Add RT1060 examples

This commit is contained in:
Sergio R. Caprile 2023-10-27 16:19:12 -03:00
parent 6dabbe237d
commit 15b4d566e7
27 changed files with 1396 additions and 0 deletions

View File

@ -248,6 +248,19 @@ jobs:
- if: ${{ env.GO == 1 }}
run: make -C examples/nxp/rt1020-evk-make-freertos-builtin test VCON_API_KEY=${{secrets.VCON_API_KEY}}
test_rt1060:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
with: { fetch-depth: 3 }
- run: if ./test/match_changed_files.sh "^src|examples/nxp/rt1060.*-make-" ; then echo GO=1 >> $GITHUB_ENV ; fi
- if: ${{ env.GO == 1 }}
run: sudo apt -y update; sudo apt -y install gcc-arm-none-eabi
- if: ${{ env.GO == 1 }}
run: make -C examples/nxp/rt1060-evk-make-baremetal-builtin test VCON_API_KEY=${{secrets.VCON_API_KEY}}
- if: ${{ env.GO == 1 }}
run: make -C examples/nxp/rt1060-evk-make-freertos-builtin test VCON_API_KEY=${{secrets.VCON_API_KEY}}
test_tm4c:
runs-on: ubuntu-latest
steps:
@ -331,6 +344,8 @@ jobs:
- path: nxp/nxp-lpcxpresso54628-lwip-freertos
- path: nxp/rt1020-evk-make-baremetal-builtin
- path: nxp/rt1020-evk-make-freertos-builtin
- path: nxp/rt1060-evk-make-baremetal-builtin
- path: nxp/rt1060-evk-make-freertos-builtin
- path: nxp/nxp-twrk65f180m-lwip-freertos
- path: nxp/nxp-twrkv58f220m-lwip-freertos
- path: rp2040/pico-rmii

View File

@ -0,0 +1,73 @@
CFLAGS = -W -Wall -Wextra -Werror -Wundef -Wshadow -Wdouble-promotion
CFLAGS += -Wformat-truncation -fno-common -Wconversion -Wno-sign-conversion
CFLAGS += -g3 -Os -ffunction-sections -fdata-sections
CFLAGS += -I. -Icmsis_core/CMSIS/Core/Include -Icmsis_mcu/devices/MIMXRT1062 #-DCPU_MIMXRT1062DVL6B
CFLAGS += -mcpu=cortex-m7 -mthumb -mfloat-abi=hard -mfpu=fpv5-d16
LDFLAGS ?= -Tlink_ram.ld -nostdlib -nostartfiles --specs nano.specs -lc -lgcc -Wl,--gc-sections -Wl,-Map=$@.map
SOURCES = main.c syscalls.c sysinit.c
SOURCES += cmsis_mcu/devices/MIMXRT1062/gcc/startup_MIMXRT1062.S # NXP startup file. Compiler-dependent!
CFLAGS += -D__ATOLLIC__ -D__STARTUP_CLEAR_BSS # Make startup code work as expected
# Mongoose-specific. See https://mongoose.ws/documentation/#build-options
SOURCES += mongoose.c net.c packed_fs.c
CFLAGS += -DMG_ENABLE_TCPIP=1 -DMG_ARCH=MG_ARCH_NEWLIB -DMG_ENABLE_CUSTOM_MILLIS=1
CFLAGS += -DMG_ENABLE_CUSTOM_RANDOM=1 -DMG_ENABLE_PACKED_FS=1 -DMG_ENABLE_DRIVER_RT1020=1
CFLAGS += $(CFLAGS_EXTRA)
# Example specific build options. See README.md
CFLAGS += -DHTTP_URL=\"http://0.0.0.0/\" -DHTTPS_URL=\"https://0.0.0.0/\"
ifeq ($(OS),Windows_NT)
RM = cmd /C del /Q /F /S
else
RM = rm -rf
endif
all build example: firmware.bin
firmware.bin: firmware.elf
arm-none-eabi-objcopy -O binary $< $@
firmware.elf: cmsis_core cmsis_mcu $(SOURCES) hal.h link_ram.ld Makefile
arm-none-eabi-gcc $(SOURCES) $(CFLAGS) $(LDFLAGS) -o $@
arm-none-eabi-size $@
flash: firmware.bin
st-flash --reset write $< 0x8000000
cmsis_core: # ARM CMSIS core headers
git clone -q --depth 1 -b 5.9.0 https://github.com/ARM-software/CMSIS_5 $@
cmsis_mcu:
curl -sL https://mcuxpresso.nxp.com/cmsis_pack/repo/NXP.MIMXRT1062_DFP.17.1.0.pack -o $@.zip
mkdir $@ && cd $@ && unzip -q ../$@.zip
mbedtls: # mbedTLS library
git clone --depth 1 -b v2.28.2 https://github.com/mbed-tls/mbedtls $@
ifeq ($(TLS), mbedtls)
CFLAGS += -DMG_TLS=MG_TLS_MBED -Wno-conversion -Imbedtls/include
CFLAGS += -DMBEDTLS_CONFIG_FILE=\"mbedtls_config.h\" mbedtls/library/*.c
firmware.elf: mbedtls
endif
# Automated remote test. Requires env variable VCON_API_KEY set. See https://vcon.io/automated-firmware-tests/
DEVICE_URL ?= https://dash.vcon.io/api/v3/devices/13
update: firmware.bin
curl --fail-with-body -su :$(VCON_API_KEY) $(DEVICE_URL)/ota --data-binary @$<
curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"init"}'
curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"wm,e000edf0,a05f0003 wm,e000edfc,1 wm,e000ed0c,5fa0004"}'
curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"init"}'
PC=`curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"rm,4"}' | jq -r .resp[5:]` && \
SP=`curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"rm,0"}' | jq -r .resp[5:]` && \
REQ="wm,e000ed08,0 wr,d,$$SP wr,f,$$PC" && \
curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"'"$$REQ"'"}'
curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"wm,e000edf0,a05f0001"}'
test update: CFLAGS += -DUART_DEBUG=LPUART3
test: update
curl --fail-with-body -su :$(VCON_API_KEY) $(DEVICE_URL)/tx?t=5 | tee /tmp/output.txt
grep 'READY, IP:' /tmp/output.txt # Check for network init
clean:
$(RM) firmware.* *.su cmsis_core cmsis_mcu mbedtls *.zip

