP_BITS_Pos;
uart->RX_CTRL = 7 << SCB_RX_CTRL_DATA_WIDTH_Pos;
uart->UART_TX_CTRL = 1 << SCB_UART_TX_CTRL_STOP_BITS_Pos;
uart->TX_CTRL = 7 << SCB_TX_CTRL_DATA_WIDTH_Pos;
uart->TX_FIFO_CTRL = 1 << 16;
uart->TX_FIFO_CTRL = 0;
uart->CTRL |= 1 << SCB_CTRL_ENABLED_Pos;
}
static inline void uart_write_byte(volatile CySCB_Type *uart, uint8_t byte) {
(void) byte; (void) uart;
while((uart->INTR_TX & SCB_INTR_TX_EMPTY_Msk) == 0) spin(1);
uart->TX_FIFO_WR = byte;
uart->INTR_TX |= ~SCB_INTR_TX_EMPTY_Msk;
}
static inline void uart_write_buf(volatile CySCB_Type *uart, char *buf, size_t len) {
while (len-- > 0) uart_write_byte(uart, *(uint8_t *) buf++);
}
static inline void rng_init(void) {
}
static inline uint32_t rng_read(void) {
return 0;
}
static inline void ethernet_init(void) {
gpio_init(PIN(26, 0), GPIO_MODE_INPUT, GPIO_HIGHZ, GPIO_SPEED_HIGH, 0, 27); // ETH1_REF_CLK
gpio_init(PIN(26, 1), GPIO_MODE_OUTPUT, GPIO_STRONG, GPIO_SPEED_HIGH, 0, 27); // ETH1_TX_CTL
gpio_init(PIN(26, 2), GPIO_MODE_OUTPUT, GPIO_STRONG, GPIO_SPEED_HIGH, 0, 27); // ETH1_TX_CLK
gpio_init(PIN(26, 3), GPIO_MODE_OUTPUT, GPIO_STRONG, GPIO_SPEED_HIGH, 0, 27); // ETH1_TXD_0
gpio_init(PIN(26, 4), GPIO_MODE_OUTPUT, GPIO_STRONG, GPIO_SPEED_HIGH, 0, 27); // ETH1_TXD_1
gpio_init(PIN(26, 5), GPIO_MODE_OUTPUT, GPIO_STRONG, GPIO_SPEED_HIGH, 0, 27); // ETH1_TXD_2
gpio_init(PIN(26, 6), GPIO_MODE_OUTPUT, GPIO_STRONG, GPIO_SPEED_HIGH, 0, 27); // ETH1_TXD_3
gpio_init(PIN(26, 7), GPIO_MODE_INPUT, GPIO_HIGHZ, GPIO_SPEED_HIGH, 0, 27); // ETH1_RXD_0
gpio_init(PIN(27, 0), GPIO_MODE_INPUT, GPIO_HIGHZ, GPIO_SPEED_HIGH, 0, 27); // ETH1_RXD_1
gpio_init(PIN(27, 1), GPIO_MODE_INPUT, GPIO_HIGHZ, GPIO_SPEED_HIGH, 0, 27); // ETH1_RXD_2
gpio_init(PIN(27, 2), GPIO_MODE_INPUT, GPIO_HIGHZ, GPIO_SPEED_HIGH, 0, 27); // ETH1_RXD_3
gpio_init(PIN(27, 3), GPIO_MODE_INPUT, GPIO_HIGHZ, GPIO_SPEED_HIGH, 0, 27); // ETH1_RX_CTL
gpio_init(PIN(27, 4), GPIO_MODE_INPUT, GPIO_HIGHZ, GPIO_SPEED_HIGH, 0, 27); // ETH1_RX_CLK
gpio_init(PIN(27, 5), GPIO_MODE_INPUT, GPIO_STRONG, GPIO_SPEED_LOW, 0, 27); // ETH1_MDIO
gpio_init(PIN(27, 6), GPIO_MODE_OUTPUT, GPIO_STRONG, GPIO_SPEED_LOW, 0, 27); // ETH1_MDC
//gpio_init(PIN(27, 7), GPIO_MODE_OUTPUT, GPIO_HIGHZ, GPIO_SPEED_HIGH, 0, 0); // ETH1_RST
CPUSS->CM7_0_SYSTEM_INT_CTL[eth_1_interrupt_eth_0_IRQn] = 0x80000003; // assign CPU interrupt #3
NVIC->ISER[0] = 1 << 3;
spin(10000000); // artificial delay to wait for PHY init
}
static inline void clock_init(void) {
SCB->CPACR |= ((3UL << 10 * 2) | (3UL << 11 * 2)); // Enable FPU
asm("DSB");
asm("ISB");
// configure PLL
CLRSET(SRSS->CLK_PLL400M[0].CONFIG, CLK_PLL400M_CONFIG_BYPASS_SEL_Msk, BIT(29)); // First bypass PLL
spin(10);
SRSS->CLK_PLL400M[0].CONFIG &= ~CLK_PLL400M_CONFIG_ENABLE_Msk; // disable the PLL itself
// IMO source generates a frequency of 8MHz. The final frequency will be
// calculated as (CLK_IMO * feedback) / (reference * output_div)
CLRSET(SRSS->CLK_PLL400M[0].CONFIG, CLK_PLL400M_CONFIG_FEEDBACK_DIV_Msk, PLL_FEEDBACK << CLK_PLL400M_CONFIG_FEEDBACK_DIV_Pos);
CLRSET(SRSS->CLK_PLL400M[0].CONFIG, CLK_PLL400M_CONFIG_REFERENCE_DIV_Msk, PLL_REF << CLK_PLL400M_CONFIG_REFERENCE_DIV_Pos);
CLRSET(SRSS->CLK_PLL400M[0].CONFIG, CLK_PLL400M_CONFIG_OUTPUT_DIV_Msk, PLL_OUT << CLK_PLL400M_CONFIG_OUTPUT_DIV_Pos);
CLRSET(SRSS->CLK_PLL400M[0].CONFIG2, CLK_PLL400M_CONFIG2_FRAC_DIV_Msk, 0);
CLRSET(SRSS->CLK_PLL400M[0].CONFIG2, CLK_PLL400M_CONFIG2_FRAC_DITHER_EN_Msk, 0);
CLRSET(SRSS->CLK_PLL400M[0].CONFIG2, CLK_PLL400M_CONFIG2_FRAC_EN_Msk, 1 << CLK_PLL400M_CONFIG2_FRAC_EN_Pos);
CLRSET(SRSS->CLK_PLL400M[0].CONFIG, CLK_PLL400M_CONFIG_BYPASS_SEL_Msk, 0);
spin(10);
SRSS->CLK_PLL400M[0].CONFIG |= CLK_PLL400M_CONFIG_ENABLE_Msk; // enable the PLL
while (SRSS->CLK_PLL400M[0].CONFIG & 1) spin(1);
// configure PATH1 with source set to IMO
SRSS->CLK_PATH_SELECT[1] = 0;
// enable CLK_HFx
uint8_t clocks[] = {0, 1, 2, 3, 4, 5, 6};
for (size_t i = 0; i < sizeof(clocks) / sizeof(uint8_t); i++) {
CLRSET(SRSS->CLK_ROOT_SELECT[clocks[i]], SRSS_CLK_ROOT_SELECT_ROOT_MUX_Msk, 1); // choose PATH1
CLRSET(SRSS->CLK_ROOT_SELECT[clocks[i]], SRSS_CLK_ROOT_SELECT_DIRECT_MUX_Msk, 1 << SRSS_CLK_ROOT_SELECT_DIRECT_MUX_Pos);
if (clocks[i] != 0) // CLF_HF0 is already enabled
SRSS->CLK_ROOT_SELECT[clocks[i]] |= SRSS_CLK_ROOT_SELECT_ENABLE_Msk; // enable clock root
}
// set systick frequency
uint32_t tenms = SYS_FREQUENCY / 100 - 1; // number of cycles executed in 10ms
CPUSS->SYSTICK_CTL = tenms | (3 << CPUSS_SYSTICK_CTL_CLOCK_SOURCE_Pos); // select CLK_HF as source
}

