Merge pull request #2540 from cesanta/reformat_comments

reformat comments
This commit is contained in:
Sergio R. Caprile 2023-12-20 16:58:56 -03:00 committed by GitHub
commit 365a731574
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 396 additions and 402 deletions

View File

@ -4188,288 +4188,6 @@ struct mg_connection *mg_mqtt_listen(struct mg_mgr *mgr, const char *url,
return c;
}
#ifdef MG_ENABLE_LINES
#line 1 "src/net.c"
#endif
size_t mg_vprintf(struct mg_connection *c, const char *fmt, va_list *ap) {
size_t old = c->send.len;
mg_vxprintf(mg_pfn_iobuf, &c->send, fmt, ap);
return c->send.len - old;
}
size_t mg_printf(struct mg_connection *c, const char *fmt, ...) {
size_t len = 0;
va_list ap;
va_start(ap, fmt);
len = mg_vprintf(c, fmt, &ap);
va_end(ap);
return len;
}
static bool mg_atonl(struct mg_str str, struct mg_addr *addr) {
uint32_t localhost = mg_htonl(0x7f000001);
if (mg_vcasecmp(&str, "localhost") != 0) return false;
memcpy(addr->ip, &localhost, sizeof(uint32_t));
addr->is_ip6 = false;
return true;
}
static bool mg_atone(struct mg_str str, struct mg_addr *addr) {
if (str.len > 0) return false;
memset(addr->ip, 0, sizeof(addr->ip));
addr->is_ip6 = false;
return true;
}
static bool mg_aton4(struct mg_str str, struct mg_addr *addr) {
uint8_t data[4] = {0, 0, 0, 0};
size_t i, num_dots = 0;
for (i = 0; i < str.len; i++) {
if (str.ptr[i] >= '0' && str.ptr[i] <= '9') {
int octet = data[num_dots] * 10 + (str.ptr[i] - '0');
if (octet > 255) return false;
data[num_dots] = (uint8_t) octet;
} else if (str.ptr[i] == '.') {
if (num_dots >= 3 || i == 0 || str.ptr[i - 1] == '.') return false;
num_dots++;
} else {
return false;
}
}
if (num_dots != 3 || str.ptr[i - 1] == '.') return false;
memcpy(&addr->ip, data, sizeof(data));
addr->is_ip6 = false;
return true;
}
static bool mg_v4mapped(struct mg_str str, struct mg_addr *addr) {
int i;
uint32_t ipv4;
if (str.len < 14) return false;
if (str.ptr[0] != ':' || str.ptr[1] != ':' || str.ptr[6] != ':') return false;
for (i = 2; i < 6; i++) {
if (str.ptr[i] != 'f' && str.ptr[i] != 'F') return false;
}
// struct mg_str s = mg_str_n(&str.ptr[7], str.len - 7);
if (!mg_aton4(mg_str_n(&str.ptr[7], str.len - 7), addr)) return false;
memcpy(&ipv4, addr->ip, sizeof(ipv4));
memset(addr->ip, 0, sizeof(addr->ip));
addr->ip[10] = addr->ip[11] = 255;
memcpy(&addr->ip[12], &ipv4, 4);
addr->is_ip6 = true;
return true;
}
static bool mg_aton6(struct mg_str str, struct mg_addr *addr) {
size_t i, j = 0, n = 0, dc = 42;
addr->scope_id = 0;
if (str.len > 2 && str.ptr[0] == '[') str.ptr++, str.len -= 2;
if (mg_v4mapped(str, addr)) return true;
for (i = 0; i < str.len; i++) {
if ((str.ptr[i] >= '0' && str.ptr[i] <= '9') ||
(str.ptr[i] >= 'a' && str.ptr[i] <= 'f') ||
(str.ptr[i] >= 'A' && str.ptr[i] <= 'F')) {
unsigned long val;
if (i > j + 3) return false;
// MG_DEBUG(("%lu %lu [%.*s]", i, j, (int) (i - j + 1), &str.ptr[j]));
val = mg_unhexn(&str.ptr[j], i - j + 1);
addr->ip[n] = (uint8_t) ((val >> 8) & 255);
addr->ip[n + 1] = (uint8_t) (val & 255);
} else if (str.ptr[i] == ':') {
j = i + 1;
if (i > 0 && str.ptr[i - 1] == ':') {
dc = n; // Double colon
if (i > 1 && str.ptr[i - 2] == ':') return false;
} else if (i > 0) {
n += 2;
}
if (n > 14) return false;
addr->ip[n] = addr->ip[n + 1] = 0; // For trailing ::
} else if (str.ptr[i] == '%') { // Scope ID
for (i = i + 1; i < str.len; i++) {
if (str.ptr[i] < '0' || str.ptr[i] > '9') return false;
addr->scope_id = (uint8_t) (addr->scope_id * 10);
addr->scope_id = (uint8_t) (addr->scope_id + (str.ptr[i] - '0'));
}
} else {
return false;
}
}
if (n < 14 && dc == 42) return false;
if (n < 14) {
memmove(&addr->ip[dc + (14 - n)], &addr->ip[dc], n - dc + 2);
memset(&addr->ip[dc], 0, 14 - n);
}
addr->is_ip6 = true;
return true;
}
bool mg_aton(struct mg_str str, struct mg_addr *addr) {
// MG_INFO(("[%.*s]", (int) str.len, str.ptr));
return mg_atone(str, addr) || mg_atonl(str, addr) || mg_aton4(str, addr) ||
mg_aton6(str, addr);
}
struct mg_connection *mg_alloc_conn(struct mg_mgr *mgr) {
struct mg_connection *c =
(struct mg_connection *) calloc(1, sizeof(*c) + mgr->extraconnsize);
if (c != NULL) {
c->mgr = mgr;
c->send.align = c->recv.align = c->rtls.align = MG_IO_SIZE;
c->id = ++mgr->nextid;
MG_PROF_INIT(c);
}
return c;
}
void mg_close_conn(struct mg_connection *c) {
mg_resolve_cancel(c); // Close any pending DNS query
LIST_DELETE(struct mg_connection, &c->mgr->conns, c);
if (c == c->mgr->dns4.c) c->mgr->dns4.c = NULL;
if (c == c->mgr->dns6.c) c->mgr->dns6.c = NULL;
