2023-12-18 19:08:51 +00:00
|
|
|
#pragma once
|
|
|
|
#include "arch.h"
|
|
|
|
|
|
|
|
#define uECC_SUPPORTS_secp256r1 1
|
|
|
|
/* Copyright 2014, Kenneth MacKay. Licensed under the BSD 2-clause license. */
|
|
|
|
|
|
|
|
#ifndef _UECC_H_
|
|
|
|
#define _UECC_H_
|
|
|
|
|
|
|
|
/* Platform selection options.
|
|
|
|
If uECC_PLATFORM is not defined, the code will try to guess it based on compiler
|
|
|
|
macros. Possible values for uECC_PLATFORM are defined below: */
|
|
|
|
#define uECC_arch_other 0
|
|
|
|
#define uECC_x86 1
|
|
|
|
#define uECC_x86_64 2
|
|
|
|
#define uECC_arm 3
|
|
|
|
#define uECC_arm_thumb 4
|
|
|
|
#define uECC_arm_thumb2 5
|
|
|
|
#define uECC_arm64 6
|
|
|
|
#define uECC_avr 7
|
|
|
|
|
|
|
|
/* If desired, you can define uECC_WORD_SIZE as appropriate for your platform
|
|
|
|
(1, 4, or 8 bytes). If uECC_WORD_SIZE is not explicitly defined then it will be
|
|
|
|
automatically set based on your platform. */
|
|
|
|
|
|
|
|
/* Optimization level; trade speed for code size.
|
|
|
|
Larger values produce code that is faster but larger.
|
|
|
|
Currently supported values are 0 - 4; 0 is unusably slow for most
|
|
|
|
applications. Optimization level 4 currently only has an effect ARM platforms
|
|
|
|
where more than one curve is enabled. */
|
|
|
|
#ifndef uECC_OPTIMIZATION_LEVEL
|
|
|
|
#define uECC_OPTIMIZATION_LEVEL 2
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* uECC_SQUARE_FUNC - If enabled (defined as nonzero), this will cause a
|
|
|
|
specific function to be used for (scalar) squaring instead of the generic
|
|
|
|
multiplication function. This can make things faster somewhat faster, but
|
|
|
|
increases the code size. */
|
|
|
|
#ifndef uECC_SQUARE_FUNC
|
|
|
|
#define uECC_SQUARE_FUNC 0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* uECC_VLI_NATIVE_LITTLE_ENDIAN - If enabled (defined as nonzero), this will
|
|
|
|
switch to native little-endian format for *all* arrays passed in and out of the
|
|
|
|
public API. This includes public and private keys, shared secrets, signatures
|
|
|
|
and message hashes. Using this switch reduces the amount of call stack memory
|
|
|
|
used by uECC, since less intermediate translations are required. Note that this
|
|
|
|
will *only* work on native little-endian processors and it will treat the
|
|
|
|
uint8_t arrays passed into the public API as word arrays, therefore requiring
|
|
|
|
the provided byte arrays to be word aligned on architectures that do not support
|
|
|
|
unaligned accesses. IMPORTANT: Keys and signatures generated with
|
|
|
|
uECC_VLI_NATIVE_LITTLE_ENDIAN=1 are incompatible with keys and signatures
|
|
|
|
generated with uECC_VLI_NATIVE_LITTLE_ENDIAN=0; all parties must use the same
|
|
|
|
endianness. */
|
|
|
|
#ifndef uECC_VLI_NATIVE_LITTLE_ENDIAN
|
|
|
|
#define uECC_VLI_NATIVE_LITTLE_ENDIAN 0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Curve support selection. Set to 0 to remove that curve. */
|
|
|
|
#ifndef uECC_SUPPORTS_secp160r1
|
|
|
|
#define uECC_SUPPORTS_secp160r1 0
|
|
|
|
#endif
|
|
|
|
#ifndef uECC_SUPPORTS_secp192r1
|
|
|
|
#define uECC_SUPPORTS_secp192r1 0
|
|
|
|
#endif
|
|
|
|
#ifndef uECC_SUPPORTS_secp224r1
|
|
|
|
#define uECC_SUPPORTS_secp224r1 0
|
|
|
|
#endif
|
|
|
|
#ifndef uECC_SUPPORTS_secp256r1
|
|
|
|
#define uECC_SUPPORTS_secp256r1 1
|
|
|
|
#endif
|
|
|
|
#ifndef uECC_SUPPORTS_secp256k1
|
|
|
|
#define uECC_SUPPORTS_secp256k1 0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Specifies whether compressed point format is supported.