View File

@ -0,0 +1,321 @@
// Copyright (c) 2023 Cesanta Software Limited
// All rights reserved
// https://cache.nxp.com/secured/assets/documents/en/reference-manual/IMXRT1060XRM.pdf
// https://cache.nxp.com/secured/assets/documents/en/user-guide/MIMXRT1060EVKBUM.pdf
#pragma once
#include "MIMXRT1062.h"
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#define BIT(x) (1UL << (x))
#define SETBITS(R, CLEARMASK, SETMASK) (R) = ((R) & ~(CLEARMASK)) | (SETMASK)
#define PIN(bank, num) ((((bank) - '0') << 8) | (num))
#define PINNO(pin) (pin & 255)
#define PINBANK(pin) (pin >> 8)
// Use LED for blinking, D8: GPIO_AD_B0_08. GPIO1.8 (schematics, RM)
#define LED PIN('1', 8)
#ifndef UART_DEBUG
#define UART_DEBUG LPUART1
#endif
// No settable constants, see sysinit.c
#define SYS_FREQUENCY 600000000UL
static inline void spin(volatile uint32_t count) {
while (count--) (void) 0;
}
enum { CLOCK_OFF = 0U, CLOCK_ON_RUN = 1U, CLOCK_ON_RUN_WAIT = 3U };
static inline void clock_periph(uint32_t index, uint32_t shift, uint32_t val) {
volatile uint32_t *r = &CCM->CCGR0;
SETBITS(r[index], 3UL << shift, val << shift);
}
// which peripheral feeds the pin
static inline void gpio_mux_config(uint16_t index, uint8_t af) {
IOMUXC->SW_MUX_CTL_PAD[index] = af;
}
// which pin feeds the peripheral (2nd stage)
static inline void periph_mux_config(uint16_t index, uint8_t in) {
IOMUXC->SELECT_INPUT[index] = in;
}
enum { GPIO_MODE_INPUT, GPIO_MODE_OUTPUT };
enum { GPIO_OTYPE_PUSH_PULL, GPIO_OTYPE_OPEN_DRAIN };
enum { GPIO_SPEED_LOW, GPIO_SPEED_MEDIUM, GPIO_SPEED_MEDIUM_, GPIO_SPEED_HIGH };
enum { GPIO_PULL_NONE, GPIO_PULL_DOWN, GPIO_PULL_UP };
static inline GPIO_Type *gpio_bank(uint16_t pin) {
static const GPIO_Type *g[] = {NULL, GPIO1, GPIO2, GPIO3, NULL, GPIO5};
return (GPIO_Type *) g[PINBANK(pin)];
}
// pin driver/pull-up/down configuration (ignore "keeper")
static inline void gpio_pad_config(uint16_t index, uint8_t type, uint8_t speed,
uint8_t pull) {
bool dopull = pull > 0;
if (dopull) --pull;
IOMUXC->SW_PAD_CTL_PAD[index] =
IOMUXC_SW_PAD_CTL_PAD_SPEED(speed) | IOMUXC_SW_PAD_CTL_PAD_ODE(type) |
IOMUXC_SW_PAD_CTL_PAD_SRE(speed >= GPIO_SPEED_HIGH) |
IOMUXC_SW_PAD_CTL_PAD_PUE(1) | IOMUXC_SW_PAD_CTL_PAD_PKE(dopull) |
IOMUXC_SW_PAD_CTL_PAD_PUS(pull) | IOMUXC_SW_PAD_CTL_PAD_DSE(7);
}
static inline void gpio_init(uint16_t pin, uint8_t mode, uint8_t type,
uint8_t speed, uint8_t pull) {
GPIO_Type *gpio = gpio_bank(pin);
uint8_t bit = (uint8_t) PINNO(pin);
uint32_t mask = (uint32_t) BIT(PINNO(pin));
clock_periph(4, CCM_CCGR4_CG1_SHIFT, CLOCK_ON_RUN_WAIT); // iomuxc_ipg_clk_s
switch (PINBANK(pin)) {
case 1:
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B0_00 + bit, 5);
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B0_00 + bit, type, speed,
pull);
clock_periph(1, CCM_CCGR1_CG13_SHIFT, CLOCK_ON_RUN_WAIT);
break;
case 2:
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_B1_00 + bit, 5);
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_B1_00 + bit, type, speed,
pull);
clock_periph(0, CCM_CCGR0_CG15_SHIFT, CLOCK_ON_RUN_WAIT);
break;
case 3:
gpio_mux_config(bit < 12 ? kIOMUXC_SW_MUX_CTL_PAD_GPIO_SD_B1_00 + bit
: bit < 18
? kIOMUXC_SW_MUX_CTL_PAD_GPIO_SD_B0_00 + bit - 12
: kIOMUXC_SW_MUX_CTL_PAD_GPIO_EMC_32 + bit - 18,
5);
gpio_pad_config(bit < 12 ? kIOMUXC_SW_PAD_CTL_PAD_GPIO_SD_B1_00 + bit
: bit < 18
? kIOMUXC_SW_PAD_CTL_PAD_GPIO_SD_B0_00 + bit - 12
: kIOMUXC_SW_PAD_CTL_PAD_GPIO_EMC_32 + bit - 18,
type, speed, pull);
clock_periph(2, CCM_CCGR2_CG13_SHIFT, CLOCK_ON_RUN_WAIT);
break;
case 5:
// TODO(): support sw_mux
clock_periph(1, CCM_CCGR1_CG15_SHIFT, CLOCK_ON_RUN_WAIT);
break;
default:
break;
}
gpio->IMR &= ~mask;
if (mode == GPIO_MODE_INPUT) {
gpio->GDIR &= ~mask;
} else {
gpio->GDIR |= mask;
}
}
static inline void gpio_input(uint16_t pin) {
gpio_init(pin, GPIO_MODE_INPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_MEDIUM,
GPIO_PULL_NONE);
}
static inline void gpio_output(uint16_t pin) {
gpio_init(pin, GPIO_MODE_OUTPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_MEDIUM,
GPIO_PULL_NONE);
}
static inline bool gpio_read(uint16_t pin) {
GPIO_Type *gpio = gpio_bank(pin);
uint32_t mask = (uint32_t) BIT(PINNO(pin));
return gpio->DR & mask;
}
static inline void gpio_write(uint16_t pin, bool value) {
GPIO_Type *gpio = gpio_bank(pin);
uint32_t mask = (uint32_t) BIT(PINNO(pin));
if (value) {
gpio->DR |= mask;
} else {
gpio->DR &= ~mask;
}
}
static inline void gpio_toggle(uint16_t pin) {
gpio_write(pin, !gpio_read(pin));
}
// 14.5 Table 14-4: uart_clk_root
// see sysinit.c for clocks, (14.7.9: defaults to pll3_80m = PLL3/6/1 = 80MHz)
static inline void uart_init(LPUART_Type *uart, unsigned long baud) {
uint8_t af = 2; // Alternate function
uint16_t mr = 0, pr = 0, mt = 0, pt = 0; // pins
uint32_t freq = 80000000; // uart_clk_root frequency
if (uart == LPUART1)
mt = kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B0_12,
pt = kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B0_12,
mr = kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B0_13,
pr = kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B0_13;
if (uart == LPUART3)
mt = kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B1_06,
pt = kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B1_06,
mr = kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B1_07,
pr = kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B1_07;
if (uart == LPUART1) clock_periph(5, CCM_CCGR5_CG12_SHIFT, CLOCK_ON_RUN_WAIT);
if (uart == LPUART3) clock_periph(0, CCM_CCGR0_CG6_SHIFT, CLOCK_ON_RUN_WAIT);
clock_periph(4, CCM_CCGR4_CG1_SHIFT, CLOCK_ON_RUN_WAIT); // iomuxc_ipg_clk_s
gpio_mux_config(mt, af);
gpio_pad_config(pt, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_MEDIUM, GPIO_PULL_UP);
gpio_mux_config(mr, af);
gpio_pad_config(pr, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_MEDIUM, GPIO_PULL_UP);
uart->GLOBAL |= LPUART_GLOBAL_RST_MASK; // reset, CTRL = 0, defaults
uart->GLOBAL &= ~LPUART_GLOBAL_RST_MASK;
SETBITS(uart->BAUD,
LPUART_BAUD_OSR_MASK | LPUART_BAUD_SBR_MASK | LPUART_BAUD_SBNS_MASK,
LPUART_BAUD_OSR(16 - 1) |
LPUART_BAUD_SBR(freq / (16 * baud))); // Rx sample at 16x
SETBITS(uart->CTRL,
LPUART_CTRL_PE_MASK | LPUART_CTRL_M_MASK | LPUART_CTRL_ILT_MASK |
LPUART_CTRL_IDLECFG_MASK,
LPUART_CTRL_IDLECFG(1) | LPUART_CTRL_ILT(1) |
LPUART_BAUD_SBNS(0)); // no parity, idle 2 chars after 1 stop bit
uart->CTRL |= LPUART_CTRL_TE_MASK | LPUART_CTRL_RE_MASK;
}
static inline void uart_write_byte(LPUART_Type *uart, uint8_t byte) {
uart->DATA = byte;
while ((uart->STAT & LPUART_STAT_TDRE_MASK) == 0) spin(1);
}
static inline void uart_write_buf(LPUART_Type *uart, char *buf, size_t len) {
while (len-- > 0) uart_write_byte(uart, *(uint8_t *) buf++);
}
static inline int uart_read_ready(LPUART_Type *uart) {
(void) uart;
return uart->STAT & LPUART_STAT_RDRF_MASK;
}
static inline uint8_t uart_read_byte(LPUART_Type *uart) {
return (uint8_t) (uart->DATA & 255);
}
static inline void rng_init(void) {
clock_periph(6, CCM_CCGR6_CG6_SHIFT, CLOCK_ON_RUN_WAIT); // trng_clk
SETBITS(TRNG->MCTL,
TRNG_MCTL_PRGM_MASK | TRNG_MCTL_ERR_MASK | TRNG_MCTL_RST_DEF_MASK,
TRNG_MCTL_PRGM(1) | TRNG_MCTL_ERR(1) |
TRNG_MCTL_RST_DEF(1)); // reset to default values
SETBITS(TRNG->MCTL, TRNG_MCTL_PRGM_MASK | TRNG_MCTL_ERR_MASK,
TRNG_MCTL_PRGM(0)); // set to run mode
(void) TRNG->ENT[TRNG_ENT_COUNT - 1]; // start new entropy generation
(void) TRNG->ENT[0]; // defect workaround
}
static inline uint32_t rng_read(void) {
static uint8_t idx = 0;
while ((TRNG->MCTL & TRNG_MCTL_ENT_VAL_MASK) == 0) (void) 0;
uint32_t data = TRNG->ENT[idx++]; // read data
idx %= TRNG_ENT_COUNT; // stay within array limits
if (idx == 0) // we've just read TRNG_ENT_COUNT - 1
(void) TRNG->ENT[0]; // defect workaround
return data;
}
// - PHY has no xtal, XI driven from ENET_REF_CLK1 (labeled as ENET_TX_REF_CLK
// (GPIO_AD_B1_10)), generated by the MCU
// - PHY RST connected to GPIO1.9 (GPIO_AD_B0_09); INTRP/NAND_TREE connected to
// GPIO1.10 (GPIO_AD_B0_10)
// - 41.4 REF_CLK1 is RMII mode reference clock for Rx, Tx, and SMI; it is I/O
// - 11.3.2 IOMUXC_GPR_GPR1
// - bit 13: ENET1_CLK_SEL --> 0 ENET1 TX reference clock driven by
// ref_enetpll and output via ENET_REF_CLK1 (labeled as ENET_REF_CLK
// elsewhere)
// - bit 17: ENET1_TX_CLK_DIR --> 1 ENET1_TX_CLK output driver enabled
// - 14.6.1.3.6 Ethernet PLL (PLL6)
// - 14.8.14: configure PLL6 to generate 50MHz clocks for ENET and RMII.
static inline void ethernet_init(void) {
// setup PLL and clock ENET from it
SETBITS(CCM_ANALOG->PLL_ENET, CCM_ANALOG_PLL_ENET_BYPASS_CLK_SRC_MASK,
CCM_ANALOG_PLL_ENET_BYPASS_MASK |
CCM_ANALOG_PLL_ENET_BYPASS_CLK_SRC(0)); // bypass to 24MHz osc
SETBITS(
CCM_ANALOG->PLL_ENET,
CCM_ANALOG_PLL_ENET_DIV_SELECT_MASK | CCM_ANALOG_PLL_ENET_POWERDOWN_MASK,
CCM_ANALOG_PLL_ENET_DIV_SELECT(1) | CCM_ANALOG_PLL_ENET_ENABLE_MASK);
while ((CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_LOCK_MASK) == 0)
spin(1); // wait until it is stable
CCM_ANALOG->PLL_ENET &= ~CCM_ANALOG_PLL_ENET_BYPASS_MASK;
gpio_init(PIN('1', 9), GPIO_MODE_OUTPUT, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_MEDIUM, GPIO_PULL_UP); // set GPIO1.9 as GPIO (PHY \RST)
gpio_write(PIN('1', 9), 0); // reset PHY
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_B1_10,
6); // set for ENET_REF_CLK
IOMUXC->SW_MUX_CTL_PAD[kIOMUXC_SW_MUX_CTL_PAD_GPIO_B1_10] |=
IOMUXC_SW_MUX_CTL_PAD_SION(1); // loop signal back from pin
periph_mux_config(kIOMUXC_ENET_IPG_CLK_RMII_SELECT_INPUT,
1); // drive peripheral from B1_10, so RMII clock is taken
// from ENET_REF_CLK
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_B1_10, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
IOMUXC_GPR->GPR1 |=
IOMUXC_GPR_GPR1_ENET1_TX_CLK_DIR(1); // Set ENET_TX_CLK as output
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_B1_04, 3); // set for RXDATA0
periph_mux_config(kIOMUXC_ENET0_RXDATA_SELECT_INPUT,
1); // drive peripheral from B1_04
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_B1_04, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_B1_05, 3); // set for RXDATA1
periph_mux_config(kIOMUXC_ENET1_RXDATA_SELECT_INPUT,
1); // drive peripheral from B1_05
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_B1_05, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_B1_06, 3); // set for CRS
periph_mux_config(kIOMUXC_ENET_RXEN_SELECT_INPUT,
1); // drive peripheral from B1_06
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_B1_06, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_B1_07, 3); // set for TXDATA0
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_B1_07, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_B1_08, 3); // set for TXDATA1
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_B1_08, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_B1_09, 3); // set for TXEN
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_B1_09, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_B1_11, 3); // set for RXERR
periph_mux_config(kIOMUXC_ENET_RXERR_SELECT_INPUT,
1); // drive peripheral from B0_12
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_B1_11, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_EMC_40, 4); // set for MDC
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_EMC_40, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_MEDIUM, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_EMC_41, 4); // set for MDIO
periph_mux_config(kIOMUXC_ENET_MDIO_SELECT_INPUT,
1); // drive peripheral from EMC_41
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_EMC_41, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_MEDIUM, GPIO_PULL_UP);
gpio_init(PIN('1', 10), GPIO_MODE_OUTPUT, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_MEDIUM,
GPIO_PULL_UP); // set GPIO1.10 as GPIO (PHY INTRP/NAND_TREE)
gpio_write(PIN('1', 10), 1); // prevent NAND_TREE
spin(10000); // keep PHY RST low for a while
gpio_write(PIN('1', 9), 1); // deassert RST
gpio_init(PIN('1', 10), GPIO_MODE_INPUT, 0, GPIO_SPEED_MEDIUM,
GPIO_PULL_UP); // setup IRQ (pulled-up)(not used)
clock_periph(1, CCM_CCGR1_CG5_SHIFT, CLOCK_ON_RUN_WAIT); // enet_ipg_clk
NVIC_EnableIRQ(ENET_IRQn); // Setup Ethernet IRQ handler
}
// Helper macro for MAC generation, byte reads not allowed
#define GENERATE_LOCALLY_ADMINISTERED_MAC() \
{ \
2, OCOTP->CFG0 & 255, (OCOTP->CFG0 >> 10) & 255, \
((OCOTP->CFG0 >> 19) ^ (OCOTP->CFG1 >> 19)) & 255, \
(OCOTP->CFG1 >> 10) & 255, OCOTP->CFG1 & 255 \
}
// NOTE: You can fuse your own MAC and read it from OCOTP->MAC0, OCOTP->MAC1,
// OCOTP->MAC2

