mimalloc/include/mimalloc-internal.h
2022-12-19 17:08:45 -08:00

1117 lines
43 KiB
C++

/* ----------------------------------------------------------------------------
Copyright (c) 2018-2022, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#pragma once
#ifndef MIMALLOC_INTERNAL_H
#define MIMALLOC_INTERNAL_H
#include "mimalloc-types.h"
#include "mimalloc-track.h"
#if (MI_DEBUG>0)
#define mi_trace_message(...) _mi_trace_message(__VA_ARGS__)
#else
#define mi_trace_message(...)
#endif
#define MI_CACHE_LINE 64
#if defined(_MSC_VER)
#pragma warning(disable:4127) // suppress constant conditional warning (due to MI_SECURE paths)
#pragma warning(disable:26812) // unscoped enum warning
#define mi_decl_noinline __declspec(noinline)
#define mi_decl_thread __declspec(thread)
#define mi_decl_cache_align __declspec(align(MI_CACHE_LINE))
#elif (defined(__GNUC__) && (__GNUC__ >= 3)) || defined(__clang__) // includes clang and icc
#define mi_decl_noinline __attribute__((noinline))
#define mi_decl_thread __thread
#define mi_decl_cache_align __attribute__((aligned(MI_CACHE_LINE)))
#else
#define mi_decl_noinline
#define mi_decl_thread __thread // hope for the best :-)
#define mi_decl_cache_align
#endif
#if defined(__EMSCRIPTEN__) && !defined(__wasi__)
#define __wasi__
#endif
#if defined(__cplusplus)
#define mi_decl_externc extern "C"
#else
#define mi_decl_externc
#endif
#if !defined(_WIN32) && !defined(__wasi__)
#define MI_USE_PTHREADS
#include <pthread.h>
#endif
// "options.c"
void _mi_fputs(mi_output_fun* out, void* arg, const char* prefix, const char* message);
void _mi_fprintf(mi_output_fun* out, void* arg, const char* fmt, ...);
void _mi_warning_message(const char* fmt, ...);
void _mi_verbose_message(const char* fmt, ...);
void _mi_trace_message(const char* fmt, ...);
void _mi_options_init(void);
void _mi_error_message(int err, const char* fmt, ...);
// random.c
void _mi_random_init(mi_random_ctx_t* ctx);
void _mi_random_init_weak(mi_random_ctx_t* ctx);
void _mi_random_reinit_if_weak(mi_random_ctx_t * ctx);
void _mi_random_split(mi_random_ctx_t* ctx, mi_random_ctx_t* new_ctx);
uintptr_t _mi_random_next(mi_random_ctx_t* ctx);
uintptr_t _mi_heap_random_next(mi_heap_t* heap);
uintptr_t _mi_os_random_weak(uintptr_t extra_seed);
static inline uintptr_t _mi_random_shuffle(uintptr_t x);
// init.c
extern mi_decl_cache_align mi_stats_t _mi_stats_main;
extern mi_decl_cache_align const mi_page_t _mi_page_empty;
bool _mi_is_main_thread(void);
size_t _mi_current_thread_count(void);
bool _mi_preloading(void); // true while the C runtime is not ready
// os.c
size_t _mi_os_page_size(void);
void _mi_os_init(void); // called from process init
void* _mi_os_alloc(size_t size, mi_stats_t* stats); // to allocate thread local data
void _mi_os_free(void* p, size_t size, mi_stats_t* stats); // to free thread local data
bool _mi_os_protect(void* addr, size_t size);
bool _mi_os_unprotect(void* addr, size_t size);
bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* stats);
bool _mi_os_decommit(void* p, size_t size, mi_stats_t* stats);
bool _mi_os_reset(void* p, size_t size, mi_stats_t* stats);