|
|
|
|
Set to 0 to disable point compression/decompression functions. */
|
|
|
|
#ifndef uECC_SUPPORT_COMPRESSED_POINT
|
|
|
|
#define uECC_SUPPORT_COMPRESSED_POINT 1
|
|
|
|
#endif
|
|
|
|
|
|
|
|
struct uECC_Curve_t;
|
|
|
|
typedef const struct uECC_Curve_t *uECC_Curve;
|
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
extern "C" {
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if uECC_SUPPORTS_secp160r1
|
|
|
|
uECC_Curve uECC_secp160r1(void);
|
|
|
|
#endif
|
|
|
|
#if uECC_SUPPORTS_secp192r1
|
|
|
|
uECC_Curve uECC_secp192r1(void);
|
|
|
|
#endif
|
|
|
|
#if uECC_SUPPORTS_secp224r1
|
|
|
|
uECC_Curve uECC_secp224r1(void);
|
|
|
|
#endif
|
|
|
|
#if uECC_SUPPORTS_secp256r1
|
|
|
|
uECC_Curve uECC_secp256r1(void);
|
|
|
|
#endif
|
|
|
|
#if uECC_SUPPORTS_secp256k1
|
|
|
|
uECC_Curve uECC_secp256k1(void);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* uECC_RNG_Function type
|
|
|
|
The RNG function should fill 'size' random bytes into 'dest'. It should return 1
|
|
|
|
if 'dest' was filled with random data, or 0 if the random data could not be
|
|
|
|
generated. The filled-in values should be either truly random, or from a
|
|
|
|
cryptographically-secure PRNG.
|
|
|
|
|
|
|
|
A correctly functioning RNG function must be set (using uECC_set_rng()) before
|
|
|
|
calling uECC_make_key() or uECC_sign().
|
|
|
|
|
|
|
|
Setting a correctly functioning RNG function improves the resistance to
|
|
|
|
side-channel attacks for uECC_shared_secret() and uECC_sign_deterministic().
|
|
|
|
|
|
|
|
A correct RNG function is set by default when building for Windows, Linux, or OS
|
|
|
|
X. If you are building on another POSIX-compliant system that supports
|
|
|
|
/dev/random or /dev/urandom, you can define uECC_POSIX to use the predefined
|
|
|
|
RNG. For embedded platforms there is no predefined RNG function; you must
|
|
|
|
provide your own.
|
|
|
|
*/
|
|
|
|
typedef int (*uECC_RNG_Function)(uint8_t *dest, unsigned size);
|
|
|
|
|
|
|
|
/* uECC_set_rng() function.
|
|
|
|
Set the function that will be used to generate random bytes. The RNG function
|
|
|
|
should return 1 if the random data was generated, or 0 if the random data could
|
|
|
|
not be generated.
|
|
|
|
|
|
|
|
On platforms where there is no predefined RNG function (eg embedded platforms),
|
|
|
|
this must be called before uECC_make_key() or uECC_sign() are used.
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
rng_function - The function that will be used to generate random bytes.
|
|
|
|
*/
|
|
|
|
void uECC_set_rng(uECC_RNG_Function rng_function);
|
|
|
|
|
|
|
|
/* uECC_get_rng() function.
|
|
|
|
|
|
|
|
Returns the function that will be used to generate random bytes.
|
|
|
|
*/
|
|
|
|
uECC_RNG_Function uECC_get_rng(void);
|
|
|
|
|
|
|
|
/* uECC_curve_private_key_size() function.
|
|
|
|
|
|
|
|
Returns the size of a private key for the curve in bytes.
|
|
|
|
*/
|
|
|
|
int uECC_curve_private_key_size(uECC_Curve curve);
|
|
|
|
|
|
|
|
/* uECC_curve_public_key_size() function.
|
|
|
|
|
|
|
|
Returns the size of a public key for the curve in bytes.