// Order of operations is important. `MG_EV_CLOSE` event must be fired
// before we deallocate received data, see #1331
mg_call(c, MG_EV_CLOSE, NULL);
MG_DEBUG(("%lu %ld closed", c->id, c->fd));
MG_PROF_DUMP(c);
MG_PROF_FREE(c);
mg_tls_free(c);
mg_iobuf_free(&c->recv);
mg_iobuf_free(&c->send);
mg_iobuf_free(&c->rtls);
mg_bzero((unsigned char *) c, sizeof(*c));
free(c);
}
struct mg_connection *mg_connect(struct mg_mgr *mgr, const char *url,
mg_event_handler_t fn, void *fn_data) {
struct mg_connection *c = NULL;
if (url == NULL || url[0] == '\0') {
MG_ERROR(("null url"));
} else if ((c = mg_alloc_conn(mgr)) == NULL) {
MG_ERROR(("OOM"));
} else {
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
c->is_udp = (strncmp(url, "udp:", 4) == 0);
c->fd = (void *) (size_t) MG_INVALID_SOCKET;
c->fn = fn;
c->is_client = true;
c->fn_data = fn_data;
MG_DEBUG(("%lu %ld %s", c->id, c->fd, url));
mg_call(c, MG_EV_OPEN, (void *) url);
mg_resolve(c, url);
}
return c;
}
struct mg_connection *mg_listen(struct mg_mgr *mgr, const char *url,
mg_event_handler_t fn, void *fn_data) {
struct mg_connection *c = NULL;
if ((c = mg_alloc_conn(mgr)) == NULL) {
MG_ERROR(("OOM %s", url));
} else if (!mg_open_listener(c, url)) {
MG_ERROR(("Failed: %s, errno %d", url, errno));
MG_PROF_FREE(c);
free(c);
c = NULL;
} else {
c->is_listening = 1;
c->is_udp = strncmp(url, "udp:", 4) == 0;
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
c->fn = fn;
c->fn_data = fn_data;
mg_call(c, MG_EV_OPEN, NULL);
if (mg_url_is_ssl(url)) c->is_tls = 1; // Accepted connection must
MG_DEBUG(("%lu %ld %s", c->id, c->fd, url));
}
return c;
}
struct mg_connection *mg_wrapfd(struct mg_mgr *mgr, int fd,
mg_event_handler_t fn, void *fn_data) {
struct mg_connection *c = mg_alloc_conn(mgr);
if (c != NULL) {
c->fd = (void *) (size_t) fd;
c->fn = fn;
c->fn_data = fn_data;
MG_EPOLL_ADD(c);
mg_call(c, MG_EV_OPEN, NULL);
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
}
return c;
}
struct mg_timer *mg_timer_add(struct mg_mgr *mgr, uint64_t milliseconds,
unsigned flags, void (*fn)(void *), void *arg) {
struct mg_timer *t = (struct mg_timer *) calloc(1, sizeof(*t));
if (t != NULL) {
mg_timer_init(&mgr->timers, t, milliseconds, flags, fn, arg);
t->id = mgr->timerid++;
}
return t;
}
long mg_io_recv(struct mg_connection *c, void *buf, size_t len) {
if (c->rtls.len == 0) return MG_IO_WAIT;
if (len > c->rtls.len) len = c->rtls.len;
memcpy(buf, c->rtls.buf, len);
mg_iobuf_del(&c->rtls, 0, len);
return (long) len;
}
void mg_mgr_free(struct mg_mgr *mgr) {
struct mg_connection *c;
struct mg_timer *tmp, *t = mgr->timers;
while (t != NULL) tmp = t->next, free(t), t = tmp;
mgr->timers = NULL; // Important. Next call to poll won't touch timers
for (c = mgr->conns; c != NULL; c = c->next) c->is_closing = 1;
mg_mgr_poll(mgr, 0);
#if MG_ENABLE_FREERTOS_TCP
FreeRTOS_DeleteSocketSet(mgr->ss);
#endif
MG_DEBUG(("All connections closed"));
#if MG_ENABLE_EPOLL
if (mgr->epoll_fd >= 0) close(mgr->epoll_fd), mgr->epoll_fd = -1;
#endif
mg_tls_ctx_free(mgr);
}
void mg_mgr_init(struct mg_mgr *mgr) {
memset(mgr, 0, sizeof(*mgr));
#if MG_ENABLE_EPOLL
if ((mgr->epoll_fd = epoll_create1(EPOLL_CLOEXEC)) < 0)
MG_ERROR(("epoll_create1 errno %d", errno));
#else
mgr->epoll_fd = -1;
#endif
#if MG_ARCH == MG_ARCH_WIN32 && MG_ENABLE_WINSOCK
// clang-format off
{ WSADATA data; WSAStartup(MAKEWORD(2, 2), &data); }
// clang-format on
#elif MG_ENABLE_FREERTOS_TCP
mgr->ss = FreeRTOS_CreateSocketSet();
#elif defined(__unix) || defined(__unix__) || defined(__APPLE__)
// Ignore SIGPIPE signal, so if client cancels the request, it
// won't kill the whole process.
signal(SIGPIPE, SIG_IGN);
#endif
mgr->dnstimeout = 3000;
mgr->dns4.url = "udp://8.8.8.8:53";
mgr->dns6.url = "udp://[2001:4860:4860::8888]:53";
mg_tls_ctx_init(mgr);
}
#ifdef MG_ENABLE_LINES
#line 1 "src/net_builtin.c"
#endif
@ -5579,6 +5297,288 @@ bool mg_send(struct mg_connection *c, const void *buf, size_t len) {
}
#endif // MG_ENABLE_TCPIP
#ifdef MG_ENABLE_LINES
#line 1 "src/net.c"
#endif
size_t mg_vprintf(struct mg_connection *c, const char *fmt, va_list *ap) {
size_t old = c->send.len;
mg_vxprintf(mg_pfn_iobuf, &c->send, fmt, ap);
return c->send.len - old;
}
size_t mg_printf(struct mg_connection *c, const char *fmt, ...) {
size_t len = 0;
va_list ap;
va_start(ap, fmt);
len = mg_vprintf(c, fmt, &ap);
va_end(ap);
return len;
}
static bool mg_atonl(struct mg_str str, struct mg_addr *addr) {
uint32_t localhost = mg_htonl(0x7f000001);
if (mg_vcasecmp(&str, "localhost") != 0) return false;
memcpy(addr->ip, &localhost, sizeof(uint32_t));