View File

@ -0,0 +1,22 @@
ENTRY(Reset_Handler);
MEMORY {
flash_cfg(rx) : ORIGIN = 0x60000000, LENGTH = 4k
flash_ivt(rx) : ORIGIN = 0x60001000, LENGTH = 4k
flash_irq(rx) : ORIGIN = 0x60002000, LENGTH = 1k
flash_code(rx) : ORIGIN = 0x60002400, LENGTH = 8183k
ram0(rx) : ORIGIN = 0x00000000, LENGTH = 128k
ram1(rw) : ORIGIN = 0x20000000, LENGTH = 128k
ram2(rw) : ORIGIN = 0x20200000, LENGTH = 256k
}
__StackTop = ORIGIN(ram2) + LENGTH(ram2);
SECTIONS {
.cfg : { __FLASH_BASE = .; KEEP(* (.cfg)) } > flash_cfg
.ivt : { KEEP(*(.ivt)) } > flash_ivt
.irq : { KEEP(*(.isr_vector)) } > flash_irq
.text : { *(.text* .text.*) *(.rodata*) __etext = .; } > flash_code
.data : { __data_start__ = .; *(.data SORT(.data.*)) __data_end__ = .; } > ram1 AT > flash_code
.bss : { __bss_start__ = .; *(.bss SORT(.bss.*) COMMON) __bss_end__ = .; } > ram1
_end = .;
}

View File

@ -0,0 +1,16 @@
ENTRY(Reset_Handler);
MEMORY {
itcram(rx) : ORIGIN = 0x00000000, LENGTH = 128k
dtcram(rw) : ORIGIN = 0x20000000, LENGTH = 128k
ocram(rw) : ORIGIN = 0x20200000, LENGTH = 256k /* Is this cached ? */
}
__StackTop = ORIGIN(dtcram) + LENGTH(dtcram);
SECTIONS {
.irq : { KEEP(*(.isr_vector)) } > itcram
.text : { *(.text* .text.*) *(.rodata*) ; } > itcram
.data : { __data_start__ = .; *(.data SORT(.data.*)) __data_end__ = .; } > dtcram AT > itcram
__etext = LOADADDR(.data);
.bss : { __bss_start__ = .; *(.bss SORT(.bss.*) COMMON) __bss_end__ = .; } > dtcram
_end = .;
}