|
|
|
|
*/
|
|
|
|
int uECC_curve_public_key_size(uECC_Curve curve);
|
|
|
|
|
|
|
|
/* uECC_make_key() function.
|
|
|
|
Create a public/private key pair.
|
|
|
|
|
|
|
|
Outputs:
|
|
|
|
public_key - Will be filled in with the public key. Must be at least 2 *
|
|
|
|
the curve size (in bytes) long. For example, if the curve is secp256r1,
|
|
|
|
public_key must be 64 bytes long. private_key - Will be filled in with the
|
|
|
|
private key. Must be as long as the curve order; this is typically the same as
|
|
|
|
the curve size, except for secp160r1. For example, if the curve is secp256r1,
|
|
|
|
private_key must be 32 bytes long.
|
|
|
|
|
|
|
|
For secp160r1, private_key must be 21 bytes long! Note that
|
|
|
|
the first byte will almost always be 0 (there is about a 1 in 2^80 chance of it
|
|
|
|
being non-zero).
|
|
|
|
|
|
|
|
Returns 1 if the key pair was generated successfully, 0 if an error occurred.
|
|
|
|
*/
|
|
|
|
int uECC_make_key(uint8_t *public_key, uint8_t *private_key, uECC_Curve curve);
|
|
|
|
|
|
|
|
/* uECC_shared_secret() function.
|
|
|
|
Compute a shared secret given your secret key and someone else's public key. If
|
|
|
|
the public key is not from a trusted source and has not been previously
|
|
|
|
verified, you should verify it first using uECC_valid_public_key(). Note: It is
|
|
|
|
recommended that you hash the result of uECC_shared_secret() before using it for
|
|
|
|
symmetric encryption or HMAC.
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
public_key - The public key of the remote party.
|
|
|
|
private_key - Your private key.
|
|
|
|
|
|
|
|
Outputs:
|
|
|
|
secret - Will be filled in with the shared secret value. Must be the same
|
|
|
|
size as the curve size; for example, if the curve is secp256r1, secret must be
|
|
|
|
32 bytes long.
|
|
|
|
|
|
|
|
Returns 1 if the shared secret was generated successfully, 0 if an error
|
|
|
|
occurred.
|
|
|
|
*/
|
|
|
|
int uECC_shared_secret(const uint8_t *public_key, const uint8_t *private_key,
|
|
|
|
uint8_t *secret, uECC_Curve curve);
|
|
|
|
|
|
|
|
#if uECC_SUPPORT_COMPRESSED_POINT
|
|
|
|
/* uECC_compress() function.
|
|
|
|
Compress a public key.
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
public_key - The public key to compress.
|
|
|
|
|
|
|
|
Outputs:
|
|
|
|
compressed - Will be filled in with the compressed public key. Must be at
|
|
|
|
least (curve size + 1) bytes long; for example, if the curve is secp256r1,
|
|
|
|
compressed must be 33 bytes long.
|
|
|
|
*/
|
|
|
|
void uECC_compress(const uint8_t *public_key, uint8_t *compressed,
|
|
|
|
uECC_Curve curve);
|
|
|
|
|
|
|
|
/* uECC_decompress() function.
|
|
|
|
Decompress a compressed public key.
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
compressed - The compressed public key.
|
|
|
|
|
|
|
|
Outputs:
|
|
|
|
public_key - Will be filled in with the decompressed public key.
|
|
|
|
*/
|
|
|
|
void uECC_decompress(const uint8_t *compressed, uint8_t *public_key,
|
|
|
|
uECC_Curve curve);
|
|
|
|
#endif /* uECC_SUPPORT_COMPRESSED_POINT */
|
|
|
|
|
|
|
|
/* uECC_valid_public_key() function.
|
|
|
|
Check to see if a public key is valid.
|
|
|
|
|
|
|
|
Note that you are not required to check for a valid public key before using any
|
|
|
|
other uECC functions. However, you may wish to avoid spending CPU time computing
|
|
|
|
a shared secret or verifying a signature using an invalid public key.
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
public_key - The public key to check.
|
|
|
|
|
|
|
|
Returns 1 if the public key is valid, 0 if it is invalid.
|
|
|
|
*/
|
|
|
|
int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve);
|
|
|
|
|
|
|
|
/* uECC_compute_public_key() function.
|
|
|
|
Compute the corresponding public key for a private key.