addr->is_ip6 = false;
return true;
}
static bool mg_atone(struct mg_str str, struct mg_addr *addr) {
if (str.len > 0) return false;
memset(addr->ip, 0, sizeof(addr->ip));
addr->is_ip6 = false;
return true;
}
static bool mg_aton4(struct mg_str str, struct mg_addr *addr) {
uint8_t data[4] = {0, 0, 0, 0};
size_t i, num_dots = 0;
for (i = 0; i < str.len; i++) {
if (str.ptr[i] >= '0' && str.ptr[i] <= '9') {
int octet = data[num_dots] * 10 + (str.ptr[i] - '0');
if (octet > 255) return false;
data[num_dots] = (uint8_t) octet;
} else if (str.ptr[i] == '.') {
if (num_dots >= 3 || i == 0 || str.ptr[i - 1] == '.') return false;
num_dots++;
} else {
return false;
}
}
if (num_dots != 3 || str.ptr[i - 1] == '.') return false;
memcpy(&addr->ip, data, sizeof(data));
addr->is_ip6 = false;
return true;
}
static bool mg_v4mapped(struct mg_str str, struct mg_addr *addr) {
int i;
uint32_t ipv4;
if (str.len < 14) return false;
if (str.ptr[0] != ':' || str.ptr[1] != ':' || str.ptr[6] != ':') return false;
for (i = 2; i < 6; i++) {
if (str.ptr[i] != 'f' && str.ptr[i] != 'F') return false;
}
// struct mg_str s = mg_str_n(&str.ptr[7], str.len - 7);
if (!mg_aton4(mg_str_n(&str.ptr[7], str.len - 7), addr)) return false;
memcpy(&ipv4, addr->ip, sizeof(ipv4));
memset(addr->ip, 0, sizeof(addr->ip));
addr->ip[10] = addr->ip[11] = 255;
memcpy(&addr->ip[12], &ipv4, 4);
addr->is_ip6 = true;
return true;
}
static bool mg_aton6(struct mg_str str, struct mg_addr *addr) {
size_t i, j = 0, n = 0, dc = 42;
addr->scope_id = 0;
if (str.len > 2 && str.ptr[0] == '[') str.ptr++, str.len -= 2;
if (mg_v4mapped(str, addr)) return true;
for (i = 0; i < str.len; i++) {
if ((str.ptr[i] >= '0' && str.ptr[i] <= '9') ||
(str.ptr[i] >= 'a' && str.ptr[i] <= 'f') ||
(str.ptr[i] >= 'A' && str.ptr[i] <= 'F')) {
unsigned long val;
if (i > j + 3) return false;
// MG_DEBUG(("%lu %lu [%.*s]", i, j, (int) (i - j + 1), &str.ptr[j]));
val = mg_unhexn(&str.ptr[j], i - j + 1);
addr->ip[n] = (uint8_t) ((val >> 8) & 255);
addr->ip[n + 1] = (uint8_t) (val & 255);
} else if (str.ptr[i] == ':') {
j = i + 1;
if (i > 0 && str.ptr[i - 1] == ':') {
dc = n; // Double colon
if (i > 1 && str.ptr[i - 2] == ':') return false;
} else if (i > 0) {
n += 2;
}
if (n > 14) return false;
addr->ip[n] = addr->ip[n + 1] = 0; // For trailing ::
} else if (str.ptr[i] == '%') { // Scope ID
for (i = i + 1; i < str.len; i++) {
if (str.ptr[i] < '0' || str.ptr[i] > '9') return false;
addr->scope_id = (uint8_t) (addr->scope_id * 10);
addr->scope_id = (uint8_t) (addr->scope_id + (str.ptr[i] - '0'));
}
} else {
return false;
}
}
if (n < 14 && dc == 42) return false;
if (n < 14) {
memmove(&addr->ip[dc + (14 - n)], &addr->ip[dc], n - dc + 2);
memset(&addr->ip[dc], 0, 14 - n);
}
addr->is_ip6 = true;
return true;
}
bool mg_aton(struct mg_str str, struct mg_addr *addr) {
// MG_INFO(("[%.*s]", (int) str.len, str.ptr));
return mg_atone(str, addr) || mg_atonl(str, addr) || mg_aton4(str, addr) ||
mg_aton6(str, addr);
}
struct mg_connection *mg_alloc_conn(struct mg_mgr *mgr) {
struct mg_connection *c =
(struct mg_connection *) calloc(1, sizeof(*c) + mgr->extraconnsize);
if (c != NULL) {
c->mgr = mgr;
c->send.align = c->recv.align = c->rtls.align = MG_IO_SIZE;
c->id = ++mgr->nextid;
MG_PROF_INIT(c);
}
return c;
}
void mg_close_conn(struct mg_connection *c) {
mg_resolve_cancel(c); // Close any pending DNS query
LIST_DELETE(struct mg_connection, &c->mgr->conns, c);
if (c == c->mgr->dns4.c) c->mgr->dns4.c = NULL;
if (c == c->mgr->dns6.c) c->mgr->dns6.c = NULL;
// Order of operations is important. `MG_EV_CLOSE` event must be fired
// before we deallocate received data, see #1331
mg_call(c, MG_EV_CLOSE, NULL);
MG_DEBUG(("%lu %ld closed", c->id, c->fd));
MG_PROF_DUMP(c);
MG_PROF_FREE(c);
mg_tls_free(c);
mg_iobuf_free(&c->recv);
mg_iobuf_free(&c->send);
mg_iobuf_free(&c->rtls);
mg_bzero((unsigned char *) c, sizeof(*c));
free(c);
}
struct mg_connection *mg_connect(struct mg_mgr *mgr, const char *url,
mg_event_handler_t fn, void *fn_data) {
struct mg_connection *c = NULL;
if (url == NULL || url[0] == '\0') {
MG_ERROR(("null url"));
} else if ((c = mg_alloc_conn(mgr)) == NULL) {
MG_ERROR(("OOM"));
} else {
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
c->is_udp = (strncmp(url, "udp:", 4) == 0);
c->fd = (void *) (size_t) MG_INVALID_SOCKET;
c->fn = fn;
c->is_client = true;
c->fn_data = fn_data;
MG_DEBUG(("%lu %ld %s", c->id, c->fd, url));
mg_call(c, MG_EV_OPEN, (void *) url);
mg_resolve(c, url);
}
return c;
}
struct mg_connection *mg_listen(struct mg_mgr *mgr, const char *url,