View File

@ -0,0 +1,31 @@
OUTPUT_FORMAT("elf32-littlearm")
OUTPUT_ARCH(arm)
ENTRY(Reset_Handler)
MEMORY
{
flash(RX) : ORIGIN = 0x10080000, LENGTH = 0x80000
sram(!RX) : ORIGIN = 0x28000800, LENGTH = 510K
}
_estack = ORIGIN(sram) + LENGTH(sram);
SECTIONS
{
.vectors : { . = ALIGN(4); KEEP(*(.vectors)); . = ALIGN(4); } > flash
.text : { *(.text*) } > flash
.rodata : { *(.rodata*) } > flash
.data : {
_sdata = .;
*(.first_data)
*(.data SORT(.data.*))
_edata = .;
} > sram AT > flash
_sidata = LOADADDR(.data);
.bss : { _sbss = .; *(.bss SORT(.bss.*) COMMON) _ebss = .; } > sram
. = ALIGN(8);
_end = .;
}

View File

@ -0,0 +1,32 @@
// Copyright (c) 2024 Cesanta Software Limited
// All rights reserved
#include "hal.h"
#include "mongoose.h"
#include "net.h"
#define BLINK_PERIOD_MS 1000
static void timer_fn(void *arg) {
gpio_toggle(LED1); // Blink LED
(void) arg; // Unused
}
int main(void) {
struct mg_mgr mgr; // Mongoose event manager
hal_init(); // Cross-platform hardware init
mg_mgr_init(&mgr); // Initialise it
mg_log_set(MG_LL_DEBUG); // Set log level to debug
mg_timer_add(&mgr, BLINK_PERIOD_MS, MG_TIMER_REPEAT, timer_fn, &mgr);
MG_INFO(("Initialising application..."));
web_init(&mgr);
for (;;) {
mg_mgr_poll(&mgr, 0);
}
return 0;
}

View File

@ -0,0 +1 @@
/home/ubuntu/git/mongoose/mongoose.c

View File

@ -0,0 +1 @@
/home/ubuntu/git/mongoose/mongoose.h

View File

@ -0,0 +1,26 @@
#pragma once
// See https://mongoose.ws/documentation/#build-options
#define MG_ARCH MG_ARCH_NEWLIB
#define MG_ENABLE_TCPIP 1
#define MG_ENABLE_DRIVER_XMC7 1
#define MG_IO_SIZE 256
#define MG_ENABLE_CUSTOM_MILLIS 1
#define MG_ENABLE_CUSTOM_RANDOM 1
#define MG_ENABLE_PACKED_FS 1
// For static IP configuration, define MG_TCPIP_{IP,MASK,GW}
// By default, those are set to zero, meaning that DHCP is used
//
// #define MG_TCPIP_IP MG_IPV4(192, 168, 1, 10)
// #define MG_TCPIP_GW MG_IPV4(192, 168, 1, 1)
// #define MG_TCPIP_MASK MG_IPV4(255, 255, 255, 0)
// Set custom MAC address. By default, it is randomly generated
// Using a build-time constant:
// #define MG_SET_MAC_ADDRESS(mac) do { uint8_t buf_[6] = {2,3,4,5,6,7}; memmove(mac, buf_, sizeof(buf_)); } while (0)
//
// Using custom function:
// extern void my_function(unsigned char *mac);
// #define MG_SET_MAC_ADDRESS(mac) my_function(mac)