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
private_key - The private key to compute the public key for
|
|
|
|
|
|
|
|
Outputs:
|
|
|
|
public_key - Will be filled in with the corresponding public key
|
|
|
|
|
|
|
|
Returns 1 if the key was computed successfully, 0 if an error occurred.
|
|
|
|
*/
|
|
|
|
int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key,
|
|
|
|
uECC_Curve curve);
|
|
|
|
|
|
|
|
/* uECC_sign() function.
|
|
|
|
Generate an ECDSA signature for a given hash value.
|
|
|
|
|
|
|
|
Usage: Compute a hash of the data you wish to sign (SHA-2 is recommended) and
|
|
|
|
pass it in to this function along with your private key.
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
private_key - Your private key.
|
|
|
|
message_hash - The hash of the message to sign.
|
|
|
|
hash_size - The size of message_hash in bytes.
|
|
|
|
|
|
|
|
Outputs:
|
|
|
|
signature - Will be filled in with the signature value. Must be at least 2 *
|
|
|
|
curve size long. For example, if the curve is secp256r1, signature must be 64
|
|
|
|
bytes long.
|
|
|
|
|
|
|
|
Returns 1 if the signature generated successfully, 0 if an error occurred.
|
|
|
|
*/
|
|
|
|
int uECC_sign(const uint8_t *private_key, const uint8_t *message_hash,
|
|
|
|
unsigned hash_size, uint8_t *signature, uECC_Curve curve);
|
|
|
|
|
|
|
|
/* uECC_HashContext structure.
|
|
|
|
This is used to pass in an arbitrary hash function to uECC_sign_deterministic().
|
|
|
|
The structure will be used for multiple hash computations; each time a new hash
|
|
|
|
is computed, init_hash() will be called, followed by one or more calls to
|
|
|
|
update_hash(), and finally a call to finish_hash() to produce the resulting
|
|
|
|
hash.
|
|
|
|
|
|
|
|
The intention is that you will create a structure that includes uECC_HashContext
|
|
|
|
followed by any hash-specific data. For example:
|
|
|
|
|
|
|
|
typedef struct SHA256_HashContext {
|
|
|
|
uECC_HashContext uECC;
|
|
|
|
SHA256_CTX ctx;
|
|
|
|
} SHA256_HashContext;
|
|
|
|
|
|
|
|
void init_SHA256(uECC_HashContext *base) {
|
|
|
|
SHA256_HashContext *context = (SHA256_HashContext *)base;
|
|
|
|
SHA256_Init(&context->ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
void update_SHA256(uECC_HashContext *base,
|
|
|
|
const uint8_t *message,
|
|
|
|
unsigned message_size) {
|
|
|
|
SHA256_HashContext *context = (SHA256_HashContext *)base;
|
|
|
|
SHA256_Update(&context->ctx, message, message_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
void finish_SHA256(uECC_HashContext *base, uint8_t *hash_result) {
|
|
|
|
SHA256_HashContext *context = (SHA256_HashContext *)base;
|
|
|
|
SHA256_Final(hash_result, &context->ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
... when signing ...
|
|
|
|
{
|
|
|
|
uint8_t tmp[32 + 32 + 64];
|
|
|
|
SHA256_HashContext ctx = {{&init_SHA256, &update_SHA256, &finish_SHA256, 64,
|
|
|
|
32, tmp}}; uECC_sign_deterministic(key, message_hash, &ctx.uECC, signature);
|
|
|
|
}
|
|
|
|
*/
|
|
|
|
typedef struct uECC_HashContext {
|
|
|
|
void (*init_hash)(const struct uECC_HashContext *context);
|
|
|
|
void (*update_hash)(const struct uECC_HashContext *context,
|
|
|
|
const uint8_t *message, unsigned message_size);
|
|
|
|
void (*finish_hash)(const struct uECC_HashContext *context,
|
|
|
|
uint8_t *hash_result);
|
|
|
|
unsigned
|
|
|
|
block_size; /* Hash function block size in bytes, eg 64 for SHA-256. */
|
|
|
|
unsigned
|
|
|
|
result_size; /* Hash function result size in bytes, eg 32 for SHA-256. */
|
|
|
|
uint8_t *tmp; /* Must point to a buffer of at least (2 * result_size +
|
|
|
|
block_size) bytes. */
|
|
|
|
} uECC_HashContext;
|
|
|
|
|
|
|
|
/* uECC_sign_deterministic() function.