mg_event_handler_t fn, void *fn_data) {
struct mg_connection *c = NULL;
if ((c = mg_alloc_conn(mgr)) == NULL) {
MG_ERROR(("OOM %s", url));
} else if (!mg_open_listener(c, url)) {
MG_ERROR(("Failed: %s, errno %d", url, errno));
MG_PROF_FREE(c);
free(c);
c = NULL;
} else {
c->is_listening = 1;
c->is_udp = strncmp(url, "udp:", 4) == 0;
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
c->fn = fn;
c->fn_data = fn_data;
mg_call(c, MG_EV_OPEN, NULL);
if (mg_url_is_ssl(url)) c->is_tls = 1; // Accepted connection must
MG_DEBUG(("%lu %ld %s", c->id, c->fd, url));
}
return c;
}
struct mg_connection *mg_wrapfd(struct mg_mgr *mgr, int fd,
mg_event_handler_t fn, void *fn_data) {
struct mg_connection *c = mg_alloc_conn(mgr);
if (c != NULL) {
c->fd = (void *) (size_t) fd;
c->fn = fn;
c->fn_data = fn_data;
MG_EPOLL_ADD(c);
mg_call(c, MG_EV_OPEN, NULL);
LIST_ADD_HEAD(struct mg_connection, &mgr->conns, c);
}
return c;
}
struct mg_timer *mg_timer_add(struct mg_mgr *mgr, uint64_t milliseconds,
unsigned flags, void (*fn)(void *), void *arg) {
struct mg_timer *t = (struct mg_timer *) calloc(1, sizeof(*t));
if (t != NULL) {
mg_timer_init(&mgr->timers, t, milliseconds, flags, fn, arg);
t->id = mgr->timerid++;
}
return t;
}
long mg_io_recv(struct mg_connection *c, void *buf, size_t len) {
if (c->rtls.len == 0) return MG_IO_WAIT;
if (len > c->rtls.len) len = c->rtls.len;
memcpy(buf, c->rtls.buf, len);
mg_iobuf_del(&c->rtls, 0, len);
return (long) len;
}
void mg_mgr_free(struct mg_mgr *mgr) {
struct mg_connection *c;
struct mg_timer *tmp, *t = mgr->timers;
while (t != NULL) tmp = t->next, free(t), t = tmp;
mgr->timers = NULL; // Important. Next call to poll won't touch timers
for (c = mgr->conns; c != NULL; c = c->next) c->is_closing = 1;
mg_mgr_poll(mgr, 0);
#if MG_ENABLE_FREERTOS_TCP
FreeRTOS_DeleteSocketSet(mgr->ss);
#endif
MG_DEBUG(("All connections closed"));
#if MG_ENABLE_EPOLL
if (mgr->epoll_fd >= 0) close(mgr->epoll_fd), mgr->epoll_fd = -1;
#endif
mg_tls_ctx_free(mgr);
}
void mg_mgr_init(struct mg_mgr *mgr) {
memset(mgr, 0, sizeof(*mgr));
#if MG_ENABLE_EPOLL
if ((mgr->epoll_fd = epoll_create1(EPOLL_CLOEXEC)) < 0)
MG_ERROR(("epoll_create1 errno %d", errno));
#else
mgr->epoll_fd = -1;
#endif
#if MG_ARCH == MG_ARCH_WIN32 && MG_ENABLE_WINSOCK
// clang-format off
{ WSADATA data; WSAStartup(MAKEWORD(2, 2), &data); }
// clang-format on
#elif MG_ENABLE_FREERTOS_TCP
mgr->ss = FreeRTOS_CreateSocketSet();
#elif defined(__unix) || defined(__unix__) || defined(__APPLE__)
// Ignore SIGPIPE signal, so if client cancels the request, it
// won't kill the whole process.
signal(SIGPIPE, SIG_IGN);
#endif
mgr->dnstimeout = 3000;
mgr->dns4.url = "udp://8.8.8.8:53";
mgr->dns6.url = "udp://[2001:4860:4860::8888]:53";
mg_tls_ctx_init(mgr);
}
#ifdef MG_ENABLE_LINES
#line 1 "src/ota_dummy.c"
#endif
@ -8651,6 +8651,7 @@ int aes_gcm_decrypt(unsigned char *output, const unsigned char *input,
return (ret);
}
#endif
// End of aes128 PD
#ifdef MG_ENABLE_LINES
#line 1 "src/tls_builtin.c"
@ -8659,7 +8660,7 @@ int aes_gcm_decrypt(unsigned char *output, const unsigned char *input,
#if MG_TLS == MG_TLS_BUILTIN
/* handshake is re-entrant, so we need to keep track of its state */
// handshake is re-entrant, so we need to keep track of its state
enum mg_tls_hs_state {
MG_TLS_HS_CLIENT_HELLO, // first, wait for ClientHello
MG_TLS_HS_SERVER_HELLO, // then, send all server handshake data at once
@ -8668,27 +8669,26 @@ enum mg_tls_hs_state {
MG_TLS_HS_DONE, // finish handshake, start application data flow
};
/* per-connection TLS data */
// per-connection TLS data
struct tls_data {
enum mg_tls_hs_state state; /* keep track of connection handshake progress */
enum mg_tls_hs_state state; // keep track of connection handshake progress
struct mg_iobuf send;
struct mg_iobuf recv;
mg_sha256_ctx sha256; /* incremental SHA-256 hash for TLS handshake */
mg_sha256_ctx sha256; // incremental SHA-256 hash for TLS handshake
uint32_t sseq; /* server sequence number, used in encryption */
uint32_t cseq; /* client sequence number, used in decryption */
uint32_t sseq; // server sequence number, used in encryption
uint32_t cseq; // client sequence number, used in decryption
uint8_t session_id[32]; /* client session ID between the handshake states */
uint8_t x25519_cli[32]; /* client X25519 key between the handshake states */
uint8_t x25519_sec[32]; /* x25519 secret between the handshake
states */
uint8_t session_id[32]; // client session ID between the handshake states
uint8_t x25519_cli[32]; // client X25519 key between the handshake states