View File

@ -0,0 +1 @@
../../device-dashboard/net.c

View File

@ -0,0 +1 @@
../../device-dashboard/net.h

View File

@ -0,0 +1 @@
../../device-dashboard/packed_fs.c

View File

@ -0,0 +1,83 @@
#include "xmc7200d_e272k8384.h"
void Reset_Handler(void); // Defined below
void Dummy_Handler(void); // Defined below
void SysTick_Handler(void); // Defined in main.c
void SystemInit(void); // Defined in main.c, called by reset handler
void _estack(void); // Defined in link.ld
#define WEAK_ALIAS __attribute__((weak, alias("Default_Handler")))
WEAK_ALIAS void NMI_Handler(void);
WEAK_ALIAS void HardFault_Handler(void);
WEAK_ALIAS void SVCall_Handler(void);
WEAK_ALIAS void PendSV_Handler(void);
WEAK_ALIAS void SysTick_Handler(void);
WEAK_ALIAS void Default_Intr_Handler(void);
WEAK_ALIAS void CM0P_CpuIntr0_Handler(void);
WEAK_ALIAS void CM0P_CpuIntr1_Handler(void);
WEAK_ALIAS void CM0P_CpuIntr2_Handler(void);
WEAK_ALIAS void CM0P_CpuIntr4_Handler(void);
WEAK_ALIAS void CM0P_CpuIntr5_Handler(void);
WEAK_ALIAS void CM0P_CpuIntr6_Handler(void);
WEAK_ALIAS void CM0P_CpuIntr7_Handler(void);
WEAK_ALIAS void ETH_IRQHandler(void);
void CM0P_CpuIntr3_Handler(void) {
ETH_IRQHandler();
}
__attribute__((section(".vectors"))) void (*const tab[16 + 16])(void) = {
_estack,
Reset_Handler,
NMI_Handler,
HardFault_Handler,
0,
0,
0,
0,
0,
0,
0,
SVCall_Handler,
0,
0,
PendSV_Handler,
SysTick_Handler,
CM0P_CpuIntr0_Handler,
CM0P_CpuIntr1_Handler,
CM0P_CpuIntr2_Handler,
CM0P_CpuIntr3_Handler,
CM0P_CpuIntr4_Handler,
CM0P_CpuIntr5_Handler,
CM0P_CpuIntr6_Handler,
CM0P_CpuIntr7_Handler,
Default_Intr_Handler,
Default_Intr_Handler,
Default_Intr_Handler,
Default_Intr_Handler,
Default_Intr_Handler,
Default_Intr_Handler,
Default_Intr_Handler,
Default_Intr_Handler
};
__attribute__((naked, noreturn)) void Reset_Handler(void) {
// Clear BSS section, and copy data section from flash to RAM
extern long _sbss, _ebss, _sdata, _edata, _sidata;
for (long *src = &_sbss; src < &_ebss; src++) *src = 0;
for (long *src = &_sdata, *dst = &_sidata; src < &_edata;) *src++ = *dst++;
SCB->VTOR = (uint32_t) &tab;
SystemInit();
// Call main()
extern void main(void);
main();
for (;;) (void) 0; // Infinite loop
}
void Default_Handler(void) {
for (;;) (void) 0;
}