|
|
|
|
Generate an ECDSA signature for a given hash value, using a deterministic
|
|
|
|
algorithm (see RFC 6979). You do not need to set the RNG using uECC_set_rng()
|
|
|
|
before calling this function; however, if the RNG is defined it will improve
|
|
|
|
resistance to side-channel attacks.
|
|
|
|
|
|
|
|
Usage: Compute a hash of the data you wish to sign (SHA-2 is recommended) and
|
|
|
|
pass it to this function along with your private key and a hash context. Note
|
|
|
|
that the message_hash does not need to be computed with the same hash function
|
|
|
|
used by hash_context.
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
private_key - Your private key.
|
|
|
|
message_hash - The hash of the message to sign.
|
|
|
|
hash_size - The size of message_hash in bytes.
|
|
|
|
hash_context - A hash context to use.
|
|
|
|
|
|
|
|
Outputs:
|
|
|
|
signature - Will be filled in with the signature value.
|
|
|
|
|
|
|
|
Returns 1 if the signature generated successfully, 0 if an error occurred.
|
|
|
|
*/
|
|
|
|
int uECC_sign_deterministic(const uint8_t *private_key,
|
|
|
|
const uint8_t *message_hash, unsigned hash_size,
|
|
|
|
const uECC_HashContext *hash_context,
|
|
|
|
uint8_t *signature, uECC_Curve curve);
|
|
|
|
|
|
|
|
/* uECC_verify() function.
|
|
|
|
Verify an ECDSA signature.
|
|
|
|
|
|
|
|
Usage: Compute the hash of the signed data using the same hash as the signer and
|
|
|
|
pass it to this function along with the signer's public key and the signature
|
|
|
|
values (r and s).
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
public_key - The signer's public key.
|
|
|
|
message_hash - The hash of the signed data.
|
|
|
|
hash_size - The size of message_hash in bytes.
|
|
|
|
signature - The signature value.
|
|
|
|
|
|
|
|
Returns 1 if the signature is valid, 0 if it is invalid.
|
|
|
|
*/
|
|
|
|
int uECC_verify(const uint8_t *public_key, const uint8_t *message_hash,
|
|
|
|
unsigned hash_size, const uint8_t *signature, uECC_Curve curve);
|
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
} /* end of extern "C" */
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif /* _UECC_H_ */
|
|
|
|
|
|
|
|
/* Copyright 2015, Kenneth MacKay. Licensed under the BSD 2-clause license. */
|
|
|
|
|
|
|
|
#ifndef _UECC_VLI_H_
|
|
|
|
#define _UECC_VLI_H_
|
|
|
|
|
|
|
|
//#include "types.h"
|
|
|
|
//#include "uECC.h"
|
|
|
|
|
|
|
|
/* Functions for raw large-integer manipulation. These are only available
|
|
|
|
if uECC.c is compiled with uECC_ENABLE_VLI_API defined to 1. */
|
|
|
|
#ifndef uECC_ENABLE_VLI_API
|
|
|
|
#define uECC_ENABLE_VLI_API 0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
extern "C" {
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if uECC_ENABLE_VLI_API
|
|
|
|
|
|
|
|
void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words);
|
|
|
|
|
|
|
|
/* Constant-time comparison to zero - secure way to compare long integers */
|
|
|
|
/* Returns 1 if vli == 0, 0 otherwise. */
|
|
|
|
uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words);
|
|
|
|
|
|
|
|
/* Returns nonzero if bit 'bit' of vli is set. */
|
|
|
|
uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit);
|
|
|
|
|
|
|
|
/* Counts the number of bits required to represent vli. */
|
|
|
|
bitcount_t uECC_vli_numBits(const uECC_word_t *vli,
|
|
|
|