View File

@ -0,0 +1,70 @@
// Copyright (c) 2022-2023 Cesanta Software Limited
// All rights reserved
#include "hal.h"
#include "mongoose.h"
#include "net.h"
#define BLINK_PERIOD_MS 1000 // LED blinking period in millis
static volatile uint64_t s_ticks; // Milliseconds since boot
void SysTick_Handler(void) { // SyStick IRQ handler, triggered every 1ms
s_ticks++;
}
uint64_t mg_millis(void) { // Let Mongoose use our uptime function
return s_ticks; // Return number of milliseconds since boot
}
void mg_random(void *buf, size_t len) { // Use on-board RNG
for (size_t n = 0; n < len; n += sizeof(uint32_t)) {
uint32_t r = rng_read();
memcpy((char *) buf + n, &r, n + sizeof(r) > len ? len - n : sizeof(r));
}
}
static void timer_fn(void *arg) {
gpio_toggle(LED); // Blink LED
struct mg_tcpip_if *ifp = arg; // And show
const char *names[] = {"down", "up", "req", "ready"}; // network stats
MG_INFO(("Ethernet: %s, IP: %M, rx:%u, tx:%u, dr:%u, er:%u",
names[ifp->state], mg_print_ip4, &ifp->ip, ifp->nrecv, ifp->nsent,
ifp->ndrop, ifp->nerr));
}
int main(void) {
gpio_output(LED); // Setup blue LED
uart_init(UART_DEBUG, 115200); // Initialise debug printf
ethernet_init(); // Initialise ethernet pins
MG_INFO(("Starting, CPU freq %g MHz", (double) SystemCoreClock / 1000000));
struct mg_mgr mgr; // Initialise
mg_mgr_init(&mgr); // Mongoose event manager
mg_log_set(MG_LL_DEBUG); // Set log level
// Initialise Mongoose network stack
struct mg_tcpip_driver_rt1020_data driver_data = {.mdc_cr = 24};
struct mg_tcpip_if mif = {.mac = GENERATE_LOCALLY_ADMINISTERED_MAC(),
// Uncomment below for static configuration:
// .ip = mg_htonl(MG_U32(192, 168, 0, 223)),
// .mask = mg_htonl(MG_U32(255, 255, 255, 0)),
// .gw = mg_htonl(MG_U32(192, 168, 0, 1)),
.driver = &mg_tcpip_driver_rt1020,
.driver_data = &driver_data};
mg_tcpip_init(&mgr, &mif);
mg_timer_add(&mgr, BLINK_PERIOD_MS, MG_TIMER_REPEAT, timer_fn, &mif);
MG_INFO(("MAC: %M. Waiting for IP...", mg_print_mac, mif.mac));
while (mif.state != MG_TCPIP_STATE_READY) {
mg_mgr_poll(&mgr, 0);
}
MG_INFO(("Initialising application..."));
web_init(&mgr);
MG_INFO(("Starting event loop"));
for (;;) {
mg_mgr_poll(&mgr, 0);
}
return 0;
}

View File

@ -0,0 +1 @@
../../../mongoose.c

View File

@ -0,0 +1 @@
../../../mongoose.h

View File

@ -0,0 +1 @@
../../device-dashboard/net.c

View File

@ -0,0 +1 @@
../../device-dashboard/net.h

View File

@ -0,0 +1 @@
../../device-dashboard/packed_fs.c

View File

@ -0,0 +1,98 @@
#include <sys/stat.h>
#include "hal.h"
int _fstat(int fd, struct stat *st) {
if (fd < 0) return -1;
st->st_mode = S_IFCHR;
return 0;
}
void *_sbrk(int incr) {
extern char _end;
static unsigned char *heap = NULL;
unsigned char *prev_heap;
unsigned char x = 0, *heap_end = (unsigned char *)((size_t) &x - 512);
(void) x;
if (heap == NULL) heap = (unsigned char *) &_end;
prev_heap = heap;
if (heap + incr > heap_end) return (void *) -1;
heap += incr;
return prev_heap;
}
int _open(const char *path) {
(void) path;
return -1;
}
int _close(int fd) {
(void) fd;
return -1;
}
int _isatty(int fd) {
(void) fd;
return 1;
}
int _lseek(int fd, int ptr, int dir) {
(void) fd, (void) ptr, (void) dir;
return 0;
}
void _exit(int status) {
(void) status;
for (;;) asm volatile("BKPT #0");
}
void _kill(int pid, int sig) {
(void) pid, (void) sig;
}
int _getpid(void) {
return -1;
}
int _write(int fd, char *ptr, int len) {
(void) fd, (void) ptr, (void) len;
if (fd == 1) uart_write_buf(UART_DEBUG, ptr, (size_t) len);
return -1;
}
int _read(int fd, char *ptr, int len) {
(void) fd, (void) ptr, (void) len;
return -1;
}
int _link(const char *a, const char *b) {
(void) a, (void) b;
return -1;
}
int _unlink(const char *a) {
(void) a;
return -1;
}
int _stat(const char *path, struct stat *st) {
(void) path, (void) st;
return -1;
}
int mkdir(const char *path, mode_t mode) {
(void) path, (void) mode;
return -1;
}
void _init(void) {}
extern uint64_t mg_now(void);
int _gettimeofday(struct timeval *tv, void *tz) {
uint64_t now = mg_now();
(void) tz;
tv->tv_sec = (time_t) (now / 1000);
tv->tv_usec = (unsigned long) ((now % 1000) * 1000);
return 0;
}

View File

@ -0,0 +1,67 @@
// Copyright (c) 2023 Cesanta Software Limited
// All rights reserved
//
// This file contains essentials required by the CMSIS:
// uint32_t SystemCoreClock - holds the system core clock value
// SystemInit() - initialises the system, e.g. sets up clocks
#include "hal.h"
uint32_t SystemCoreClock = SYS_FREQUENCY;
// - 14.4, Figure 14-2: clock tree
// - 14.7.4: ARM_PODF defaults to /2
// - 14.7.5: AHB_PODF defaults to /1; IPG_PODF defaults to /4; PERIPH_CLK_SEL
// defaults to derive clock from pre_periph_clk_sel
// - 14.7.6: PRE_PERIPH_CLK_SEL defaults to derive clock from divided PLL1.
// - (For 528MHz operation, we need to set it to derive clock from PLL2).
// - 14.6.1.3.1 ARM PLL (PLL1); 13.3.2.2 PLLs
// - 14.8.1: PLL1 is powered off and bypassed to 24MHz. Fout = 24MHz *
// div_select/2
// - For 600MHz operation, we need to set PLL1 on
// - Datasheet 4.1.3: System frequency/Bus frequency max 600/150MHz respectively
// (AHB/IPG)
// - MCUXpresso: IPG_CLK_ROOT <= 150MHz; PERCLK_CLK_ROOT <= 75MHz
// - Datasheet 4.9.4.1.1/2: the processor clock frequency must exceed twice the
// ENET_RX_CLK/ENET_TX_CLK frequency.
// - Datasheet 4.9.4.2: no details for RMII (above is for MII), assumed 50MHz
// min processor clock
// - Datasheet 4.1.3, Table 10: "Overdrive" run mode requires 1.25V core voltage
// minimum; 528 MHz does not.
void SystemInit(void) { // Called automatically by startup code (ints masked)
SCB->CPACR |= ((3UL << 10 * 2) | (3UL << 11 * 2)); // Enable FPU
asm("DSB");
asm("ISB");
// 53.4.2: Disable watchdog after reset (unlocked)
RTWDOG->CS &= ~RTWDOG_CS_EN_MASK;
RTWDOG->TOVAL = 0xFFFF;
while (RTWDOG->CS & RTWDOG_CS_ULK_MASK) spin(1); // wait for lock
while ((RTWDOG->CS & RTWDOG_CS_RCS_MASK) == 0)
spin(1); // wait for new config
// Set VDD_SOC to 1.25V
SETBITS(DCDC->REG3, DCDC_REG3_TRG_MASK, DCDC_REG3_TRG(0x12));
while ((DCDC->REG0 & DCDC_REG0_STS_DC_OK_MASK) == 0)
spin(1); // Wait for DCDC_STS_DC_OK
SETBITS(CCM->CSCMR1, CCM_CSCMR1_PERCLK_PODF_MASK,
CCM_CSCMR1_PERCLK_PODF(1)); // Set PERCLK divider /2 (75MHz)
// Set clock to 600 MHz. Power PLL on and configure divider
SETBITS(CCM_ANALOG->PLL_ARM,
CCM_ANALOG_PLL_ARM_POWERDOWN_MASK |
CCM_ANALOG_PLL_ARM_SET_DIV_SELECT_MASK,
CCM_ANALOG_PLL_ARM_SET_DIV_SELECT(100));
while ((CCM_ANALOG->PLL_ARM & CCM_ANALOG_PLL_ARM_LOCK_MASK) == 0)
spin(1); // wait until it is stable
CCM_ANALOG->PLL_ARM &=
~CCM_ANALOG_PLL_ARM_BYPASS_MASK; // Disable Bypass (switch to PLL)
// 14.5 Table 14-4: uart_clk_root
// 14.4: uart_clk_root = PLL3/6 or OSC; CCM_CSCDR1 (14.7.9) defaults to
// PLL3/6/1
CCM_ANALOG->PLL_USB1 |= CCM_ANALOG_PLL_USB1_POWER_MASK; // Power PLL on
while ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_LOCK_MASK) == 0)
spin(1); // wait until it is stable
CCM_ANALOG->PLL_USB1 &=
~CCM_ANALOG_PLL_USB1_BYPASS_MASK; // Disable Bypass (switch to PLL)
rng_init(); // Initialise random number generator
// NXP startup code calls SystemInit BEFORE initializing RAM...
SysTick_Config(SYS_FREQUENCY / 1000); // Sys tick every 1ms
}