View File

@ -15607,6 +15607,20 @@ static const char *mg_phy_id_to_str(uint16_t id1, uint16_t id2) {
(void) id2;
}
static void mg_phy_set_clk_out(struct mg_phy *phy, uint8_t phy_addr) {
uint16_t id1, id2;
id1 = phy->read_reg(phy_addr, MG_PHY_REG_ID1);
id2 = phy->read_reg(phy_addr, MG_PHY_REG_ID2);
if (id1 == MG_PHY_DP83x && id2 == MG_PHY_DP83867) {
// write 0x10d to IO_MUX_CFG (0x0170)
phy->write_reg(phy_addr, 0x0d, 0x1f);
phy->write_reg(phy_addr, 0x0e, 0x170);
phy->write_reg(phy_addr, 0x0d, 0x401f);
phy->write_reg(phy_addr, 0x0e, 0x10d);
}
}
void mg_phy_init(struct mg_phy *phy, uint8_t phy_addr, uint8_t config) {
uint16_t id1, id2;
phy->write_reg(phy_addr, MG_PHY_REG_BCR, MG_BIT(15)); // Reset PHY
@ -15616,6 +15630,10 @@ void mg_phy_init(struct mg_phy *phy, uint8_t phy_addr, uint8_t config) {
id2 = phy->read_reg(phy_addr, MG_PHY_REG_ID2);
MG_INFO(("PHY ID: %#04x %#04x (%s)", id1, id2, mg_phy_id_to_str(id1, id2)));
if (id1 == MG_PHY_DP83x && id2 == MG_PHY_DP83867) {
mg_phy_set_clk_out(phy, phy_addr);
}
if (config & MG_PHY_CLOCKS_MAC) {
// Use PHY crystal oscillator (preserve defaults)
// nothing to do
@ -17255,3 +17273,225 @@ struct mg_tcpip_driver mg_tcpip_driver_xmc = {
mg_tcpip_driver_xmc_init, mg_tcpip_driver_xmc_tx, NULL,
mg_tcpip_driver_xmc_up};
#endif
#ifdef MG_ENABLE_LINES
#line 1 "src/drivers/xmc7.c"
#endif
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_XMC7) && MG_ENABLE_DRIVER_XMC7
struct ETH_Type {
volatile uint32_t CTL, STATUS, RESERVED[1022], NETWORK_CONTROL,
NETWORK_CONFIG, NETWORK_STATUS, USER_IO_REGISTER, DMA_CONFIG,
TRANSMIT_STATUS, RECEIVE_Q_PTR, TRANSMIT_Q_PTR, RECEIVE_STATUS,
INT_STATUS, INT_ENABLE, INT_DISABLE, INT_MASK, PHY_MANAGEMENT, PAUSE_TIME,
TX_PAUSE_QUANTUM, PBUF_TXCUTTHRU, PBUF_RXCUTTHRU, JUMBO_MAX_LENGTH,
EXTERNAL_FIFO_INTERFACE, RESERVED1, AXI_MAX_PIPELINE, RSC_CONTROL,
INT_MODERATION, SYS_WAKE_TIME, RESERVED2[7], HASH_BOTTOM, HASH_TOP,
SPEC_ADD1_BOTTOM, SPEC_ADD1_TOP, SPEC_ADD2_BOTTOM, SPEC_ADD2_TOP,
SPEC_ADD3_BOTTOM, SPEC_ADD3_TOP, SPEC_ADD4_BOTTOM, SPEC_ADD4_TOP,
SPEC_TYPE1, SPEC_TYPE2, SPEC_TYPE3, SPEC_TYPE4, WOL_REGISTER,
STRETCH_RATIO, STACKED_VLAN, TX_PFC_PAUSE, MASK_ADD1_BOTTOM,
MASK_ADD1_TOP, DMA_ADDR_OR_MASK, RX_PTP_UNICAST, TX_PTP_UNICAST,
TSU_NSEC_CMP, TSU_SEC_CMP, TSU_MSB_SEC_CMP, TSU_PTP_TX_MSB_SEC,
TSU_PTP_RX_MSB_SEC, TSU_PEER_TX_MSB_SEC, TSU_PEER_RX_MSB_SEC,
DPRAM_FILL_DBG, REVISION_REG, OCTETS_TXED_BOTTOM, OCTETS_TXED_TOP,
FRAMES_TXED_OK, BROADCAST_TXED, MULTICAST_TXED, PAUSE_FRAMES_TXED,
FRAMES_TXED_64, FRAMES_TXED_65, FRAMES_TXED_128, FRAMES_TXED_256,
FRAMES_TXED_512, FRAMES_TXED_1024, FRAMES_TXED_1519, TX_UNDERRUNS,
SINGLE_COLLISIONS, MULTIPLE_COLLISIONS, EXCESSIVE_COLLISIONS,
LATE_COLLISIONS, DEFERRED_FRAMES, CRS_ERRORS, OCTETS_RXED_BOTTOM,
OCTETS_RXED_TOP, FRAMES_RXED_OK, BROADCAST_RXED, MULTICAST_RXED,
PAUSE_FRAMES_RXED, FRAMES_RXED_64, FRAMES_RXED_65, FRAMES_RXED_128,
FRAMES_RXED_256, FRAMES_RXED_512, FRAMES_RXED_1024, FRAMES_RXED_1519,
UNDERSIZE_FRAMES, EXCESSIVE_RX_LENGTH, RX_JABBERS, FCS_ERRORS,
RX_LENGTH_ERRORS, RX_SYMBOL_ERRORS, ALIGNMENT_ERRORS, RX_RESOURCE_ERRORS,
RX_OVERRUNS, RX_IP_CK_ERRORS, RX_TCP_CK_ERRORS, RX_UDP_CK_ERRORS,
AUTO_FLUSHED_PKTS, RESERVED3, TSU_TIMER_INCR_SUB_NSEC, TSU_TIMER_MSB_SEC,
TSU_STROBE_MSB_SEC, TSU_STROBE_SEC, TSU_STROBE_NSEC, TSU_TIMER_SEC,
TSU_TIMER_NSEC, TSU_TIMER_ADJUST, TSU_TIMER_INCR, TSU_PTP_TX_SEC,
TSU_PTP_TX_NSEC, TSU_PTP_RX_SEC, TSU_PTP_RX_NSEC, TSU_PEER_TX_SEC,
TSU_PEER_TX_NSEC, TSU_PEER_RX_SEC, TSU_PEER_RX_NSEC, PCS_CONTROL,
PCS_STATUS, RESERVED4[2], PCS_AN_ADV, PCS_AN_LP_BASE, PCS_AN_EXP,
PCS_AN_NP_TX, PCS_AN_LP_NP, RESERVED5[6], PCS_AN_EXT_STATUS, RESERVED6[8],
TX_PAUSE_QUANTUM1, TX_PAUSE_QUANTUM2, TX_PAUSE_QUANTUM3, RESERVED7,
RX_LPI, RX_LPI_TIME, TX_LPI, TX_LPI_TIME, DESIGNCFG_DEBUG1,
DESIGNCFG_DEBUG2, DESIGNCFG_DEBUG3, DESIGNCFG_DEBUG4, DESIGNCFG_DEBUG5,
DESIGNCFG_DEBUG6, DESIGNCFG_DEBUG7, DESIGNCFG_DEBUG8, DESIGNCFG_DEBUG9,
DESIGNCFG_DEBUG10, RESERVED8[22], SPEC_ADD5_BOTTOM, SPEC_ADD5_TOP,
RESERVED9[60], SPEC_ADD36_BOTTOM, SPEC_ADD36_TOP, INT_Q1_STATUS,
INT_Q2_STATUS, INT_Q3_STATUS, RESERVED10[11], INT_Q15_STATUS, RESERVED11,
TRANSMIT_Q1_PTR, TRANSMIT_Q2_PTR, TRANSMIT_Q3_PTR, RESERVED12[11],
TRANSMIT_Q15_PTR, RESERVED13, RECEIVE_Q1_PTR, RECEIVE_Q2_PTR,
RECEIVE_Q3_PTR, RESERVED14[3], RECEIVE_Q7_PTR, RESERVED15,
DMA_RXBUF_SIZE_Q1, DMA_RXBUF_SIZE_Q2, DMA_RXBUF_SIZE_Q3, RESERVED16[3],
DMA_RXBUF_SIZE_Q7, CBS_CONTROL, CBS_IDLESLOPE_Q_A, CBS_IDLESLOPE_Q_B,
UPPER_TX_Q_BASE_ADDR, TX_BD_CONTROL, RX_BD_CONTROL, UPPER_RX_Q_BASE_ADDR,
RESERVED17[2], HIDDEN_REG0, HIDDEN_REG1, HIDDEN_REG2, HIDDEN_REG3,
RESERVED18[2], HIDDEN_REG4, HIDDEN_REG5;
};
#define ETH0 ((struct ETH_Type *) 0x40490000)
#define ETH_PKT_SIZE 1536 // Max frame size
#define ETH_DESC_CNT 4 // Descriptors count
#define ETH_DS 2 // Descriptor size (words)
static uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE];
static uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE];
static uint32_t s_rxdesc[ETH_DESC_CNT][ETH_DS]; // RX descriptors
static uint32_t s_txdesc[ETH_DESC_CNT][ETH_DS]; // TX descriptors
static uint8_t s_txno; // Current TX descriptor
static uint8_t s_rxno; // Current RX descriptor
static struct mg_tcpip_if *s_ifp; // MIP interface
enum { MG_PHY_ADDR = 0, MG_PHYREG_BCR = 0, MG_PHYREG_BSR = 1 };
static uint16_t eth_read_phy(uint8_t addr, uint8_t reg) {
// WRITE1, READ OPERATION, PHY, REG, WRITE10
ETH0->PHY_MANAGEMENT = MG_BIT(30) | MG_BIT(29) | ((addr & 0xf) << 24) |
((reg & 0x1f) << 18) | MG_BIT(17);
while ((ETH0->NETWORK_STATUS & MG_BIT(2)) == 0) (void) 0;
return ETH0->PHY_MANAGEMENT & 0xffff;
}
static void eth_write_phy(uint8_t addr, uint8_t reg, uint16_t val) {
ETH0->PHY_MANAGEMENT = MG_BIT(30) | MG_BIT(28) | ((addr & 0xf) << 24) |
((reg & 0x1f) << 18) | MG_BIT(17) | val;
while ((ETH0->NETWORK_STATUS & MG_BIT(2)) == 0) (void) 0;
}
static uint32_t get_clock_rate(struct mg_tcpip_driver_xmc7_data *d) {
// see ETH0 -> NETWORK_CONFIG register
(void) d;
return 3;
}
static bool mg_tcpip_driver_xmc7_init(struct mg_tcpip_if *ifp) {
struct mg_tcpip_driver_xmc7_data *d =
(struct mg_tcpip_driver_xmc7_data *) ifp->driver_data;
s_ifp = ifp;
// enable controller, set RGMII mode
ETH0->CTL = MG_BIT(31) | 2;
uint32_t cr = get_clock_rate(d);
// set NSP change, ignore RX FCS, data bus width, clock rate, Gigabit mode,
// frame length 1536, full duplex, speed
// TODO: enable Gigabit mode (bit 10) only if PHY uses Gigabit link
ETH0->NETWORK_CONFIG = MG_BIT(29) | MG_BIT(26) | MG_BIT(21) |
((cr & 7) << 18) | MG_BIT(10) | MG_BIT(8) | MG_BIT(4) |
MG_BIT(1) | MG_BIT(0);
// config DMA settings: Force TX burst, Discard on Error, set RX buffer size
// to 1536, TX_PBUF_SIZE, RX_PBUF_SIZE, AMBA_BURST_LENGTH
ETH0->DMA_CONFIG =
MG_BIT(26) | MG_BIT(24) | (0x18 << 16) | MG_BIT(10) | (3 << 8) | 4;
// initialize descriptors
for (int i = 0; i < ETH_DESC_CNT; i++) {
s_rxdesc[i][0] = (uint32_t) s_rxbuf[i];
if (i == ETH_DESC_CNT - 1) {
s_rxdesc[i][0] |= MG_BIT(1); // mark last descriptor
}
s_txdesc[i][0] = (uint32_t) s_txbuf[i];
s_txdesc[i][1] = MG_BIT(31); // OWN descriptor
if (i == ETH_DESC_CNT - 1) {
s_txdesc[i][1] |= MG_BIT(30); // mark last descriptor
}
}
ETH0->RECEIVE_Q_PTR = (uint32_t) s_rxdesc;
ETH0->TRANSMIT_Q_PTR = (uint32_t) s_txdesc;
// disable other queues
ETH0->TRANSMIT_Q2_PTR = 1;
ETH0->TRANSMIT_Q1_PTR = 1;
ETH0->RECEIVE_Q2_PTR = 1;
ETH0->RECEIVE_Q1_PTR = 1;
// enable interrupts (TX and RX complete)
ETH0->INT_ENABLE = MG_BIT(7) | MG_BIT(1);
// set MAC address
ETH0->SPEC_ADD1_BOTTOM =
ifp->mac[3] << 24 | ifp->mac[2] << 16 | ifp->mac[1] << 8 | ifp->mac[0];
ETH0->SPEC_ADD1_TOP = ifp->mac[5] << 8 | ifp->mac[4];
// enable MDIO, TX, RX
ETH0->NETWORK_CONTROL = MG_BIT(4) | MG_BIT(3) | MG_BIT(2);
// start transmission
ETH0->NETWORK_CONTROL |= MG_BIT(9);
// init phy
struct mg_phy phy = {eth_read_phy, eth_write_phy};
mg_phy_init(&phy, d->phy_addr, MG_PHY_CLOCKS_MAC);
(void) d;
return true;
}
static size_t mg_tcpip_driver_xmc7_tx(const void *buf, size_t len,
struct mg_tcpip_if *ifp) {
if (len > sizeof(s_txbuf[s_txno])) {
MG_ERROR(("Frame too big, %ld", (long) len));
len = 0; // Frame is too big
} else if (((s_txdesc[s_txno][1] & MG_BIT(31)) == 0)) {
ifp->nerr++;
MG_ERROR(("No free descriptors"));
len = 0; // All descriptors are busy, fail
} else {
memcpy(s_txbuf[s_txno], buf, len);
s_txdesc[s_txno][1] = (s_txno == ETH_DESC_CNT - 1 ? MG_BIT(30) : 0) |
MG_BIT(15) | len; // Last buffer and length
ETH0->NETWORK_CONTROL |= MG_BIT(9); // enable transmission
if (++s_txno >= ETH_DESC_CNT) s_txno = 0;
}
MG_DSB();
ETH0->TRANSMIT_STATUS = ETH0->TRANSMIT_STATUS;
return len;
}
static bool mg_tcpip_driver_xmc7_up(struct mg_tcpip_if *ifp) {
struct mg_tcpip_driver_xmc7_data *d =
(struct mg_tcpip_driver_xmc7_data *) ifp->driver_data;
uint8_t speed = MG_PHY_SPEED_10M;
bool up = false, full_duplex = false;
struct mg_phy phy = {eth_read_phy, eth_write_phy};
up = mg_phy_up(&phy, d->phy_addr, &full_duplex, &speed);
if ((ifp->state == MG_TCPIP_STATE_DOWN) && up) { // link state just went up
MG_DEBUG(("Link is %uM %s-duplex",
speed == MG_PHY_SPEED_10M ? 10 :
(speed == MG_PHY_SPEED_100M ? 100 : 1000),
full_duplex ? "full" : "half"));
}
(void) d;
return up;
}
void ETH_IRQHandler(void) {
uint32_t irq_status = ETH0->INT_STATUS;
if (irq_status & MG_BIT(1)) {
for (uint8_t i = 0; i < ETH_DESC_CNT; i++) {
if (s_rxdesc[s_rxno][0] & MG_BIT(0)) {
size_t len = s_rxdesc[s_rxno][1] & (MG_BIT(13) - 1);
//MG_INFO(("Receive complete: %ld bytes", len));
mg_tcpip_qwrite(s_rxbuf[s_rxno], len, s_ifp);
s_rxdesc[s_rxno][0] &= ~MG_BIT(0); // OWN bit: handle control to DMA
if (++s_rxno >= ETH_DESC_CNT) s_rxno = 0;
}
}
}
ETH0->INT_STATUS = irq_status;
}
struct mg_tcpip_driver mg_tcpip_driver_xmc7 = {mg_tcpip_driver_xmc7_init,
mg_tcpip_driver_xmc7_tx, NULL,
mg_tcpip_driver_xmc7_up};
#endif