// bool _mi_os_unreset(void* p, size_t size, bool* is_zero, mi_stats_t* stats);
size_t _mi_os_good_alloc_size(size_t size);
bool _mi_os_has_overcommit(void);
bool _mi_os_reset(void* addr, size_t size, mi_stats_t* tld_stats);
void* _mi_os_alloc_aligned_offset(size_t size, size_t alignment, size_t align_offset, bool commit, bool* large, mi_stats_t* tld_stats);
void _mi_os_free_aligned(void* p, size_t size, size_t alignment, size_t align_offset, bool was_committed, mi_stats_t* tld_stats);
// arena.c
void* _mi_arena_alloc_aligned(size_t size, size_t alignment, size_t align_offset, bool* commit, bool* large, bool* is_pinned, bool* is_zero, mi_arena_id_t req_arena_id, size_t* memid, mi_os_tld_t* tld);
void* _mi_arena_alloc(size_t size, bool* commit, bool* large, bool* is_pinned, bool* is_zero, mi_arena_id_t req_arena_id, size_t* memid, mi_os_tld_t* tld);
void _mi_arena_free(void* p, size_t size, size_t alignment, size_t align_offset, size_t memid, bool all_committed, mi_stats_t* stats);
mi_arena_id_t _mi_arena_id_none(void);
bool _mi_arena_memid_is_suitable(size_t memid, mi_arena_id_t req_arena_id);
// "segment-cache.c"
void* _mi_segment_cache_pop(size_t size, mi_commit_mask_t* commit_mask, mi_commit_mask_t* decommit_mask, bool* large, bool* is_pinned, bool* is_zero, mi_arena_id_t req_arena_id, size_t* memid, mi_os_tld_t* tld);
bool _mi_segment_cache_push(void* start, size_t size, size_t memid, const mi_commit_mask_t* commit_mask, const mi_commit_mask_t* decommit_mask, bool is_large, bool is_pinned, mi_os_tld_t* tld);
void _mi_segment_cache_collect(bool force, mi_os_tld_t* tld);
void _mi_segment_cache_free_all(mi_os_tld_t* tld);
void _mi_segment_map_allocated_at(const mi_segment_t* segment);
void _mi_segment_map_freed_at(const mi_segment_t* segment);
// "segment.c"
mi_page_t* _mi_segment_page_alloc(mi_heap_t* heap, size_t block_size, size_t page_alignment, mi_segments_tld_t* tld, mi_os_tld_t* os_tld);
void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld);
void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld);
bool _mi_segment_try_reclaim_abandoned( mi_heap_t* heap, bool try_all, mi_segments_tld_t* tld);
void _mi_segment_thread_collect(mi_segments_tld_t* tld);
#if MI_HUGE_PAGE_ABANDON
void _mi_segment_huge_page_free(mi_segment_t* segment, mi_page_t* page, mi_block_t* block);
#else
void _mi_segment_huge_page_reset(mi_segment_t* segment, mi_page_t* page, mi_block_t* block);
#endif
uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size); // page start for any page
void _mi_abandoned_reclaim_all(mi_heap_t* heap, mi_segments_tld_t* tld);
void _mi_abandoned_await_readers(void);
void _mi_abandoned_collect(mi_heap_t* heap, bool force, mi_segments_tld_t* tld);
// "page.c"
void* _mi_malloc_generic(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept mi_attr_malloc;
void _mi_page_retire(mi_page_t* page) mi_attr_noexcept; // free the page if there are no other pages with many free blocks
void _mi_page_unfull(mi_page_t* page);
void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force); // free the page
void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq); // abandon the page, to be picked up by another thread...