View File

@ -0,0 +1,38 @@
#pragma once
#include "hal.h"
#define configUSE_PREEMPTION 1
#define configCPU_CLOCK_HZ SYS_FREQUENCY
#define configTICK_RATE_HZ 1000
#define configMAX_PRIORITIES 5
#define configUSE_16_BIT_TICKS 0
#define configUSE_TICK_HOOK 0
#define configUSE_IDLE_HOOK 0
#define configUSE_TIMERS 0
#define configUSE_CO_ROUTINES 0
#define configUSE_MALLOC_FAILED_HOOK 0
#define configMINIMAL_STACK_SIZE 128
#define configTOTAL_HEAP_SIZE (1024 * 32)
#define INCLUDE_vTaskDelay 1
#define INCLUDE_xTaskGetSchedulerState 1 // trying
#ifdef __NVIC_PRIO_BITS
#define configPRIO_BITS __NVIC_PRIO_BITS
#else
#define configPRIO_BITS 4
#endif
#define configLIBRARY_LOWEST_INTERRUPT_PRIORITY 15
#define configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY 5
#define configKERNEL_INTERRUPT_PRIORITY \
(configLIBRARY_LOWEST_INTERRUPT_PRIORITY << (8 - configPRIO_BITS))
#define configMAX_SYSCALL_INTERRUPT_PRIORITY \
(configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY << (8 - configPRIO_BITS))
#define configASSERT(expr) \
if (!(expr)) printf("FAILURE %s:%d: %s\n", __FILE__, __LINE__, #expr)
#define vPortSVCHandler SVC_Handler
#define xPortPendSVHandler PendSV_Handler
#define xPortSysTickHandler SysTick_Handler

View File

@ -0,0 +1,69 @@
CFLAGS = -W -Wall -Wextra -Werror -Wundef -Wshadow -Wdouble-promotion
CFLAGS += -Wformat-truncation -fno-common -Wconversion -Wno-sign-conversion
CFLAGS += -g3 -Os -ffunction-sections -fdata-sections
CFLAGS += -I. -Icmsis_core/CMSIS/Core/Include -Icmsis_mcu/devices/MIMXRT1062 #-DCPU_MIMXRT1062DVL6B
CFLAGS += -mcpu=cortex-m7 -mthumb -mfloat-abi=hard -mfpu=fpv5-d16
LDFLAGS ?= -Tlink_ram.ld -nostdlib -nostartfiles --specs nano.specs -lc -lgcc -Wl,--gc-sections -Wl,-Map=$@.map
SOURCES = main.c syscalls.c sysinit.c
SOURCES += cmsis_mcu/devices/MIMXRT1062/gcc/startup_MIMXRT1062.S # NXP startup file. Compiler-dependent!
CFLAGS += -D__ATOLLIC__ -D__STARTUP_CLEAR_BSS # Make startup code work as expected
# FreeRTOS. RT1060 has a Cortex-M7 r1p2 core, FreeRTOS recommends using CM4F port for non-r0p1 CM7 micros
SOURCES += FreeRTOS-Kernel/portable/MemMang/heap_4.c
SOURCES += FreeRTOS-Kernel/portable/GCC/ARM_CM4F/port.c
CFLAGS += -IFreeRTOS-Kernel/include
CFLAGS += -IFreeRTOS-Kernel/portable/GCC/ARM_CM4F -Wno-conversion
SOURCES += mongoose.c net.c packed_fs.c
CFLAGS += $(CFLAGS_EXTRA) # Mongoose options are defined in mongoose_custom.h
# Example specific build options. See README.md
CFLAGS += -DHTTP_URL=\"http://0.0.0.0/\"
ifeq ($(OS),Windows_NT)
RM = cmd /C del /Q /F /S
else
RM = rm -rf
endif
all build example: firmware.bin
firmware.bin: firmware.elf
arm-none-eabi-objcopy -O binary $< $@
firmware.elf: FreeRTOS-Kernel cmsis_core cmsis_mcu $(SOURCES) hal.h link_ram.ld mongoose_custom.h
arm-none-eabi-gcc $(SOURCES) $(wildcard FreeRTOS-Kernel/*.c) $(CFLAGS) $(LDFLAGS) -o $@
flash: firmware.bin
st-flash --reset write $< 0x8000000
cmsis_core: # ARM CMSIS core headers
git clone --depth 1 -b 5.9.0 https://github.com/ARM-software/CMSIS_5 $@
cmsis_mcu:
curl -sL https://mcuxpresso.nxp.com/cmsis_pack/repo/NXP.MIMXRT1062_DFP.17.1.0.pack -o $@.zip
mkdir $@ && cd $@ && unzip -q ../$@.zip
FreeRTOS-Kernel: # FreeRTOS sources
git clone --depth 1 -b V10.5.0 https://github.com/FreeRTOS/FreeRTOS-Kernel $@
# Automated remote test. Requires env variable VCON_API_KEY set. See https://vcon.io/automated-firmware-tests/
DEVICE_URL ?= https://dash.vcon.io/api/v3/devices/13
update: firmware.bin
curl --fail-with-body -su :$(VCON_API_KEY) $(DEVICE_URL)/ota --data-binary @$<
curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"init"}'
curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"wm,e000edf0,a05f0003 wm,e000edfc,1 wm,e000ed0c,5fa0004"}'
curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"init"}'
PC=`curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"rm,4"}' | jq -r .resp[5:]` && \
SP=`curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"rm,0"}' | jq -r .resp[5:]` && \
REQ="wm,e000ed08,0 wr,d,$$SP wr,f,$$PC" && \
curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"'"$$REQ"'"}'
curl -su :$(VCON_API_KEY) $(DEVICE_URL)/rpc/swd.exec -d '{"req":"wm,e000edf0,a05f0001"}'
test update: CFLAGS += -DUART_DEBUG=LPUART3
test: update
curl --fail-with-body -su :$(VCON_API_KEY) $(DEVICE_URL)/tx?t=5 | tee /tmp/output.txt
grep 'READY, IP:' /tmp/output.txt # Check for network init
# grep 'MQTT connected' /tmp/output.txt # Check for MQTT connection success
clean:
$(RM) firmware.* *.su cmsis_core cmsis_mcu FreeRTOS-Kernel *.zip