const wordcount_t max_words);
|
|
|
|
|
|
|
|
/* Sets dest = src. */
|
|
|
|
void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src,
|
|
|
|
wordcount_t num_words);
|
|
|
|
|
|
|
|
/* Constant-time comparison function - secure way to compare long integers */
|
|
|
|
/* Returns one if left == right, zero otherwise */
|
|
|
|
uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right,
|
|
|
|
wordcount_t num_words);
|
|
|
|
|
|
|
|
/* Constant-time comparison function - secure way to compare long integers */
|
|
|
|
/* Returns sign of left - right, in constant time. */
|
|
|
|
cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right,
|
|
|
|
wordcount_t num_words);
|
|
|
|
|
|
|
|
/* Computes vli = vli >> 1. */
|
|
|
|
void uECC_vli_rshift1(uECC_word_t *vli, wordcount_t num_words);
|
|
|
|
|
|
|
|
/* Computes result = left + right, returning carry. Can modify in place. */
|
|
|
|
uECC_word_t uECC_vli_add(uECC_word_t *result, const uECC_word_t *left,
|
|
|
|
const uECC_word_t *right, wordcount_t num_words);
|
|
|
|
|
|
|
|
/* Computes result = left - right, returning borrow. Can modify in place. */
|
|
|
|
uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left,
|
|
|
|
const uECC_word_t *right, wordcount_t num_words);
|
|
|
|
|
|
|
|
/* Computes result = left * right. Result must be 2 * num_words long. */
|
|
|
|
void uECC_vli_mult(uECC_word_t *result, const uECC_word_t *left,
|
|
|
|
const uECC_word_t *right, wordcount_t num_words);
|
|
|
|
|
|
|
|
/* Computes result = left^2. Result must be 2 * num_words long. */
|
|
|
|
void uECC_vli_square(uECC_word_t *result, const uECC_word_t *left,
|
|
|
|
wordcount_t num_words);
|
|
|
|
|
|
|
|
/* Computes result = (left + right) % mod.
|
|
|
|
Assumes that left < mod and right < mod, and that result does not overlap
|
|
|
|
mod. */
|
|
|
|
void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left,
|
|
|
|
const uECC_word_t *right, const uECC_word_t *mod,
|
|
|
|
wordcount_t num_words);
|
|
|
|
|
|
|
|
/* Computes result = (left - right) % mod.
|
|
|
|
Assumes that left < mod and right < mod, and that result does not overlap
|
|
|
|
mod. */
|
|
|
|
void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left,
|
|
|
|
const uECC_word_t *right, const uECC_word_t *mod,
|
|
|
|
wordcount_t num_words);
|
|
|
|
|
|
|
|
/* Computes result = product % mod, where product is 2N words long.
|
|
|
|
Currently only designed to work for mod == curve->p or curve_n. */
|
|
|
|
void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product,
|
|
|
|
const uECC_word_t *mod, wordcount_t num_words);
|
|
|
|
|
|
|
|
/* Calculates result = product (mod curve->p), where product is up to
|
|
|
|
2 * curve->num_words long. */
|
|
|
|
void uECC_vli_mmod_fast(uECC_word_t *result, uECC_word_t *product,
|
|
|
|
uECC_Curve curve);
|
|
|
|
|
|
|
|
/* Computes result = (left * right) % mod.
|
|
|
|
Currently only designed to work for mod == curve->p or curve_n. */
|
|
|
|
void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left,
|
|
|
|
const uECC_word_t *right, const uECC_word_t *mod,
|
|
|
|
wordcount_t num_words);
|
|
|
|
|
|
|
|
/* Computes result = (left * right) % curve->p. */
|
|
|
|
void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left,
|
|
|
|
const uECC_word_t *right, uECC_Curve curve);
|
|
|
|
|
|
|
|
/* Computes result = left^2 % mod.