void _mi_heap_delayed_free_all(mi_heap_t* heap);
bool _mi_heap_delayed_free_partial(mi_heap_t* heap);
void _mi_heap_collect_retired(mi_heap_t* heap, bool force);
void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never);
bool _mi_page_try_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never);
size_t _mi_page_queue_append(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_queue_t* append);
void _mi_deferred_free(mi_heap_t* heap, bool force);
void _mi_page_free_collect(mi_page_t* page,bool force);
void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page); // callback from segments
size_t _mi_bin_size(uint8_t bin); // for stats
uint8_t _mi_bin(size_t size); // for stats
// "heap.c"
void _mi_heap_destroy_pages(mi_heap_t* heap);
void _mi_heap_collect_abandon(mi_heap_t* heap);
void _mi_heap_set_default_direct(mi_heap_t* heap);
bool _mi_heap_memid_is_suitable(mi_heap_t* heap, size_t memid);
void _mi_heap_destroy_all(void);
// "stats.c"
void _mi_stats_done(mi_stats_t* stats);
mi_msecs_t _mi_clock_now(void);
mi_msecs_t _mi_clock_end(mi_msecs_t start);
mi_msecs_t _mi_clock_start(void);
// "alloc.c"
void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept; // called from `_mi_malloc_generic`
void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept;
void* _mi_heap_malloc_zero_ex(mi_heap_t* heap, size_t size, bool zero, size_t huge_alignment) mi_attr_noexcept; // called from `_mi_heap_malloc_aligned`
void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) mi_attr_noexcept;
mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p);
bool _mi_free_delayed_block(mi_block_t* block);
void _mi_free_generic(const mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept; // for runtime integration
#if MI_DEBUG>1
bool _mi_page_is_valid(mi_page_t* page);
#endif
// ------------------------------------------------------
// Branches
// ------------------------------------------------------
#if defined(__GNUC__) || defined(__clang__)
#define mi_unlikely(x) (__builtin_expect(!!(x),false))
#define mi_likely(x) (__builtin_expect(!!(x),true))
#elif (defined(__cplusplus) && (__cplusplus >= 202002L)) || (defined(_MSVC_LANG) && _MSVC_LANG >= 202002L)
#define mi_unlikely(x) (x) [[unlikely]]
#define mi_likely(x) (x) [[likely]]
#else
#define mi_unlikely(x) (x)
#define mi_likely(x) (x)
#endif
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
/* -----------------------------------------------------------
Error codes passed to `_mi_fatal_error`
All are recoverable but EFAULT is a serious error and aborts by default in secure mode.
For portability define undefined error codes using common Unix codes:
<https://www-numi.fnal.gov/offline_software/srt_public_context/WebDocs/Errors/unix_system_errors.html>
----------------------------------------------------------- */
#include <errno.h>
#ifndef EAGAIN // double free
#define EAGAIN (11)
#endif
#ifndef ENOMEM // out of memory
#define ENOMEM (12)
#endif
#ifndef EFAULT // corrupted free-list or meta-data
#define EFAULT (14)
#endif
#ifndef EINVAL // trying to free an invalid pointer
#define EINVAL (22)
#endif
#ifndef EOVERFLOW // count*size overflow
#define EOVERFLOW (75)
#endif
/* -----------------------------------------------------------
Inlined definitions
----------------------------------------------------------- */
#define MI_UNUSED(x) (void)(x)
#if (MI_DEBUG>0)
#define MI_UNUSED_RELEASE(x)
#else
#define MI_UNUSED_RELEASE(x) MI_UNUSED(x)
#endif
#define MI_INIT4(x) x(),x(),x(),x()
#define MI_INIT8(x) MI_INIT4(x),MI_INIT4(x)
#define MI_INIT16(x) MI_INIT8(x),MI_INIT8(x)
#define MI_INIT32(x) MI_INIT16(x),MI_INIT16(x)
#define MI_INIT64(x) MI_INIT32(x),MI_INIT32(x)
#define MI_INIT128(x) MI_INIT64(x),MI_INIT64(x)
#define MI_INIT256(x) MI_INIT128(x),MI_INIT128(x)
// Is `x` a power of two? (0 is considered a power of two)
static inline bool _mi_is_power_of_two(uintptr_t x) {
return ((x & (x - 1)) == 0);
}
// Is a pointer aligned?