View File

@ -0,0 +1,321 @@
// Copyright (c) 2023 Cesanta Software Limited
// All rights reserved
// https://cache.nxp.com/secured/assets/documents/en/reference-manual/IMXRT1060XRM.pdf
// https://cache.nxp.com/secured/assets/documents/en/user-guide/MIMXRT1060EVKBUM.pdf
#pragma once
#include "MIMXRT1062.h"
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#define BIT(x) (1UL << (x))
#define SETBITS(R, CLEARMASK, SETMASK) (R) = ((R) & ~(CLEARMASK)) | (SETMASK)
#define PIN(bank, num) ((((bank) - '0') << 8) | (num))
#define PINNO(pin) (pin & 255)
#define PINBANK(pin) (pin >> 8)
// Use LED for blinking, D8: GPIO_AD_B0_08. GPIO1.8 (schematics, RM)
#define LED PIN('1', 8)
#ifndef UART_DEBUG
#define UART_DEBUG LPUART1
#endif
// No settable constants, see sysinit.c
#define SYS_FREQUENCY 600000000UL
static inline void spin(volatile uint32_t count) {
while (count--) (void) 0;
}
enum { CLOCK_OFF = 0U, CLOCK_ON_RUN = 1U, CLOCK_ON_RUN_WAIT = 3U };
static inline void clock_periph(uint32_t index, uint32_t shift, uint32_t val) {
volatile uint32_t *r = &CCM->CCGR0;
SETBITS(r[index], 3UL << shift, val << shift);
}
// which peripheral feeds the pin
static inline void gpio_mux_config(uint16_t index, uint8_t af) {
IOMUXC->SW_MUX_CTL_PAD[index] = af;
}
// which pin feeds the peripheral (2nd stage)
static inline void periph_mux_config(uint16_t index, uint8_t in) {
IOMUXC->SELECT_INPUT[index] = in;
}
enum { GPIO_MODE_INPUT, GPIO_MODE_OUTPUT };
enum { GPIO_OTYPE_PUSH_PULL, GPIO_OTYPE_OPEN_DRAIN };
enum { GPIO_SPEED_LOW, GPIO_SPEED_MEDIUM, GPIO_SPEED_MEDIUM_, GPIO_SPEED_HIGH };
enum { GPIO_PULL_NONE, GPIO_PULL_DOWN, GPIO_PULL_UP };
static inline GPIO_Type *gpio_bank(uint16_t pin) {
static const GPIO_Type *g[] = {NULL, GPIO1, GPIO2, GPIO3, NULL, GPIO5};
return (GPIO_Type *) g[PINBANK(pin)];
}
// pin driver/pull-up/down configuration (ignore "keeper")
static inline void gpio_pad_config(uint16_t index, uint8_t type, uint8_t speed,
uint8_t pull) {
bool dopull = pull > 0;
if (dopull) --pull;
IOMUXC->SW_PAD_CTL_PAD[index] =
IOMUXC_SW_PAD_CTL_PAD_SPEED(speed) | IOMUXC_SW_PAD_CTL_PAD_ODE(type) |
IOMUXC_SW_PAD_CTL_PAD_SRE(speed >= GPIO_SPEED_HIGH) |
IOMUXC_SW_PAD_CTL_PAD_PUE(1) | IOMUXC_SW_PAD_CTL_PAD_PKE(dopull) |
IOMUXC_SW_PAD_CTL_PAD_PUS(pull) | IOMUXC_SW_PAD_CTL_PAD_DSE(7);
}
static inline void gpio_init(uint16_t pin, uint8_t mode, uint8_t type,
uint8_t speed, uint8_t pull) {
GPIO_Type *gpio = gpio_bank(pin);
uint8_t bit = (uint8_t) PINNO(pin);
uint32_t mask = (uint32_t) BIT(PINNO(pin));
clock_periph(4, CCM_CCGR4_CG1_SHIFT, CLOCK_ON_RUN_WAIT); // iomuxc_ipg_clk_s
switch (PINBANK(pin)) {
case 1:
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B0_00 + bit, 5);
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B0_00 + bit, type, speed,
pull);
clock_periph(1, CCM_CCGR1_CG13_SHIFT, CLOCK_ON_RUN_WAIT);
break;
case 2:
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_B1_00 + bit, 5);
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_B1_00 + bit, type, speed,
pull);
clock_periph(0, CCM_CCGR0_CG15_SHIFT, CLOCK_ON_RUN_WAIT);
break;
case 3:
gpio_mux_config(bit < 12 ? kIOMUXC_SW_MUX_CTL_PAD_GPIO_SD_B1_00 + bit
: bit < 18
? kIOMUXC_SW_MUX_CTL_PAD_GPIO_SD_B0_00 + bit - 12
: kIOMUXC_SW_MUX_CTL_PAD_GPIO_EMC_32 + bit - 18,
5);
gpio_pad_config(bit < 12 ? kIOMUXC_SW_PAD_CTL_PAD_GPIO_SD_B1_00 + bit
: bit < 18
? kIOMUXC_SW_PAD_CTL_PAD_GPIO_SD_B0_00 + bit - 12
: kIOMUXC_SW_PAD_CTL_PAD_GPIO_EMC_32 + bit - 18,
type, speed, pull);
clock_periph(2, CCM_CCGR2_CG13_SHIFT, CLOCK_ON_RUN_WAIT);
break;
case 5:
// TODO(): support sw_mux
clock_periph(1, CCM_CCGR1_CG15_SHIFT, CLOCK_ON_RUN_WAIT);
break;
default:
break;
}
gpio->IMR &= ~mask;
if (mode == GPIO_MODE_INPUT) {
gpio->GDIR &= ~mask;
} else {
gpio->GDIR |= mask;
}
}
static inline void gpio_input(uint16_t pin) {
gpio_init(pin, GPIO_MODE_INPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_MEDIUM,
GPIO_PULL_NONE);
}
static inline void gpio_output(uint16_t pin) {
gpio_init(pin, GPIO_MODE_OUTPUT, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_MEDIUM,
GPIO_PULL_NONE);
}
static inline bool gpio_read(uint16_t pin) {
GPIO_Type *gpio = gpio_bank(pin);
uint32_t mask = (uint32_t) BIT(PINNO(pin));
return gpio->DR & mask;
}
static inline void gpio_write(uint16_t pin, bool value) {
GPIO_Type *gpio = gpio_bank(pin);
uint32_t mask = (uint32_t) BIT(PINNO(pin));
if (value) {
gpio->DR |= mask;
} else {
gpio->DR &= ~mask;
}
}
static inline void gpio_toggle(uint16_t pin) {
gpio_write(pin, !gpio_read(pin));
}
// 14.5 Table 14-4: uart_clk_root
// see sysinit.c for clocks, (14.7.9: defaults to pll3_80m = PLL3/6/1 = 80MHz)
static inline void uart_init(LPUART_Type *uart, unsigned long baud) {
uint8_t af = 2; // Alternate function
uint16_t mr = 0, pr = 0, mt = 0, pt = 0; // pins
uint32_t freq = 80000000; // uart_clk_root frequency
if (uart == LPUART1)
mt = kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B0_12,
pt = kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B0_12,
mr = kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B0_13,
pr = kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B0_13;
if (uart == LPUART3)
mt = kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B1_06,
pt = kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B1_06,
mr = kIOMUXC_SW_MUX_CTL_PAD_GPIO_AD_B1_07,
pr = kIOMUXC_SW_PAD_CTL_PAD_GPIO_AD_B1_07;
if (uart == LPUART1) clock_periph(5, CCM_CCGR5_CG12_SHIFT, CLOCK_ON_RUN_WAIT);
if (uart == LPUART3) clock_periph(0, CCM_CCGR0_CG6_SHIFT, CLOCK_ON_RUN_WAIT);
clock_periph(4, CCM_CCGR4_CG1_SHIFT, CLOCK_ON_RUN_WAIT); // iomuxc_ipg_clk_s
gpio_mux_config(mt, af);
gpio_pad_config(pt, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_MEDIUM, GPIO_PULL_UP);
gpio_mux_config(mr, af);
gpio_pad_config(pr, GPIO_OTYPE_PUSH_PULL, GPIO_SPEED_MEDIUM, GPIO_PULL_UP);
uart->GLOBAL |= LPUART_GLOBAL_RST_MASK; // reset, CTRL = 0, defaults
uart->GLOBAL &= ~LPUART_GLOBAL_RST_MASK;
SETBITS(uart->BAUD,
LPUART_BAUD_OSR_MASK | LPUART_BAUD_SBR_MASK | LPUART_BAUD_SBNS_MASK,
LPUART_BAUD_OSR(16 - 1) |
LPUART_BAUD_SBR(freq / (16 * baud))); // Rx sample at 16x
SETBITS(uart->CTRL,
LPUART_CTRL_PE_MASK | LPUART_CTRL_M_MASK | LPUART_CTRL_ILT_MASK |
LPUART_CTRL_IDLECFG_MASK,
LPUART_CTRL_IDLECFG(1) | LPUART_CTRL_ILT(1) |
LPUART_BAUD_SBNS(0)); // no parity, idle 2 chars after 1 stop bit
uart->CTRL |= LPUART_CTRL_TE_MASK | LPUART_CTRL_RE_MASK;
}
static inline void uart_write_byte(LPUART_Type *uart, uint8_t byte) {
uart->DATA = byte;
while ((uart->STAT & LPUART_STAT_TDRE_MASK) == 0) spin(1);
}
static inline void uart_write_buf(LPUART_Type *uart, char *buf, size_t len) {
while (len-- > 0) uart_write_byte(uart, *(uint8_t *) buf++);
}
static inline int uart_read_ready(LPUART_Type *uart) {
(void) uart;
return uart->STAT & LPUART_STAT_RDRF_MASK;
}
static inline uint8_t uart_read_byte(LPUART_Type *uart) {
return (uint8_t) (uart->DATA & 255);
}
static inline void rng_init(void) {
clock_periph(6, CCM_CCGR6_CG6_SHIFT, CLOCK_ON_RUN_WAIT); // trng_clk
SETBITS(TRNG->MCTL,
TRNG_MCTL_PRGM_MASK | TRNG_MCTL_ERR_MASK | TRNG_MCTL_RST_DEF_MASK,
TRNG_MCTL_PRGM(1) | TRNG_MCTL_ERR(1) |
TRNG_MCTL_RST_DEF(1)); // reset to default values
SETBITS(TRNG->MCTL, TRNG_MCTL_PRGM_MASK | TRNG_MCTL_ERR_MASK,
TRNG_MCTL_PRGM(0)); // set to run mode
(void) TRNG->ENT[TRNG_ENT_COUNT - 1]; // start new entropy generation
(void) TRNG->ENT[0]; // defect workaround
}
static inline uint32_t rng_read(void) {
static uint8_t idx = 0;
while ((TRNG->MCTL & TRNG_MCTL_ENT_VAL_MASK) == 0) (void) 0;
uint32_t data = TRNG->ENT[idx++]; // read data
idx %= TRNG_ENT_COUNT; // stay within array limits
if (idx == 0) // we've just read TRNG_ENT_COUNT - 1
(void) TRNG->ENT[0]; // defect workaround
return data;
}
// - PHY has no xtal, XI driven from ENET_REF_CLK1 (labeled as ENET_TX_REF_CLK
// (GPIO_AD_B1_10)), generated by the MCU
// - PHY RST connected to GPIO1.9 (GPIO_AD_B0_09); INTRP/NAND_TREE connected to
// GPIO1.10 (GPIO_AD_B0_10)
// - 41.4 REF_CLK1 is RMII mode reference clock for Rx, Tx, and SMI; it is I/O
// - 11.3.2 IOMUXC_GPR_GPR1
// - bit 13: ENET1_CLK_SEL --> 0 ENET1 TX reference clock driven by
// ref_enetpll and output via ENET_REF_CLK1 (labeled as ENET_REF_CLK
// elsewhere)
// - bit 17: ENET1_TX_CLK_DIR --> 1 ENET1_TX_CLK output driver enabled
// - 14.6.1.3.6 Ethernet PLL (PLL6)
// - 14.8.14: configure PLL6 to generate 50MHz clocks for ENET and RMII.
static inline void ethernet_init(void) {
// setup PLL and clock ENET from it
SETBITS(CCM_ANALOG->PLL_ENET, CCM_ANALOG_PLL_ENET_BYPASS_CLK_SRC_MASK,
CCM_ANALOG_PLL_ENET_BYPASS_MASK |
CCM_ANALOG_PLL_ENET_BYPASS_CLK_SRC(0)); // bypass to 24MHz osc
SETBITS(
CCM_ANALOG->PLL_ENET,
CCM_ANALOG_PLL_ENET_DIV_SELECT_MASK | CCM_ANALOG_PLL_ENET_POWERDOWN_MASK,
CCM_ANALOG_PLL_ENET_DIV_SELECT(1) | CCM_ANALOG_PLL_ENET_ENABLE_MASK);
while ((CCM_ANALOG->PLL_ENET & CCM_ANALOG_PLL_ENET_LOCK_MASK) == 0)
spin(1); // wait until it is stable
CCM_ANALOG->PLL_ENET &= ~CCM_ANALOG_PLL_ENET_BYPASS_MASK;
gpio_init(PIN('1', 9), GPIO_MODE_OUTPUT, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_MEDIUM, GPIO_PULL_UP); // set GPIO1.9 as GPIO (PHY \RST)
gpio_write(PIN('1', 9), 0); // reset PHY
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_B1_10,
6); // set for ENET_REF_CLK
IOMUXC->SW_MUX_CTL_PAD[kIOMUXC_SW_MUX_CTL_PAD_GPIO_B1_10] |=
IOMUXC_SW_MUX_CTL_PAD_SION(1); // loop signal back from pin
periph_mux_config(kIOMUXC_ENET_IPG_CLK_RMII_SELECT_INPUT,
1); // drive peripheral from B1_10, so RMII clock is taken
// from ENET_REF_CLK
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_B1_10, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
IOMUXC_GPR->GPR1 |=
IOMUXC_GPR_GPR1_ENET1_TX_CLK_DIR(1); // Set ENET_TX_CLK as output
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_B1_04, 3); // set for RXDATA0
periph_mux_config(kIOMUXC_ENET0_RXDATA_SELECT_INPUT,
1); // drive peripheral from B1_04
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_B1_04, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_B1_05, 3); // set for RXDATA1
periph_mux_config(kIOMUXC_ENET1_RXDATA_SELECT_INPUT,
1); // drive peripheral from B1_05
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_B1_05, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_B1_06, 3); // set for CRS
periph_mux_config(kIOMUXC_ENET_RXEN_SELECT_INPUT,
1); // drive peripheral from B1_06
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_B1_06, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_B1_07, 3); // set for TXDATA0
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_B1_07, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_B1_08, 3); // set for TXDATA1
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_B1_08, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_B1_09, 3); // set for TXEN
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_B1_09, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_B1_11, 3); // set for RXERR
periph_mux_config(kIOMUXC_ENET_RXERR_SELECT_INPUT,
1); // drive peripheral from B0_12
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_B1_11, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_HIGH, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_EMC_40, 4); // set for MDC
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_EMC_40, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_MEDIUM, GPIO_PULL_UP);
gpio_mux_config(kIOMUXC_SW_MUX_CTL_PAD_GPIO_EMC_41, 4); // set for MDIO
periph_mux_config(kIOMUXC_ENET_MDIO_SELECT_INPUT,
1); // drive peripheral from EMC_41
gpio_pad_config(kIOMUXC_SW_PAD_CTL_PAD_GPIO_EMC_41, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_MEDIUM, GPIO_PULL_UP);
gpio_init(PIN('1', 10), GPIO_MODE_OUTPUT, GPIO_OTYPE_PUSH_PULL,
GPIO_SPEED_MEDIUM,
GPIO_PULL_UP); // set GPIO1.10 as GPIO (PHY INTRP/NAND_TREE)
gpio_write(PIN('1', 10), 1); // prevent NAND_TREE
spin(10000); // keep PHY RST low for a while
gpio_write(PIN('1', 9), 1); // deassert RST
gpio_init(PIN('1', 10), GPIO_MODE_INPUT, 0, GPIO_SPEED_MEDIUM,
GPIO_PULL_UP); // setup IRQ (pulled-up)(not used)
clock_periph(1, CCM_CCGR1_CG5_SHIFT, CLOCK_ON_RUN_WAIT); // enet_ipg_clk
NVIC_EnableIRQ(ENET_IRQn); // Setup Ethernet IRQ handler
}
// Helper macro for MAC generation, byte reads not allowed
#define GENERATE_LOCALLY_ADMINISTERED_MAC() \
{ \
2, OCOTP->CFG0 & 255, (OCOTP->CFG0 >> 10) & 255, \
((OCOTP->CFG0 >> 19) ^ (OCOTP->CFG1 >> 19)) & 255, \
(OCOTP->CFG1 >> 10) & 255, OCOTP->CFG1 & 255 \
}
// NOTE: You can fuse your own MAC and read it from OCOTP->MAC0, OCOTP->MAC1,
// OCOTP->MAC2