uint8_t x25519_sec[32]; // x25519 secret between the handshake states
struct mg_str server_cert_der; /* server certificate in DER format */
uint8_t server_key[32]; /* server EC private key */
struct mg_str server_cert_der; // server certificate in DER format
uint8_t server_key[32]; // server EC private key
/* keys for AES encryption */
// keys for AES encryption
uint8_t handshake_secret[32];
uint8_t server_write_key[16];
uint8_t server_write_iv[12];
@ -8726,7 +8726,7 @@ static limb_t umaal(limb_t *carry, limb_t acc, limb_t mand, limb_t mier) {
return (limb_t) tmp;
}
/* These functions are implemented in terms of umaal on ARM */
// These functions are implemented in terms of umaal on ARM
static limb_t adc(limb_t *carry, limb_t acc, limb_t mand) {
dlimb_t total = (dlimb_t) *carry + acc + mand;
*carry = (limb_t) (total >> X25519_WBITS);
@ -8739,11 +8739,10 @@ static limb_t adc0(limb_t *carry, limb_t acc) {
return (limb_t) total;
}
/* Precondition: carry is small.
* Invariant: result of propagate is < 2^255 + 1 word
* In particular, always less than 2p.
* Also, output x >= min(x,19)
*/
// - Precondition: carry is small.
// - Invariant: result of propagate is < 2^255 + 1 word
// - In particular, always less than 2p.
// - Also, output x >= min(x,19)
static void propagate(fe x, limb_t over) {
unsigned i;
limb_t carry;
@ -8817,14 +8816,11 @@ static void condswap(limb_t a[2 * NLIMBS], limb_t b[2 * NLIMBS],
}
}
// Canonicalize a field element x, reducing it to the least residue which is
// congruent to it mod 2^255-19
// - Precondition: x < 2^255 + 1 word
static limb_t canon(fe x) {
/* Canonicalize a field element x, reducing it to the least residue
* which is congruent to it mod 2^255-19.
*
* Precondition: x < 2^255 + 1 word
*/
/* First, add 19. */
// First, add 19.
unsigned i;
limb_t carry0 = 19;
limb_t res;
@ -8834,18 +8830,14 @@ static limb_t canon(fe x) {
}
propagate(x, carry0);
/* Here, 19 <= x2 < 2^255
*
* This is because we added 19, so before propagate it can't be less than 19.
* After propagate, it still can't be less than 19, because if propagate does
* anything it adds 19.
*
* We know that the high bit must be clear, because either the input was
* ~ 2^255 + one word + 19 (in which case it propagates to at most 2 words)
* or it was < 2^255.
*
* So now, if we subtract 19, we will get back to something in [0,2^255-19).
*/
// Here, 19 <= x2 < 2^255
// - This is because we added 19, so before propagate it can't be less
// than 19. After propagate, it still can't be less than 19, because if
// propagate does anything it adds 19.
// - We know that the high bit must be clear, because either the input was ~
// 2^255 + one word + 19 (in which case it propagates to at most 2 words) or
// it was < 2^255. So now, if we subtract 19, we will get back to something in
// [0,2^255-19).
carry = -19;
res = 0;
for (i = 0; i < NLIMBS; i++) {
@ -8927,7 +8919,7 @@ static int x25519(uint8_t out[X25519_BYTES], const uint8_t scalar[X25519_BYTES],
{3, 1, 2}, {3, 1, 2}, {3, 1, 1}};
x25519_core(xs, scalar, x1, clamp);
/* Precomputed inversion chain */
// Precomputed inversion chain
x2 = xs[0];
z2 = xs[1];
z3 = xs[3];
@ -8943,21 +8935,21 @@ static int x25519(uint8_t out[X25519_BYTES], const uint8_t scalar[X25519_BYTES],
mul1(a, xs[steps[i].c]);
}
/* Here prev = z3 */
/* x2 /= z2 */
// Here prev = z3
// x2 /= z2
mul((limb_t *) out, x2, z3, NLIMBS);
ret = (int) canon((limb_t *) out);
if (!clamp) ret = 0;
return ret;
}
/* a help to hexdump buffers inline */
// helper to hexdump buffers inline
static void mg_tls_hexdump(const char *msg, uint8_t *buf, size_t bufsz) {
char p[2048];
MG_INFO(("%s: %s", msg, mg_hex(buf, bufsz, p)));
}
/* TLS1.3 secret derivation based on the key label */
// TLS1.3 secret derivation based on the key label
static void mg_tls_derive_secret(const char *label, uint8_t *key, size_t keysz,
uint8_t *data, size_t datasz, uint8_t *hash,
size_t hashsz) {
@ -8974,7 +8966,7 @@ static void mg_tls_derive_secret(const char *label, uint8_t *key, size_t keysz,
memmove(hash, secret, hashsz);
}
/* receive as much data as we can, but at least one full TLS record */
// receive as much data as we can, but at least one full TLS record
static int mg_tls_recv_msg(struct mg_connection *c) {
struct tls_data *tls = c->tls;
struct mg_iobuf *rio = &tls->recv;
@ -9011,7 +9003,7 @@ static void mg_tls_drop_packet(struct mg_iobuf *rio) {
// rio->len = rio->len - n;
}
/* read and parse ClientHello record */
// read and parse ClientHello record
static int mg_tls_client_hello(struct mg_connection *c) {