View File

@ -2618,6 +2618,7 @@ extern struct mg_tcpip_driver mg_tcpip_driver_same54;
extern struct mg_tcpip_driver mg_tcpip_driver_cmsis;
extern struct mg_tcpip_driver mg_tcpip_driver_ra;
extern struct mg_tcpip_driver mg_tcpip_driver_xmc;
extern struct mg_tcpip_driver mg_tcpip_driver_xmc7;
// Drivers that require SPI, can use this SPI abstraction
struct mg_tcpip_spi {
@ -2967,6 +2968,41 @@ struct mg_tcpip_driver_xmc_data {
#endif
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_XMC7) && MG_ENABLE_DRIVER_XMC7
struct mg_tcpip_driver_xmc7_data {
int mdc_cr; // Valid values: -1, 0, 1, 2, 3, 4, 5
uint8_t phy_addr;
};
#ifndef MG_TCPIP_PHY_ADDR
#define MG_TCPIP_PHY_ADDR 0
#endif
#ifndef MG_DRIVER_MDC_CR
#define MG_DRIVER_MDC_CR 3
#endif
#define MG_TCPIP_DRIVER_INIT(mgr) \
do { \
static struct mg_tcpip_driver_xmc7_data driver_data_; \
static struct mg_tcpip_if mif_; \
driver_data_.mdc_cr = MG_DRIVER_MDC_CR; \
driver_data_.phy_addr = MG_TCPIP_PHY_ADDR; \
mif_.ip = MG_TCPIP_IP; \
mif_.mask = MG_TCPIP_MASK; \
mif_.gw = MG_TCPIP_GW; \
mif_.driver = &mg_tcpip_driver_xmc7; \
mif_.driver_data = &driver_data_; \
MG_SET_MAC_ADDRESS(mif_.mac); \
mg_tcpip_init(mgr, &mif_); \
MG_INFO(("Driver: xmc7, MAC: %M", mg_print_mac, mif_.mac)); \
} while (0)
#endif
#ifdef __cplusplus
}
#endif