View File

@ -0,0 +1,22 @@
ENTRY(Reset_Handler);
MEMORY {
flash_cfg(rx) : ORIGIN = 0x60000000, LENGTH = 4k
flash_ivt(rx) : ORIGIN = 0x60001000, LENGTH = 4k
flash_irq(rx) : ORIGIN = 0x60002000, LENGTH = 1k
flash_code(rx) : ORIGIN = 0x60002400, LENGTH = 8183k
ram0(rx) : ORIGIN = 0x00000000, LENGTH = 128k
ram1(rw) : ORIGIN = 0x20000000, LENGTH = 128k
ram2(rw) : ORIGIN = 0x20200000, LENGTH = 256k
}
__StackTop = ORIGIN(ram2) + LENGTH(ram2);
SECTIONS {
.cfg : { __FLASH_BASE = .; KEEP(* (.cfg)) } > flash_cfg
.ivt : { KEEP(*(.ivt)) } > flash_ivt
.irq : { KEEP(*(.isr_vector)) } > flash_irq
.text : { *(.text* .text.*) *(.rodata*) __etext = .; } > flash_code
.data : { __data_start__ = .; *(.data SORT(.data.*)) __data_end__ = .; } > ram1 AT > flash_code
.bss : { __bss_start__ = .; *(.bss SORT(.bss.*) COMMON) __bss_end__ = .; } > ram1
_end = .;
}

View File

@ -0,0 +1,16 @@
ENTRY(Reset_Handler);
MEMORY {
itcram(rx) : ORIGIN = 0x00000000, LENGTH = 128k
dtcram(rw) : ORIGIN = 0x20000000, LENGTH = 128k
ocram(rw) : ORIGIN = 0x20200000, LENGTH = 256k /* Is this cached ? */
}
__StackTop = ORIGIN(dtcram) + LENGTH(dtcram);
SECTIONS {
.irq : { KEEP(*(.isr_vector)) } > itcram
.text : { *(.text* .text.*) *(.rodata*) ; } > itcram
.data : { __data_start__ = .; *(.data SORT(.data.*)) __data_end__ = .; } > dtcram AT > itcram
__etext = LOADADDR(.data);
.bss : { __bss_start__ = .; *(.bss SORT(.bss.*) COMMON) __bss_end__ = .; } > dtcram
_end = .;
}