struct tls_data *tls = c->tls;
struct mg_iobuf *rio = &tls->recv;
@ -9066,7 +9058,7 @@ static int mg_tls_client_hello(struct mg_connection *c) {
return -1;
}
/* put ServerHello record into wio buffer */
// put ServerHello record into wio buffer
static void mg_tls_server_hello(struct mg_connection *c) {
struct tls_data *tls = c->tls;
struct mg_iobuf *wio = &tls->send;
@ -9117,8 +9109,8 @@ static void mg_tls_server_hello(struct mg_connection *c) {
mg_iobuf_add(wio, wio->len, "\x14\x03\x03\x00\x01\x01", 6);
}
/* at this point we have x25519 shared secret, we can generate a
* set of derived handshake encryption keys */
// at this point we have x25519 shared secret, we can generate a set of derived
// handshake encryption keys
static void mg_tls_generate_handshake_keys(struct mg_connection *c) {
struct tls_data *tls = c->tls;
@ -9163,7 +9155,7 @@ static void mg_tls_generate_handshake_keys(struct mg_connection *c) {
tls->client_finished_key, 32);
}
/* AES GCM enctyption of the message + put encoded data into the write buffer */
// AES GCM encryption of the message + put encoded data into the write buffer
static void mg_tls_encrypt(struct mg_connection *c, const uint8_t *msg,
size_t msgsz, uint8_t msgtype) {
struct tls_data *tls = c->tls;
@ -9195,7 +9187,7 @@ static void mg_tls_encrypt(struct mg_connection *c, const uint8_t *msg,
tls->sseq++;
}
/* read an encrypted message, decrypt it into read buffer (AES GCM) */
// read an encrypted message, decrypt it into read buffer (AES GCM)
static int mg_tls_recv_decrypt(struct mg_connection *c, void *buf,
size_t bufsz) {
struct tls_data *tls = c->tls;
@ -9210,7 +9202,7 @@ static int mg_tls_recv_decrypt(struct mg_connection *c, void *buf,
if (rio->buf[0] == 0x17) {
break;
} else if (rio->buf[0] == 0x15) {
MG_INFO(("TLS ALERT packet received")); /* TODO: drop packet? */
MG_INFO(("TLS ALERT packet received")); // TODO: drop packet?
} else {
mg_error(c, "unexpected packet");
return -1;
@ -9270,7 +9262,7 @@ static void mg_tls_server_cert(struct mg_connection *c) {
mg_tls_encrypt(c, cert, 13 + n, 0x16);
}
/* type adapter between uECC hash context and our sha256 implementation */
// type adapter between uECC hash context and our sha256 implementation
typedef struct SHA256_HashContext {
uECC_HashContext uECC;
mg_sha256_ctx ctx;
@ -9318,12 +9310,12 @@ static void mg_tls_server_verify_ecdsa(struct mg_connection *c) {
neg1 = !!(sig[0] & 0x80);
neg2 = !!(sig[32] & 0x80);
verify[8] = 0x30; /* ASN.1 SEQUENCE */
verify[8] = 0x30; // ASN.1 SEQUENCE
verify[9] = (uint8_t) (68 + neg1 + neg2);
verify[10] = 0x02; /* ASN.1 INTEGER */
verify[10] = 0x02; // ASN.1 INTEGER
verify[11] = (uint8_t) (32 + neg1);
memmove(verify + 12 + neg1, sig, 32);
verify[12 + 32 + neg1] = 0x02; /* ASN.1 INTEGER */
verify[12 + 32 + neg1] = 0x02; // ASN.1 INTEGER
verify[13 + 32 + neg1] = (uint8_t) (32 + neg2);
memmove(verify + 14 + 32 + neg1 + neg2, sig + 32, 32);
@ -9451,7 +9443,9 @@ void mg_tls_handshake(struct mg_connection *c) {
mg_tls_generate_application_keys(c);
tls->state = MG_TLS_HS_DONE;
// fallthrough
case MG_TLS_HS_DONE: c->is_tls_hs = 0; return;
case MG_TLS_HS_DONE:
c->is_tls_hs = 0;
return;
}
}
@ -9495,7 +9489,7 @@ void mg_tls_init(struct mg_connection *c, const struct mg_tls_opts *opts) {
mg_error(c, "tls oom");
return;
}
/* parse PEM or DER EC key */
// parse PEM or DER EC key
if (opts->key.ptr == NULL ||
mg_parse_pem(opts->key, mg_str_s("EC PRIVATE KEY"), &key) < 0) {
MG_ERROR(("Failed to load EC private key"));
@ -9505,8 +9499,8 @@ void mg_tls_init(struct mg_connection *c, const struct mg_tls_opts *opts) {
MG_ERROR(("EC private key too short"));
return;
}
/* expect ASN.1 SEQUENCE=[INTEGER=1, BITSTRING of 32 bytes, ...] */
/* 30 nn 02 01 01 04 20 [key] ... */
// expect ASN.1 SEQUENCE=[INTEGER=1, BITSTRING of 32 bytes, ...]
// 30 nn 02 01 01 04 20 [key] ...
if (key.ptr[0] != 0x30 || (key.ptr[1] & 0x80) != 0) {
MG_ERROR(("EC private key: ASN.1 bad sequence"));
return;
@ -9517,7 +9511,7 @@ void mg_tls_init(struct mg_connection *c, const struct mg_tls_opts *opts) {
memmove(tls->server_key, key.ptr + 7, 32);
free((void *) key.ptr);
/* parse PEM or DER certificate */
// parse PEM or DER certificate
if (mg_parse_pem(opts->cert, mg_str_s("CERTIFICATE"), &tls->server_cert_der) <
0) {
MG_ERROR(("Failed to load certificate"));
@ -13256,6 +13250,7 @@ void uECC_point_mult(uECC_word_t *result, const uECC_word_t *point,
#endif /* uECC_ENABLE_VLI_API */
#endif // MG_TLS_BUILTIN
// End of uecc BSD-2
#ifdef MG_ENABLE_LINES
#line 1 "src/url.c"