View File

@ -45,6 +45,20 @@ static const char *mg_phy_id_to_str(uint16_t id1, uint16_t id2) {
(void) id2;
}
static void mg_phy_set_clk_out(struct mg_phy *phy, uint8_t phy_addr) {
uint16_t id1, id2;
id1 = phy->read_reg(phy_addr, MG_PHY_REG_ID1);
id2 = phy->read_reg(phy_addr, MG_PHY_REG_ID2);
if (id1 == MG_PHY_DP83x && id2 == MG_PHY_DP83867) {
// write 0x10d to IO_MUX_CFG (0x0170)
phy->write_reg(phy_addr, 0x0d, 0x1f);
phy->write_reg(phy_addr, 0x0e, 0x170);
phy->write_reg(phy_addr, 0x0d, 0x401f);
phy->write_reg(phy_addr, 0x0e, 0x10d);
}
}
void mg_phy_init(struct mg_phy *phy, uint8_t phy_addr, uint8_t config) {
uint16_t id1, id2;
phy->write_reg(phy_addr, MG_PHY_REG_BCR, MG_BIT(15)); // Reset PHY
@ -54,6 +68,10 @@ void mg_phy_init(struct mg_phy *phy, uint8_t phy_addr, uint8_t config) {
id2 = phy->read_reg(phy_addr, MG_PHY_REG_ID2);
MG_INFO(("PHY ID: %#04x %#04x (%s)", id1, id2, mg_phy_id_to_str(id1, id2)));
if (id1 == MG_PHY_DP83x && id2 == MG_PHY_DP83867) {
mg_phy_set_clk_out(phy, phy_addr);
}
if (config & MG_PHY_CLOCKS_MAC) {
// Use PHY crystal oscillator (preserve defaults)
// nothing to do