static inline bool _mi_is_aligned(void* p, size_t alignment) {
mi_assert_internal(alignment != 0);
return (((uintptr_t)p % alignment) == 0);
}
// Align upwards
static inline uintptr_t _mi_align_up(uintptr_t sz, size_t alignment) {
mi_assert_internal(alignment != 0);
uintptr_t mask = alignment - 1;
if ((alignment & mask) == 0) { // power of two?
return ((sz + mask) & ~mask);
}
else {
return (((sz + mask)/alignment)*alignment);
}
}
// Align downwards
static inline uintptr_t _mi_align_down(uintptr_t sz, size_t alignment) {
mi_assert_internal(alignment != 0);
uintptr_t mask = alignment - 1;
if ((alignment & mask) == 0) { // power of two?
return (sz & ~mask);
}
else {
return ((sz / alignment) * alignment);
}
}
// Divide upwards: `s <= _mi_divide_up(s,d)*d < s+d`.
static inline uintptr_t _mi_divide_up(uintptr_t size, size_t divider) {
mi_assert_internal(divider != 0);
return (divider == 0 ? size : ((size + divider - 1) / divider));
}
// Is memory zero initialized?
static inline bool mi_mem_is_zero(void* p, size_t size) {
for (size_t i = 0; i < size; i++) {
if (((uint8_t*)p)[i] != 0) return false;
}
return true;
}
// Align a byte size to a size in _machine words_,
// i.e. byte size == `wsize*sizeof(void*)`.
static inline size_t _mi_wsize_from_size(size_t size) {
mi_assert_internal(size <= SIZE_MAX - sizeof(uintptr_t));
return (size + sizeof(uintptr_t) - 1) / sizeof(uintptr_t);
}
// Overflow detecting multiply
#if __has_builtin(__builtin_umul_overflow) || (defined(__GNUC__) && (__GNUC__ >= 5))
#include <limits.h> // UINT_MAX, ULONG_MAX
#if defined(_CLOCK_T) // for Illumos
#undef _CLOCK_T
#endif
static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) {
#if (SIZE_MAX == ULONG_MAX)
return __builtin_umull_overflow(count, size, (unsigned long *)total);
#elif (SIZE_MAX == UINT_MAX)
return __builtin_umul_overflow(count, size, (unsigned int *)total);
#else
return __builtin_umulll_overflow(count, size, (unsigned long long *)total);
#endif
}
#else /* __builtin_umul_overflow is unavailable */
static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) {
#define MI_MUL_NO_OVERFLOW ((size_t)1 << (4*sizeof(size_t))) // sqrt(SIZE_MAX)
*total = count * size;
// note: gcc/clang optimize this to directly check the overflow flag
return ((size >= MI_MUL_NO_OVERFLOW || count >= MI_MUL_NO_OVERFLOW) && size > 0 && (SIZE_MAX / size) < count);
}
#endif
// Safe multiply `count*size` into `total`; return `true` on overflow.
static inline bool mi_count_size_overflow(size_t count, size_t size, size_t* total) {
if (count==1) { // quick check for the case where count is one (common for C++ allocators)
*total = size;
return false;
}
else if mi_unlikely(mi_mul_overflow(count, size, total)) {
#if MI_DEBUG > 0
_mi_error_message(EOVERFLOW, "allocation request is too large (%zu * %zu bytes)\n", count, size);
#endif
*total = SIZE_MAX;
return true;
}
else return false;
}
/* ----------------------------------------------------------------------------------------
The thread local default heap: `_mi_get_default_heap` returns the thread local heap.
On most platforms (Windows, Linux, FreeBSD, NetBSD, etc), this just returns a
__thread local variable (`_mi_heap_default`). With the initial-exec TLS model this ensures
that the storage will always be available (allocated on the thread stacks).
On some platforms though we cannot use that when overriding `malloc` since the underlying
TLS implementation (or the loader) will call itself `malloc` on a first access and recurse.
We try to circumvent this in an efficient way:
- macOSX : we use an unused TLS slot from the OS allocated slots (MI_TLS_SLOT). On OSX, the
loader itself calls `malloc` even before the modules are initialized.