View File

@ -1452,6 +1452,7 @@ int aes_gcm_decrypt(unsigned char *output, const unsigned char *input,
#endif
// End of aes128 PD
@ -2090,6 +2091,7 @@ typedef uint64_t uECC_word_t;
#endif /* uECC_WORD_SIZE */
#endif /* _UECC_TYPES_H_ */
// End of uecc BSD-2
struct mg_connection;

View File

@ -1000,3 +1000,4 @@ int aes_gcm_decrypt(unsigned char *output, const unsigned char *input,
return (ret);
}
#endif
// End of aes128 PD

View File

@ -261,3 +261,4 @@ int aes_gcm_decrypt(unsigned char *output, const unsigned char *input,
#endif
// End of aes128 PD

View File

@ -2,7 +2,7 @@
#if MG_TLS == MG_TLS_BUILTIN
/* handshake is re-entrant, so we need to keep track of its state */
// handshake is re-entrant, so we need to keep track of its state
enum mg_tls_hs_state {
MG_TLS_HS_CLIENT_HELLO, // first, wait for ClientHello
MG_TLS_HS_SERVER_HELLO, // then, send all server handshake data at once
@ -11,27 +11,26 @@ enum mg_tls_hs_state {
MG_TLS_HS_DONE, // finish handshake, start application data flow
};
/* per-connection TLS data */
// per-connection TLS data
struct tls_data {
enum mg_tls_hs_state state; /* keep track of connection handshake progress */
enum mg_tls_hs_state state; // keep track of connection handshake progress
struct mg_iobuf send;
struct mg_iobuf recv;
mg_sha256_ctx sha256; /* incremental SHA-256 hash for TLS handshake */
mg_sha256_ctx sha256; // incremental SHA-256 hash for TLS handshake
uint32_t sseq; /* server sequence number, used in encryption */
uint32_t cseq; /* client sequence number, used in decryption */
uint32_t sseq; // server sequence number, used in encryption
uint32_t cseq; // client sequence number, used in decryption
uint8_t session_id[32]; /* client session ID between the handshake states */
uint8_t x25519_cli[32]; /* client X25519 key between the handshake states */
uint8_t x25519_sec[32]; /* x25519 secret between the handshake
states */
uint8_t session_id[32]; // client session ID between the handshake states
uint8_t x25519_cli[32]; // client X25519 key between the handshake states
uint8_t x25519_sec[32]; // x25519 secret between the handshake states
struct mg_str server_cert_der; /* server certificate in DER format */
uint8_t server_key[32]; /* server EC private key */
struct mg_str server_cert_der; // server certificate in DER format
uint8_t server_key[32]; // server EC private key
/* keys for AES encryption */
// keys for AES encryption
uint8_t handshake_secret[32];
uint8_t server_write_key[16];
uint8_t server_write_iv[12];
@ -69,7 +68,7 @@ static limb_t umaal(limb_t *carry, limb_t acc, limb_t mand, limb_t mier) {
return (limb_t) tmp;
}
/* These functions are implemented in terms of umaal on ARM */
// These functions are implemented in terms of umaal on ARM
static limb_t adc(limb_t *carry, limb_t acc, limb_t mand) {
dlimb_t total = (dlimb_t) *carry + acc + mand;
*carry = (limb_t) (total >> X25519_WBITS);
@ -82,11 +81,10 @@ static limb_t adc0(limb_t *carry, limb_t acc) {
return (limb_t) total;
}
/* Precondition: carry is small.
* Invariant: result of propagate is < 2^255 + 1 word
* In particular, always less than 2p.
* Also, output x >= min(x,19)
*/
// - Precondition: carry is small.
// - Invariant: result of propagate is < 2^255 + 1 word
// - In particular, always less than 2p.
// - Also, output x >= min(x,19)
static void propagate(fe x, limb_t over) {
unsigned i;
limb_t carry;
@ -160,14 +158,11 @@ static void condswap(limb_t a[2 * NLIMBS], limb_t b[2 * NLIMBS],
}
}
// Canonicalize a field element x, reducing it to the least residue which is
// congruent to it mod 2^255-19
// - Precondition: x < 2^255 + 1 word
static limb_t canon(fe x) {
/* Canonicalize a field element x, reducing it to the least residue
* which is congruent to it mod 2^255-19.
*
* Precondition: x < 2^255 + 1 word
*/
/* First, add 19. */
// First, add 19.
unsigned i;
limb_t carry0 = 19;
limb_t res;
@ -177,18 +172,14 @@ static limb_t canon(fe x) {
}
propagate(x, carry0);
/* Here, 19 <= x2 < 2^255
*
* This is because we added 19, so before propagate it can't be less than 19.
* After propagate, it still can't be less than 19, because if propagate does
* anything it adds 19.
*
* We know that the high bit must be clear, because either the input was
* ~ 2^255 + one word + 19 (in which case it propagates to at most 2 words)
* or it was < 2^255.
*
* So now, if we subtract 19, we will get back to something in [0,2^255-19).
*/
// Here, 19 <= x2 < 2^255
// - This is because we added 19, so before propagate it can't be less
// than 19. After propagate, it still can't be less than 19, because if
// propagate does anything it adds 19.
// - We know that the high bit must be clear, because either the input was ~
// 2^255 + one word + 19 (in which case it propagates to at most 2 words) or
// it was < 2^255. So now, if we subtract 19, we will get back to something in
// [0,2^255-19).
carry = -19;
res = 0;
for (i = 0; i < NLIMBS; i++) {
@ -270,7 +261,7 @@ static int x25519(uint8_t out[X25519_BYTES], const uint8_t scalar[X25519_BYTES],
{3, 1, 2}, {3, 1, 2}, {3, 1, 1}};
x25519_core(xs, scalar, x1, clamp);
/* Precomputed inversion chain */
// Precomputed inversion chain
x2 = xs[0];
z2 = xs[1];
z3 = xs[3];
@ -286,21 +277,21 @@ static int x25519(uint8_t out[X25519_BYTES], const uint8_t scalar[X25519_BYTES],
mul1(a, xs[steps[i].c]);
}
/* Here prev = z3 */
/* x2 /= z2 */
// Here prev = z3
// x2 /= z2
mul((limb_t *) out, x2, z3, NLIMBS);
ret = (int) canon((limb_t *) out);
if (!clamp) ret = 0;
return ret;
}
/* a help to hexdump buffers inline */
// helper to hexdump buffers inline