View File

@ -0,0 +1,74 @@
// Copyright (c) 2023 Cesanta Software Limited
// All rights reserved
#include "hal.h"
#include "mongoose.h"
#include "net.h"
#define BLINK_PERIOD_MS 1000 // LED blinking period in millis
void mg_random(void *buf, size_t len) { // Use on-board RNG
for (size_t n = 0; n < len; n += sizeof(uint32_t)) {
uint32_t r = rng_read();
memcpy((char *) buf + n, &r, n + sizeof(r) > len ? len - n : sizeof(r));
}
}
static void timer_fn(void *arg) {
struct mg_tcpip_if *ifp = arg; // And show
const char *names[] = {"down", "up", "req", "ready"}; // network stats
MG_INFO(("Ethernet: %s, IP: %M, rx:%u, tx:%u, dr:%u, er:%u",
names[ifp->state], mg_print_ip4, &ifp->ip, ifp->nrecv, ifp->nsent,
ifp->ndrop, ifp->nerr));
}
static void server(void *args) {
struct mg_mgr mgr; // Initialise Mongoose event manager
mg_mgr_init(&mgr); // and attach it to the interface
mg_log_set(MG_LL_DEBUG); // Set log level
// Initialise Mongoose network stack
ethernet_init();
struct mg_tcpip_driver_rt1020_data driver_data = {.mdc_cr = 24};
struct mg_tcpip_if mif = {.mac = GENERATE_LOCALLY_ADMINISTERED_MAC(),
// Uncomment below for static configuration:
// .ip = mg_htonl(MG_U32(192, 168, 0, 223)),
// .mask = mg_htonl(MG_U32(255, 255, 255, 0)),
// .gw = mg_htonl(MG_U32(192, 168, 0, 1)),
.driver = &mg_tcpip_driver_rt1020,
.driver_data = &driver_data};
mg_tcpip_init(&mgr, &mif);
mg_timer_add(&mgr, BLINK_PERIOD_MS, MG_TIMER_REPEAT, timer_fn, &mif);
MG_INFO(("MAC: %M. Waiting for IP...", mg_print_mac, mif.mac));
while (mif.state != MG_TCPIP_STATE_READY) {
mg_mgr_poll(&mgr, 0);
}
MG_INFO(("Initialising application..."));
web_init(&mgr);
MG_INFO(("Starting event loop"));
for (;;) mg_mgr_poll(&mgr, 1); // Infinite event loop
(void) args;
}
static void blinker(void *args) {
gpio_output(LED); // Setup blue LED
for (;;) {
gpio_toggle(LED);
vTaskDelay(pdMS_TO_TICKS(BLINK_PERIOD_MS));
}
(void) args;
}
int main(void) {
uart_init(UART_DEBUG, 115200); // Initialise UART
// Start tasks. NOTE: stack sizes are in 32-bit words
xTaskCreate(blinker, "blinker", 128, ":)", configMAX_PRIORITIES - 1, NULL);
xTaskCreate(server, "server", 2048, 0, configMAX_PRIORITIES - 1, NULL);
vTaskStartScheduler(); // This blocks
return 0;
}

View File

@ -0,0 +1 @@
../../../mongoose.c

View File

@ -0,0 +1 @@
../../../mongoose.h

View File

@ -0,0 +1,12 @@
#pragma once
#include <errno.h> // we are not using lwIP
// See https://mongoose.ws/documentation/#build-options
#define MG_ARCH MG_ARCH_FREERTOS
#define MG_ENABLE_TCPIP 1
#define MG_ENABLE_DRIVER_RT1020 1
#define MG_IO_SIZE 256
#define MG_ENABLE_CUSTOM_RANDOM 1
#define MG_ENABLE_PACKED_FS 1

View File

@ -0,0 +1 @@
../../device-dashboard/net.c

View File

@ -0,0 +1 @@
../../device-dashboard/net.h

View File

@ -0,0 +1 @@
../../device-dashboard/packed_fs.c

View File

@ -0,0 +1,85 @@
#include <sys/stat.h>
#include "hal.h"
int _fstat(int fd, struct stat *st) {
if (fd < 0) return -1;
st->st_mode = S_IFCHR;
return 0;
}
void *_sbrk(int incr) {
extern char _end;
static unsigned char *heap = NULL;
unsigned char *prev_heap;
if (heap == NULL) heap = (unsigned char *) &_end;
prev_heap = heap;
heap += incr;
return prev_heap;
}
int _open(const char *path) {
(void) path;
return -1;
}
int _close(int fd) {
(void) fd;
return -1;
}
int _isatty(int fd) {
(void) fd;
return 1;
}
int _lseek(int fd, int ptr, int dir) {
(void) fd, (void) ptr, (void) dir;
return 0;
}
void _exit(int status) {
(void) status;
for (;;) asm volatile("BKPT #0");
}
void _kill(int pid, int sig) {
(void) pid, (void) sig;
}
int _getpid(void) {
return -1;
}
int _write(int fd, char *ptr, int len) {
(void) fd, (void) ptr, (void) len;
if (fd == 1) uart_write_buf(UART_DEBUG, ptr, (size_t) len);
return -1;
}
int _read(int fd, char *ptr, int len) {
(void) fd, (void) ptr, (void) len;
return -1;
}
int _link(const char *a, const char *b) {
(void) a, (void) b;
return -1;
}
int _unlink(const char *a) {
(void) a;
return -1;
}
int _stat(const char *path, struct stat *st) {
(void) path, (void) st;
return -1;
}
int mkdir(const char *path, mode_t mode) {
(void) path, (void) mode;
return -1;
}
void _init(void) {}

View File

@ -0,0 +1,67 @@
// Copyright (c) 2023 Cesanta Software Limited
// All rights reserved
//
// This file contains essentials required by the CMSIS:
// uint32_t SystemCoreClock - holds the system core clock value
// SystemInit() - initialises the system, e.g. sets up clocks
#include "hal.h"
uint32_t SystemCoreClock = SYS_FREQUENCY;
// - 14.4, Figure 14-2: clock tree
// - 14.7.4: ARM_PODF defaults to /2
// - 14.7.5: AHB_PODF defaults to /1; IPG_PODF defaults to /4; PERIPH_CLK_SEL
// defaults to derive clock from pre_periph_clk_sel
// - 14.7.6: PRE_PERIPH_CLK_SEL defaults to derive clock from divided PLL1.
// - (For 528MHz operation, we need to set it to derive clock from PLL2).
// - 14.6.1.3.1 ARM PLL (PLL1); 13.3.2.2 PLLs
// - 14.8.1: PLL1 is powered off and bypassed to 24MHz. Fout = 24MHz *
// div_select/2
// - For 600MHz operation, we need to set PLL1 on
// - Datasheet 4.1.3: System frequency/Bus frequency max 600/150MHz respectively
// (AHB/IPG)
// - MCUXpresso: IPG_CLK_ROOT <= 150MHz; PERCLK_CLK_ROOT <= 75MHz
// - Datasheet 4.9.4.1.1/2: the processor clock frequency must exceed twice the
// ENET_RX_CLK/ENET_TX_CLK frequency.
// - Datasheet 4.9.4.2: no details for RMII (above is for MII), assumed 50MHz
// min processor clock
// - Datasheet 4.1.3, Table 10: "Overdrive" run mode requires 1.25V core voltage
// minimum; 528 MHz does not.
void SystemInit(void) { // Called automatically by startup code (ints masked)
SCB->CPACR |= ((3UL << 10 * 2) | (3UL << 11 * 2)); // Enable FPU
asm("DSB");
asm("ISB");
// 53.4.2: Disable watchdog after reset (unlocked)
RTWDOG->CS &= ~RTWDOG_CS_EN_MASK;
RTWDOG->TOVAL = 0xFFFF;
while (RTWDOG->CS & RTWDOG_CS_ULK_MASK) spin(1); // wait for lock
while ((RTWDOG->CS & RTWDOG_CS_RCS_MASK) == 0)
spin(1); // wait for new config
// Set VDD_SOC to 1.25V
SETBITS(DCDC->REG3, DCDC_REG3_TRG_MASK, DCDC_REG3_TRG(0x12));
while ((DCDC->REG0 & DCDC_REG0_STS_DC_OK_MASK) == 0)
spin(1); // Wait for DCDC_STS_DC_OK
SETBITS(CCM->CSCMR1, CCM_CSCMR1_PERCLK_PODF_MASK,
CCM_CSCMR1_PERCLK_PODF(1)); // Set PERCLK divider /2 (75MHz)
// Set clock to 600 MHz. Power PLL on and configure divider
SETBITS(CCM_ANALOG->PLL_ARM,
CCM_ANALOG_PLL_ARM_POWERDOWN_MASK |
CCM_ANALOG_PLL_ARM_SET_DIV_SELECT_MASK,
CCM_ANALOG_PLL_ARM_SET_DIV_SELECT(100));
while ((CCM_ANALOG->PLL_ARM & CCM_ANALOG_PLL_ARM_LOCK_MASK) == 0)
spin(1); // wait until it is stable
CCM_ANALOG->PLL_ARM &=
~CCM_ANALOG_PLL_ARM_BYPASS_MASK; // Disable Bypass (switch to PLL)
// 14.5 Table 14-4: uart_clk_root
// 14.4: uart_clk_root = PLL3/6 or OSC; CCM_CSCDR1 (14.7.9) defaults to
// PLL3/6/1
CCM_ANALOG->PLL_USB1 |= CCM_ANALOG_PLL_USB1_POWER_MASK; // Power PLL on
while ((CCM_ANALOG->PLL_USB1 & CCM_ANALOG_PLL_USB1_LOCK_MASK) == 0)
spin(1); // wait until it is stable
CCM_ANALOG->PLL_USB1 &=
~CCM_ANALOG_PLL_USB1_BYPASS_MASK; // Disable Bypass (switch to PLL)
rng_init(); // Initialise random number generator
// NXP startup code calls SystemInit BEFORE initializing RAM...
SysTick_Config(SYS_FREQUENCY / 1000); // Sys tick every 1ms
}