|
|
|
|
Currently only designed to work for mod == curve->p or curve_n. */
|
|
|
|
void uECC_vli_modSquare(uECC_word_t *result, const uECC_word_t *left,
|
|
|
|
const uECC_word_t *mod, wordcount_t num_words);
|
|
|
|
|
|
|
|
/* Computes result = left^2 % curve->p. */
|
|
|
|
void uECC_vli_modSquare_fast(uECC_word_t *result, const uECC_word_t *left,
|
|
|
|
uECC_Curve curve);
|
|
|
|
|
|
|
|
/* Computes result = (1 / input) % mod.*/
|
|
|
|
void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input,
|
|
|
|
const uECC_word_t *mod, wordcount_t num_words);
|
|
|
|
|
|
|
|
#if uECC_SUPPORT_COMPRESSED_POINT
|
|
|
|
/* Calculates a = sqrt(a) (mod curve->p) */
|
|
|
|
void uECC_vli_mod_sqrt(uECC_word_t *a, uECC_Curve curve);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Converts an integer in uECC native format to big-endian bytes. */
|
|
|
|
void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes,
|
|
|
|
const uECC_word_t *native);
|
|
|
|
/* Converts big-endian bytes to an integer in uECC native format. */
|
|
|
|
void uECC_vli_bytesToNative(uECC_word_t *native, const uint8_t *bytes,
|
|
|
|
int num_bytes);
|
|
|
|
|
|
|
|
unsigned uECC_curve_num_words(uECC_Curve curve);
|
|
|
|
unsigned uECC_curve_num_bytes(uECC_Curve curve);
|
|
|
|
unsigned uECC_curve_num_bits(uECC_Curve curve);
|
|
|
|
unsigned uECC_curve_num_n_words(uECC_Curve curve);
|
|
|
|
unsigned uECC_curve_num_n_bytes(uECC_Curve curve);
|
|
|
|
unsigned uECC_curve_num_n_bits(uECC_Curve curve);
|
|
|
|
|
|
|
|
const uECC_word_t *uECC_curve_p(uECC_Curve curve);
|
|
|
|
const uECC_word_t *uECC_curve_n(uECC_Curve curve);
|
|
|
|
const uECC_word_t *uECC_curve_G(uECC_Curve curve);
|
|
|
|
const uECC_word_t *uECC_curve_b(uECC_Curve curve);
|
|
|
|
|
|
|
|
int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve);
|
|
|
|
|
|
|
|
/* Multiplies a point by a scalar. Points are represented by the X coordinate
|
|
|
|
followed by the Y coordinate in the same array, both coordinates are
|
|
|
|
curve->num_words long. Note that scalar must be curve->num_n_words long (NOT
|
|
|
|
curve->num_words). */
|
|
|
|
void uECC_point_mult(uECC_word_t *result, const uECC_word_t *point,
|
|
|
|
const uECC_word_t *scalar, uECC_Curve curve);
|
|
|
|
|
|
|
|
/* Generates a random integer in the range 0 < random < top.
|
|
|
|
Both random and top have num_words words. */
|
|
|
|
int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top,
|
|
|
|
wordcount_t num_words);
|
|
|
|
|
|
|
|
#endif /* uECC_ENABLE_VLI_API */
|
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
} /* end of extern "C" */
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif /* _UECC_VLI_H_ */
|
|
|
|
|
|
|
|
/* Copyright 2015, Kenneth MacKay. Licensed under the BSD 2-clause license. */
|
|
|
|
|
|
|
|
#ifndef _UECC_TYPES_H_
|
|
|
|
#define _UECC_TYPES_H_
|
|
|
|
|
|
|
|
#ifndef uECC_PLATFORM
|
|
|
|
#if defined(__AVR__) && __AVR__
|
|
|
|
#define uECC_PLATFORM uECC_avr
|
|
|
|
#elif defined(__thumb2__) || \
|
|
|
|
defined(_M_ARMT) /* I think MSVC only supports Thumb-2 targets */
|
|
|
|
#define uECC_PLATFORM uECC_arm_thumb2