- OpenBSD: we use an unused slot from the pthread block (MI_TLS_PTHREAD_SLOT_OFS).
- DragonFly: defaults are working but seem slow compared to freeBSD (see PR #323)
------------------------------------------------------------------------------------------- */
extern const mi_heap_t _mi_heap_empty; // read-only empty heap, initial value of the thread local default heap
extern bool _mi_process_is_initialized;
mi_heap_t* _mi_heap_main_get(void); // statically allocated main backing heap
#if defined(MI_MALLOC_OVERRIDE)
#if defined(__APPLE__) // macOS
#define MI_TLS_SLOT 89 // seems unused?
// #define MI_TLS_RECURSE_GUARD 1
// other possible unused ones are 9, 29, __PTK_FRAMEWORK_JAVASCRIPTCORE_KEY4 (94), __PTK_FRAMEWORK_GC_KEY9 (112) and __PTK_FRAMEWORK_OLDGC_KEY9 (89)
// see <https://github.com/rweichler/substrate/blob/master/include/pthread_machdep.h>
#elif defined(__OpenBSD__)
// use end bytes of a name; goes wrong if anyone uses names > 23 characters (ptrhread specifies 16)
// see <https://github.com/openbsd/src/blob/master/lib/libc/include/thread_private.h#L371>
#define MI_TLS_PTHREAD_SLOT_OFS (6*sizeof(int) + 4*sizeof(void*) + 24)
// #elif defined(__DragonFly__)
// #warning "mimalloc is not working correctly on DragonFly yet."
// #define MI_TLS_PTHREAD_SLOT_OFS (4 + 1*sizeof(void*)) // offset `uniqueid` (also used by gdb?) <https://github.com/DragonFlyBSD/DragonFlyBSD/blob/master/lib/libthread_xu/thread/thr_private.h#L458>
#elif defined(__ANDROID__)
// See issue #381
#define MI_TLS_PTHREAD
#endif
#endif
#if defined(MI_TLS_SLOT)
static inline void* mi_tls_slot(size_t slot) mi_attr_noexcept; // forward declaration
#elif defined(MI_TLS_PTHREAD_SLOT_OFS)
static inline mi_heap_t** mi_tls_pthread_heap_slot(void) {
pthread_t self = pthread_self();
#if defined(__DragonFly__)
if (self==NULL) {
mi_heap_t* pheap_main = _mi_heap_main_get();
return &pheap_main;
}
#endif
return (mi_heap_t**)((uint8_t*)self + MI_TLS_PTHREAD_SLOT_OFS);
}
#elif defined(MI_TLS_PTHREAD)
extern pthread_key_t _mi_heap_default_key;
#endif
// Default heap to allocate from (if not using TLS- or pthread slots).
// Do not use this directly but use through `mi_heap_get_default()` (or the unchecked `mi_get_default_heap`).
// This thread local variable is only used when neither MI_TLS_SLOT, MI_TLS_PTHREAD, or MI_TLS_PTHREAD_SLOT_OFS are defined.
// However, on the Apple M1 we do use the address of this variable as the unique thread-id (issue #356).