static void mg_tls_hexdump(const char *msg, uint8_t *buf, size_t bufsz) {
char p[2048];
MG_INFO(("%s: %s", msg, mg_hex(buf, bufsz, p)));
}
/* TLS1.3 secret derivation based on the key label */
// TLS1.3 secret derivation based on the key label
static void mg_tls_derive_secret(const char *label, uint8_t *key, size_t keysz,
uint8_t *data, size_t datasz, uint8_t *hash,
size_t hashsz) {
@ -317,7 +308,7 @@ static void mg_tls_derive_secret(const char *label, uint8_t *key, size_t keysz,
memmove(hash, secret, hashsz);
}
/* receive as much data as we can, but at least one full TLS record */
// receive as much data as we can, but at least one full TLS record
static int mg_tls_recv_msg(struct mg_connection *c) {
struct tls_data *tls = c->tls;
struct mg_iobuf *rio = &tls->recv;
@ -354,7 +345,7 @@ static void mg_tls_drop_packet(struct mg_iobuf *rio) {
// rio->len = rio->len - n;
}
/* read and parse ClientHello record */
// read and parse ClientHello record
static int mg_tls_client_hello(struct mg_connection *c) {
struct tls_data *tls = c->tls;
struct mg_iobuf *rio = &tls->recv;
@ -409,7 +400,7 @@ static int mg_tls_client_hello(struct mg_connection *c) {
return -1;
}
/* put ServerHello record into wio buffer */
// put ServerHello record into wio buffer
static void mg_tls_server_hello(struct mg_connection *c) {
struct tls_data *tls = c->tls;
struct mg_iobuf *wio = &tls->send;
@ -460,8 +451,8 @@ static void mg_tls_server_hello(struct mg_connection *c) {
mg_iobuf_add(wio, wio->len, "\x14\x03\x03\x00\x01\x01", 6);
}
/* at this point we have x25519 shared secret, we can generate a
* set of derived handshake encryption keys */
// at this point we have x25519 shared secret, we can generate a set of derived
// handshake encryption keys
static void mg_tls_generate_handshake_keys(struct mg_connection *c) {
struct tls_data *tls = c->tls;
@ -506,7 +497,7 @@ static void mg_tls_generate_handshake_keys(struct mg_connection *c) {
tls->client_finished_key, 32);
}
/* AES GCM enctyption of the message + put encoded data into the write buffer */
// AES GCM encryption of the message + put encoded data into the write buffer
static void mg_tls_encrypt(struct mg_connection *c, const uint8_t *msg,
size_t msgsz, uint8_t msgtype) {
struct tls_data *tls = c->tls;
@ -538,7 +529,7 @@ static void mg_tls_encrypt(struct mg_connection *c, const uint8_t *msg,
tls->sseq++;
}
/* read an encrypted message, decrypt it into read buffer (AES GCM) */
// read an encrypted message, decrypt it into read buffer (AES GCM)
static int mg_tls_recv_decrypt(struct mg_connection *c, void *buf,
size_t bufsz) {
struct tls_data *tls = c->tls;
@ -553,7 +544,7 @@ static int mg_tls_recv_decrypt(struct mg_connection *c, void *buf,
if (rio->buf[0] == 0x17) {
break;
} else if (rio->buf[0] == 0x15) {
MG_INFO(("TLS ALERT packet received")); /* TODO: drop packet? */
MG_INFO(("TLS ALERT packet received")); // TODO: drop packet?
} else {
mg_error(c, "unexpected packet");
return -1;
@ -613,7 +604,7 @@ static void mg_tls_server_cert(struct mg_connection *c) {
mg_tls_encrypt(c, cert, 13 + n, 0x16);
}
/* type adapter between uECC hash context and our sha256 implementation */
// type adapter between uECC hash context and our sha256 implementation
typedef struct SHA256_HashContext {
uECC_HashContext uECC;
mg_sha256_ctx ctx;
@ -661,12 +652,12 @@ static void mg_tls_server_verify_ecdsa(struct mg_connection *c) {
neg1 = !!(sig[0] & 0x80);
neg2 = !!(sig[32] & 0x80);
verify[8] = 0x30; /* ASN.1 SEQUENCE */
verify[8] = 0x30; // ASN.1 SEQUENCE
verify[9] = (uint8_t) (68 + neg1 + neg2);
verify[10] = 0x02; /* ASN.1 INTEGER */
verify[10] = 0x02; // ASN.1 INTEGER
verify[11] = (uint8_t) (32 + neg1);
memmove(verify + 12 + neg1, sig, 32);
verify[12 + 32 + neg1] = 0x02; /* ASN.1 INTEGER */
verify[12 + 32 + neg1] = 0x02; // ASN.1 INTEGER
verify[13 + 32 + neg1] = (uint8_t) (32 + neg2);
memmove(verify + 14 + 32 + neg1 + neg2, sig + 32, 32);
@ -794,7 +785,9 @@ void mg_tls_handshake(struct mg_connection *c) {
mg_tls_generate_application_keys(c);
tls->state = MG_TLS_HS_DONE;
// fallthrough
case MG_TLS_HS_DONE: c->is_tls_hs = 0; return;
case MG_TLS_HS_DONE:
c->is_tls_hs = 0;
return;
}
}
@ -838,7 +831,7 @@ void mg_tls_init(struct mg_connection *c, const struct mg_tls_opts *opts) {
mg_error(c, "tls oom");
return;
}
/* parse PEM or DER EC key */
// parse PEM or DER EC key
if (opts->key.ptr == NULL ||
mg_parse_pem(opts->key, mg_str_s("EC PRIVATE KEY"), &key) < 0) {
MG_ERROR(("Failed to load EC private key"));
@ -848,8 +841,8 @@ void mg_tls_init(struct mg_connection *c, const struct mg_tls_opts *opts) {
MG_ERROR(("EC private key too short"));
return;
}
/* expect ASN.1 SEQUENCE=[INTEGER=1, BITSTRING of 32 bytes, ...] */
/* 30 nn 02 01 01 04 20 [key] ... */
// expect ASN.1 SEQUENCE=[INTEGER=1, BITSTRING of 32 bytes, ...]
// 30 nn 02 01 01 04 20 [key] ...
if (key.ptr[0] != 0x30 || (key.ptr[1] & 0x80) != 0) {
MG_ERROR(("EC private key: ASN.1 bad sequence"));
return;
@ -860,7 +853,7 @@ void mg_tls_init(struct mg_connection *c, const struct mg_tls_opts *opts) {
memmove(tls->server_key, key.ptr + 7, 32);
free((void *) key.ptr);
/* parse PEM or DER certificate */
// parse PEM or DER certificate
if (mg_parse_pem(opts->cert, mg_str_s("CERTIFICATE"), &tls->server_cert_der) <
0) {
MG_ERROR(("Failed to load certificate"));

View File

@ -3171,3 +3171,4 @@ void uECC_point_mult(uECC_word_t *result, const uECC_word_t *point,
#endif /* uECC_ENABLE_VLI_API */
#endif // MG_TLS_BUILTIN
// End of uecc BSD-2

View File

@ -636,3 +636,4 @@ typedef uint64_t uECC_word_t;
#endif /* uECC_WORD_SIZE */
#endif /* _UECC_TYPES_H_ */
// End of uecc BSD-2