|
|
|
|
#elif defined(__thumb__)
|
|
|
|
#define uECC_PLATFORM uECC_arm_thumb
|
|
|
|
#elif defined(__arm__) || defined(_M_ARM)
|
|
|
|
#define uECC_PLATFORM uECC_arm
|
|
|
|
#elif defined(__aarch64__)
|
|
|
|
#define uECC_PLATFORM uECC_arm64
|
|
|
|
#elif defined(__i386__) || defined(_M_IX86) || defined(_X86_) || \
|
|
|
|
defined(__I86__)
|
|
|
|
#define uECC_PLATFORM uECC_x86
|
|
|
|
#elif defined(__amd64__) || defined(_M_X64)
|
|
|
|
#define uECC_PLATFORM uECC_x86_64
|
|
|
|
#else
|
|
|
|
#define uECC_PLATFORM uECC_arch_other
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef uECC_ARM_USE_UMAAL
|
|
|
|
#if (uECC_PLATFORM == uECC_arm) && (__ARM_ARCH >= 6)
|
|
|
|
#define uECC_ARM_USE_UMAAL 1
|
|
|
|
#elif (uECC_PLATFORM == uECC_arm_thumb2) && (__ARM_ARCH >= 6) && \
|
|
|
|
(!defined(__ARM_ARCH_7M__) || !__ARM_ARCH_7M__)
|
|
|
|
#define uECC_ARM_USE_UMAAL 1
|
|
|
|
#else
|
|
|
|
#define uECC_ARM_USE_UMAAL 0
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef uECC_WORD_SIZE
|
|
|
|
#if uECC_PLATFORM == uECC_avr
|
|
|
|
#define uECC_WORD_SIZE 1
|
|
|
|
#elif (uECC_PLATFORM == uECC_x86_64 || uECC_PLATFORM == uECC_arm64)
|
|
|
|
#define uECC_WORD_SIZE 8
|
|
|
|
#else
|
|
|
|
#define uECC_WORD_SIZE 4
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if (uECC_WORD_SIZE != 1) && (uECC_WORD_SIZE != 4) && (uECC_WORD_SIZE != 8)
|
|
|
|
#error "Unsupported value for uECC_WORD_SIZE"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ((uECC_PLATFORM == uECC_avr) && (uECC_WORD_SIZE != 1))
|
|
|
|
#pragma message("uECC_WORD_SIZE must be 1 for AVR")
|
|
|
|
#undef uECC_WORD_SIZE
|
|
|
|
#define uECC_WORD_SIZE 1
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ((uECC_PLATFORM == uECC_arm || uECC_PLATFORM == uECC_arm_thumb || \
|
|
|
|
uECC_PLATFORM == uECC_arm_thumb2) && \
|
|
|
|
(uECC_WORD_SIZE != 4))
|
|
|
|
#pragma message("uECC_WORD_SIZE must be 4 for ARM")
|
|
|
|
#undef uECC_WORD_SIZE
|
|
|
|
#define uECC_WORD_SIZE 4
|
|
|
|
#endif
|
|
|
|
|
|
|
|
typedef int8_t wordcount_t;
|
|
|
|
typedef int16_t bitcount_t;
|
|
|
|
typedef int8_t cmpresult_t;
|
|
|
|
|
|
|
|
#if (uECC_WORD_SIZE == 1)
|
|
|
|
|
|
|
|
typedef uint8_t uECC_word_t;
|
|
|
|
typedef uint16_t uECC_dword_t;
|
|
|
|
|
|
|
|
#define HIGH_BIT_SET 0x80
|
|
|
|
#define uECC_WORD_BITS 8
|
|
|
|
#define uECC_WORD_BITS_SHIFT 3
|
|
|
|
#define uECC_WORD_BITS_MASK 0x07
|
|
|
|
|
|
|
|
#elif (uECC_WORD_SIZE == 4)
|
|
|
|
|
|
|
|
typedef uint32_t uECC_word_t;
|
|
|
|
typedef uint64_t uECC_dword_t;
|
|
|
|
|
|
|
|
#define HIGH_BIT_SET 0x80000000
|
|
|
|
#define uECC_WORD_BITS 32
|
|
|
|
#define uECC_WORD_BITS_SHIFT 5
|
|
|
|
#define uECC_WORD_BITS_MASK 0x01F
|
|
|
|
|
|
|
|
#elif (uECC_WORD_SIZE == 8)
|
|
|
|
|
|
|
|
typedef uint64_t uECC_word_t;
|
|
|
|
|
|
|
|
#define HIGH_BIT_SET 0x8000000000000000U
|
|
|
|
#define uECC_WORD_BITS 64
|
|
|
|
#define uECC_WORD_BITS_SHIFT 6
|
|
|
|
#define uECC_WORD_BITS_MASK 0x03F
|
|
|
|
|
|
|
|
#endif /* uECC_WORD_SIZE */
|
|
|
|
|
|
|
|
#endif /* _UECC_TYPES_H_ */
|
2023-12-20 16:40:31 -03:00
|
|
|
// End of uecc BSD-2
|