extern mi_decl_thread mi_heap_t* _mi_heap_default; // default heap to allocate from
static inline mi_heap_t* mi_get_default_heap(void) {
#if defined(MI_TLS_SLOT)
mi_heap_t* heap = (mi_heap_t*)mi_tls_slot(MI_TLS_SLOT);
if mi_unlikely(heap == NULL) {
#ifdef __GNUC__
__asm(""); // prevent conditional load of the address of _mi_heap_empty
#endif
heap = (mi_heap_t*)&_mi_heap_empty;
}
return heap;
#elif defined(MI_TLS_PTHREAD_SLOT_OFS)
mi_heap_t* heap = *mi_tls_pthread_heap_slot();
return (mi_unlikely(heap == NULL) ? (mi_heap_t*)&_mi_heap_empty : heap);
#elif defined(MI_TLS_PTHREAD)
mi_heap_t* heap = (mi_unlikely(_mi_heap_default_key == (pthread_key_t)(-1)) ? _mi_heap_main_get() : (mi_heap_t*)pthread_getspecific(_mi_heap_default_key));
return (mi_unlikely(heap == NULL) ? (mi_heap_t*)&_mi_heap_empty : heap);
#else
#if defined(MI_TLS_RECURSE_GUARD)
if (mi_unlikely(!_mi_process_is_initialized)) return _mi_heap_main_get();
#endif
return _mi_heap_default;
#endif
}
static inline bool mi_heap_is_default(const mi_heap_t* heap) {
return (heap == mi_get_default_heap());
}
static inline bool mi_heap_is_backing(const mi_heap_t* heap) {
return (heap->tld->heap_backing == heap);
}
static inline bool mi_heap_is_initialized(mi_heap_t* heap) {
mi_assert_internal(heap != NULL);
return (heap != &_mi_heap_empty);
}
static inline uintptr_t _mi_ptr_cookie(const void* p) {
extern mi_heap_t _mi_heap_main;
mi_assert_internal(_mi_heap_main.cookie != 0);
return ((uintptr_t)p ^ _mi_heap_main.cookie);
}
/* -----------------------------------------------------------
Pages
----------------------------------------------------------- */
static inline mi_page_t* _mi_heap_get_free_small_page(mi_heap_t* heap, size_t size) {
mi_assert_internal(size <= (MI_SMALL_SIZE_MAX + MI_PADDING_SIZE));
const size_t idx = _mi_wsize_from_size(size);
mi_assert_internal(idx < MI_PAGES_DIRECT);
return heap->pages_free_direct[idx];
}
// Get the page belonging to a certain size class
static inline mi_page_t* _mi_get_free_small_page(size_t size) {
return _mi_heap_get_free_small_page(mi_get_default_heap(), size);
}
// Segment that contains the pointer
// Large aligned blocks may be aligned at N*MI_SEGMENT_SIZE (inside a huge segment > MI_SEGMENT_SIZE),
// and we need align "down" to the segment info which is `MI_SEGMENT_SIZE` bytes before it;
// therefore we align one byte before `p`.
static inline mi_segment_t* _mi_ptr_segment(const void* p) {
mi_assert_internal(p != NULL);
return (mi_segment_t*)(((uintptr_t)p - 1) & ~MI_SEGMENT_MASK);
}
static inline mi_page_t* mi_slice_to_page(mi_slice_t* s) {
mi_assert_internal(s->slice_offset== 0 && s->slice_count > 0);
return (mi_page_t*)(s);
}
static inline mi_slice_t* mi_page_to_slice(mi_page_t* p) {
mi_assert_internal(p->slice_offset== 0 && p->slice_count > 0);
return (mi_slice_t*)(p);
}
// Segment belonging to a page
static inline mi_segment_t* _mi_page_segment(const mi_page_t* page) {
mi_segment_t* segment = _mi_ptr_segment(page);
mi_assert_internal(segment == NULL || ((mi_slice_t*)page >= segment->slices && (mi_slice_t*)page < segment->slices + segment->slice_entries));
return segment;
}
static inline mi_slice_t* mi_slice_first(const mi_slice_t* slice) {
mi_slice_t* start = (mi_slice_t*)((uint8_t*)slice - slice->slice_offset);
mi_assert_internal(start >= _mi_ptr_segment(slice)->slices);
mi_assert_internal(start->slice_offset == 0);
mi_assert_internal(start + start->slice_count > slice);
return start;
}
// Get the page containing the pointer (performance critical as it is called in mi_free)
static inline mi_page_t* _mi_segment_page_of(const mi_segment_t* segment, const void* p) {