218
src/drivers/xmc7.c Normal file
View File

@ -0,0 +1,218 @@
#include "net_builtin.h"
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_XMC7) && MG_ENABLE_DRIVER_XMC7
struct ETH_Type {
volatile uint32_t CTL, STATUS, RESERVED[1022], NETWORK_CONTROL,
NETWORK_CONFIG, NETWORK_STATUS, USER_IO_REGISTER, DMA_CONFIG,
TRANSMIT_STATUS, RECEIVE_Q_PTR, TRANSMIT_Q_PTR, RECEIVE_STATUS,
INT_STATUS, INT_ENABLE, INT_DISABLE, INT_MASK, PHY_MANAGEMENT, PAUSE_TIME,
TX_PAUSE_QUANTUM, PBUF_TXCUTTHRU, PBUF_RXCUTTHRU, JUMBO_MAX_LENGTH,
EXTERNAL_FIFO_INTERFACE, RESERVED1, AXI_MAX_PIPELINE, RSC_CONTROL,
INT_MODERATION, SYS_WAKE_TIME, RESERVED2[7], HASH_BOTTOM, HASH_TOP,
SPEC_ADD1_BOTTOM, SPEC_ADD1_TOP, SPEC_ADD2_BOTTOM, SPEC_ADD2_TOP,
SPEC_ADD3_BOTTOM, SPEC_ADD3_TOP, SPEC_ADD4_BOTTOM, SPEC_ADD4_TOP,
SPEC_TYPE1, SPEC_TYPE2, SPEC_TYPE3, SPEC_TYPE4, WOL_REGISTER,
STRETCH_RATIO, STACKED_VLAN, TX_PFC_PAUSE, MASK_ADD1_BOTTOM,
MASK_ADD1_TOP, DMA_ADDR_OR_MASK, RX_PTP_UNICAST, TX_PTP_UNICAST,
TSU_NSEC_CMP, TSU_SEC_CMP, TSU_MSB_SEC_CMP, TSU_PTP_TX_MSB_SEC,
TSU_PTP_RX_MSB_SEC, TSU_PEER_TX_MSB_SEC, TSU_PEER_RX_MSB_SEC,
DPRAM_FILL_DBG, REVISION_REG, OCTETS_TXED_BOTTOM, OCTETS_TXED_TOP,
FRAMES_TXED_OK, BROADCAST_TXED, MULTICAST_TXED, PAUSE_FRAMES_TXED,
FRAMES_TXED_64, FRAMES_TXED_65, FRAMES_TXED_128, FRAMES_TXED_256,
FRAMES_TXED_512, FRAMES_TXED_1024, FRAMES_TXED_1519, TX_UNDERRUNS,
SINGLE_COLLISIONS, MULTIPLE_COLLISIONS, EXCESSIVE_COLLISIONS,
LATE_COLLISIONS, DEFERRED_FRAMES, CRS_ERRORS, OCTETS_RXED_BOTTOM,
OCTETS_RXED_TOP, FRAMES_RXED_OK, BROADCAST_RXED, MULTICAST_RXED,
PAUSE_FRAMES_RXED, FRAMES_RXED_64, FRAMES_RXED_65, FRAMES_RXED_128,
FRAMES_RXED_256, FRAMES_RXED_512, FRAMES_RXED_1024, FRAMES_RXED_1519,
UNDERSIZE_FRAMES, EXCESSIVE_RX_LENGTH, RX_JABBERS, FCS_ERRORS,
RX_LENGTH_ERRORS, RX_SYMBOL_ERRORS, ALIGNMENT_ERRORS, RX_RESOURCE_ERRORS,
RX_OVERRUNS, RX_IP_CK_ERRORS, RX_TCP_CK_ERRORS, RX_UDP_CK_ERRORS,
AUTO_FLUSHED_PKTS, RESERVED3, TSU_TIMER_INCR_SUB_NSEC, TSU_TIMER_MSB_SEC,
TSU_STROBE_MSB_SEC, TSU_STROBE_SEC, TSU_STROBE_NSEC, TSU_TIMER_SEC,
TSU_TIMER_NSEC, TSU_TIMER_ADJUST, TSU_TIMER_INCR, TSU_PTP_TX_SEC,
TSU_PTP_TX_NSEC, TSU_PTP_RX_SEC, TSU_PTP_RX_NSEC, TSU_PEER_TX_SEC,
TSU_PEER_TX_NSEC, TSU_PEER_RX_SEC, TSU_PEER_RX_NSEC, PCS_CONTROL,
PCS_STATUS, RESERVED4[2], PCS_AN_ADV, PCS_AN_LP_BASE, PCS_AN_EXP,
PCS_AN_NP_TX, PCS_AN_LP_NP, RESERVED5[6], PCS_AN_EXT_STATUS, RESERVED6[8],
TX_PAUSE_QUANTUM1, TX_PAUSE_QUANTUM2, TX_PAUSE_QUANTUM3, RESERVED7,
RX_LPI, RX_LPI_TIME, TX_LPI, TX_LPI_TIME, DESIGNCFG_DEBUG1,
DESIGNCFG_DEBUG2, DESIGNCFG_DEBUG3, DESIGNCFG_DEBUG4, DESIGNCFG_DEBUG5,
DESIGNCFG_DEBUG6, DESIGNCFG_DEBUG7, DESIGNCFG_DEBUG8, DESIGNCFG_DEBUG9,
DESIGNCFG_DEBUG10, RESERVED8[22], SPEC_ADD5_BOTTOM, SPEC_ADD5_TOP,
RESERVED9[60], SPEC_ADD36_BOTTOM, SPEC_ADD36_TOP, INT_Q1_STATUS,
INT_Q2_STATUS, INT_Q3_STATUS, RESERVED10[11], INT_Q15_STATUS, RESERVED11,
TRANSMIT_Q1_PTR, TRANSMIT_Q2_PTR, TRANSMIT_Q3_PTR, RESERVED12[11],
TRANSMIT_Q15_PTR, RESERVED13, RECEIVE_Q1_PTR, RECEIVE_Q2_PTR,
RECEIVE_Q3_PTR, RESERVED14[3], RECEIVE_Q7_PTR, RESERVED15,
DMA_RXBUF_SIZE_Q1, DMA_RXBUF_SIZE_Q2, DMA_RXBUF_SIZE_Q3, RESERVED16[3],
DMA_RXBUF_SIZE_Q7, CBS_CONTROL, CBS_IDLESLOPE_Q_A, CBS_IDLESLOPE_Q_B,
UPPER_TX_Q_BASE_ADDR, TX_BD_CONTROL, RX_BD_CONTROL, UPPER_RX_Q_BASE_ADDR,
RESERVED17[2], HIDDEN_REG0, HIDDEN_REG1, HIDDEN_REG2, HIDDEN_REG3,
RESERVED18[2], HIDDEN_REG4, HIDDEN_REG5;
};
#define ETH0 ((struct ETH_Type *) 0x40490000)
#define ETH_PKT_SIZE 1536 // Max frame size
#define ETH_DESC_CNT 4 // Descriptors count
#define ETH_DS 2 // Descriptor size (words)
static uint8_t s_rxbuf[ETH_DESC_CNT][ETH_PKT_SIZE];
static uint8_t s_txbuf[ETH_DESC_CNT][ETH_PKT_SIZE];
static uint32_t s_rxdesc[ETH_DESC_CNT][ETH_DS]; // RX descriptors
static uint32_t s_txdesc[ETH_DESC_CNT][ETH_DS]; // TX descriptors
static uint8_t s_txno; // Current TX descriptor
static uint8_t s_rxno; // Current RX descriptor
static struct mg_tcpip_if *s_ifp; // MIP interface
enum { MG_PHY_ADDR = 0, MG_PHYREG_BCR = 0, MG_PHYREG_BSR = 1 };
static uint16_t eth_read_phy(uint8_t addr, uint8_t reg) {
// WRITE1, READ OPERATION, PHY, REG, WRITE10
ETH0->PHY_MANAGEMENT = MG_BIT(30) | MG_BIT(29) | ((addr & 0xf) << 24) |
((reg & 0x1f) << 18) | MG_BIT(17);
while ((ETH0->NETWORK_STATUS & MG_BIT(2)) == 0) (void) 0;
return ETH0->PHY_MANAGEMENT & 0xffff;
}
static void eth_write_phy(uint8_t addr, uint8_t reg, uint16_t val) {
ETH0->PHY_MANAGEMENT = MG_BIT(30) | MG_BIT(28) | ((addr & 0xf) << 24) |
((reg & 0x1f) << 18) | MG_BIT(17) | val;
while ((ETH0->NETWORK_STATUS & MG_BIT(2)) == 0) (void) 0;
}
static uint32_t get_clock_rate(struct mg_tcpip_driver_xmc7_data *d) {
// see ETH0 -> NETWORK_CONFIG register
(void) d;
return 3;
}
static bool mg_tcpip_driver_xmc7_init(struct mg_tcpip_if *ifp) {
struct mg_tcpip_driver_xmc7_data *d =
(struct mg_tcpip_driver_xmc7_data *) ifp->driver_data;
s_ifp = ifp;
// enable controller, set RGMII mode
ETH0->CTL = MG_BIT(31) | 2;
uint32_t cr = get_clock_rate(d);
// set NSP change, ignore RX FCS, data bus width, clock rate, Gigabit mode,
// frame length 1536, full duplex, speed
// TODO: enable Gigabit mode (bit 10) only if PHY uses Gigabit link
ETH0->NETWORK_CONFIG = MG_BIT(29) | MG_BIT(26) | MG_BIT(21) |
((cr & 7) << 18) | MG_BIT(10) | MG_BIT(8) | MG_BIT(4) |
MG_BIT(1) | MG_BIT(0);
// config DMA settings: Force TX burst, Discard on Error, set RX buffer size
// to 1536, TX_PBUF_SIZE, RX_PBUF_SIZE, AMBA_BURST_LENGTH
ETH0->DMA_CONFIG =
MG_BIT(26) | MG_BIT(24) | (0x18 << 16) | MG_BIT(10) | (3 << 8) | 4;
// initialize descriptors
for (int i = 0; i < ETH_DESC_CNT; i++) {
s_rxdesc[i][0] = (uint32_t) s_rxbuf[i];
if (i == ETH_DESC_CNT - 1) {
s_rxdesc[i][0] |= MG_BIT(1); // mark last descriptor
}
s_txdesc[i][0] = (uint32_t) s_txbuf[i];
s_txdesc[i][1] = MG_BIT(31); // OWN descriptor
if (i == ETH_DESC_CNT - 1) {
s_txdesc[i][1] |= MG_BIT(30); // mark last descriptor
}
}
ETH0->RECEIVE_Q_PTR = (uint32_t) s_rxdesc;
ETH0->TRANSMIT_Q_PTR = (uint32_t) s_txdesc;
// disable other queues
ETH0->TRANSMIT_Q2_PTR = 1;
ETH0->TRANSMIT_Q1_PTR = 1;
ETH0->RECEIVE_Q2_PTR = 1;
ETH0->RECEIVE_Q1_PTR = 1;
// enable interrupts (TX and RX complete)
ETH0->INT_ENABLE = MG_BIT(7) | MG_BIT(1);
// set MAC address
ETH0->SPEC_ADD1_BOTTOM =
ifp->mac[3] << 24 | ifp->mac[2] << 16 | ifp->mac[1] << 8 | ifp->mac[0];
ETH0->SPEC_ADD1_TOP = ifp->mac[5] << 8 | ifp->mac[4];
// enable MDIO, TX, RX
ETH0->NETWORK_CONTROL = MG_BIT(4) | MG_BIT(3) | MG_BIT(2);
// start transmission
ETH0->NETWORK_CONTROL |= MG_BIT(9);
// init phy
struct mg_phy phy = {eth_read_phy, eth_write_phy};
mg_phy_init(&phy, d->phy_addr, MG_PHY_CLOCKS_MAC);
(void) d;
return true;
}
static size_t mg_tcpip_driver_xmc7_tx(const void *buf, size_t len,
struct mg_tcpip_if *ifp) {
if (len > sizeof(s_txbuf[s_txno])) {
MG_ERROR(("Frame too big, %ld", (long) len));
len = 0; // Frame is too big
} else if (((s_txdesc[s_txno][1] & MG_BIT(31)) == 0)) {
ifp->nerr++;
MG_ERROR(("No free descriptors"));
len = 0; // All descriptors are busy, fail
} else {
memcpy(s_txbuf[s_txno], buf, len);
s_txdesc[s_txno][1] = (s_txno == ETH_DESC_CNT - 1 ? MG_BIT(30) : 0) |
MG_BIT(15) | len; // Last buffer and length
ETH0->NETWORK_CONTROL |= MG_BIT(9); // enable transmission
if (++s_txno >= ETH_DESC_CNT) s_txno = 0;
}
MG_DSB();
ETH0->TRANSMIT_STATUS = ETH0->TRANSMIT_STATUS;
return len;
}
static bool mg_tcpip_driver_xmc7_up(struct mg_tcpip_if *ifp) {
struct mg_tcpip_driver_xmc7_data *d =
(struct mg_tcpip_driver_xmc7_data *) ifp->driver_data;
uint8_t speed = MG_PHY_SPEED_10M;
bool up = false, full_duplex = false;
struct mg_phy phy = {eth_read_phy, eth_write_phy};
up = mg_phy_up(&phy, d->phy_addr, &full_duplex, &speed);
if ((ifp->state == MG_TCPIP_STATE_DOWN) && up) { // link state just went up
MG_DEBUG(("Link is %uM %s-duplex",
speed == MG_PHY_SPEED_10M ? 10 :
(speed == MG_PHY_SPEED_100M ? 100 : 1000),
full_duplex ? "full" : "half"));
}
(void) d;
return up;
}
void ETH_IRQHandler(void) {
uint32_t irq_status = ETH0->INT_STATUS;
if (irq_status & MG_BIT(1)) {
for (uint8_t i = 0; i < ETH_DESC_CNT; i++) {
if (s_rxdesc[s_rxno][0] & MG_BIT(0)) {
size_t len = s_rxdesc[s_rxno][1] & (MG_BIT(13) - 1);
//MG_INFO(("Receive complete: %ld bytes", len));
mg_tcpip_qwrite(s_rxbuf[s_rxno], len, s_ifp);
s_rxdesc[s_rxno][0] &= ~MG_BIT(0); // OWN bit: handle control to DMA
if (++s_rxno >= ETH_DESC_CNT) s_rxno = 0;
}
}
}
ETH0->INT_STATUS = irq_status;
}
struct mg_tcpip_driver mg_tcpip_driver_xmc7 = {mg_tcpip_driver_xmc7_init,
mg_tcpip_driver_xmc7_tx, NULL,
mg_tcpip_driver_xmc7_up};
#endif

35
src/drivers/xmc7.h Normal file
View File

@ -0,0 +1,35 @@
#pragma once
#if MG_ENABLE_TCPIP && defined(MG_ENABLE_DRIVER_XMC7) && MG_ENABLE_DRIVER_XMC7
struct mg_tcpip_driver_xmc7_data {
int mdc_cr; // Valid values: -1, 0, 1, 2, 3, 4, 5
uint8_t phy_addr;
};
#ifndef MG_TCPIP_PHY_ADDR
#define MG_TCPIP_PHY_ADDR 0
#endif
#ifndef MG_DRIVER_MDC_CR
#define MG_DRIVER_MDC_CR 3
#endif
#define MG_TCPIP_DRIVER_INIT(mgr) \
do { \
static struct mg_tcpip_driver_xmc7_data driver_data_; \
static struct mg_tcpip_if mif_; \
driver_data_.mdc_cr = MG_DRIVER_MDC_CR; \
driver_data_.phy_addr = MG_TCPIP_PHY_ADDR; \
mif_.ip = MG_TCPIP_IP; \
mif_.mask = MG_TCPIP_MASK; \
mif_.gw = MG_TCPIP_GW; \
mif_.driver = &mg_tcpip_driver_xmc7; \
mif_.driver_data = &driver_data_; \
MG_SET_MAC_ADDRESS(mif_.mac); \
mg_tcpip_init(mgr, &mif_); \
MG_INFO(("Driver: xmc7, MAC: %M", mg_print_mac, mif_.mac)); \
} while (0)
#endif

View File

@ -61,6 +61,7 @@ extern struct mg_tcpip_driver mg_tcpip_driver_same54;
extern struct mg_tcpip_driver mg_tcpip_driver_cmsis;
extern struct mg_tcpip_driver mg_tcpip_driver_ra;
extern struct mg_tcpip_driver mg_tcpip_driver_xmc;
extern struct mg_tcpip_driver mg_tcpip_driver_xmc7;
// Drivers that require SPI, can use this SPI abstraction
struct mg_tcpip_spi {