mi_assert_internal(p > (void*)segment);
ptrdiff_t diff = (uint8_t*)p - (uint8_t*)segment;
mi_assert_internal(diff > 0 && diff <= (ptrdiff_t)MI_SEGMENT_SIZE);
size_t idx = (size_t)diff >> MI_SEGMENT_SLICE_SHIFT;
mi_assert_internal(idx <= segment->slice_entries);
mi_slice_t* slice0 = (mi_slice_t*)&segment->slices[idx];
mi_slice_t* slice = mi_slice_first(slice0); // adjust to the block that holds the page data
mi_assert_internal(slice->slice_offset == 0);
mi_assert_internal(slice >= segment->slices && slice < segment->slices + segment->slice_entries);
return mi_slice_to_page(slice);
}
// Quick page start for initialized pages
static inline uint8_t* _mi_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size) {
return _mi_segment_page_start(segment, page, page_size);
}
// Get the page containing the pointer
static inline mi_page_t* _mi_ptr_page(void* p) {
return _mi_segment_page_of(_mi_ptr_segment(p), p);
}
// Get the block size of a page (special case for huge objects)
static inline size_t mi_page_block_size(const mi_page_t* page) {
const size_t bsize = page->xblock_size;
mi_assert_internal(bsize > 0);
if mi_likely(bsize < MI_HUGE_BLOCK_SIZE) {
return bsize;
}
else {
size_t psize;
_mi_segment_page_start(_mi_page_segment(page), page, &psize);
return psize;
}
}
static inline bool mi_page_is_huge(const mi_page_t* page) {
return (_mi_page_segment(page)->kind == MI_SEGMENT_HUGE);
}
// Get the usable block size of a page without fixed padding.
// This may still include internal padding due to alignment and rounding up size classes.
static inline size_t mi_page_usable_block_size(const mi_page_t* page) {
return mi_page_block_size(page) - MI_PADDING_SIZE;
}
// size of a segment
static inline size_t mi_segment_size(mi_segment_t* segment) {
return segment->segment_slices * MI_SEGMENT_SLICE_SIZE;
}
static inline uint8_t* mi_segment_end(mi_segment_t* segment) {
return (uint8_t*)segment + mi_segment_size(segment);
}
// Thread free access
static inline mi_block_t* mi_page_thread_free(const mi_page_t* page) {
return (mi_block_t*)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xthread_free) & ~3);
}
static inline mi_delayed_t mi_page_thread_free_flag(const mi_page_t* page) {
return (mi_delayed_t)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xthread_free) & 3);
}
// Heap access
static inline mi_heap_t* mi_page_heap(const mi_page_t* page) {
return (mi_heap_t*)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xheap));
}
static inline void mi_page_set_heap(mi_page_t* page, mi_heap_t* heap) {
mi_assert_internal(mi_page_thread_free_flag(page) != MI_DELAYED_FREEING);
mi_atomic_store_release(&page->xheap,(uintptr_t)heap);
}
// Thread free flag helpers
static inline mi_block_t* mi_tf_block(mi_thread_free_t tf) {
return (mi_block_t*)(tf & ~0x03);
}
static inline mi_delayed_t mi_tf_delayed(mi_thread_free_t tf) {
return (mi_delayed_t)(tf & 0x03);
}
static inline mi_thread_free_t mi_tf_make(mi_block_t* block, mi_delayed_t delayed) {
return (mi_thread_free_t)((uintptr_t)block | (uintptr_t)delayed);
}
static inline mi_thread_free_t mi_tf_set_delayed(mi_thread_free_t tf, mi_delayed_t delayed) {
return mi_tf_make(mi_tf_block(tf),delayed);
}
static inline mi_thread_free_t mi_tf_set_block(mi_thread_free_t tf, mi_block_t* block) {
return mi_tf_make(block, mi_tf_delayed(tf));
}
// are all blocks in a page freed?
// note: needs up-to-date used count, (as the `xthread_free` list may not be empty). see `_mi_page_collect_free`.
static inline bool mi_page_all_free(const mi_page_t* page) {
mi_assert_internal(page != NULL);
return (page->used == 0);
}
// are there any available blocks?
static inline bool mi_page_has_any_available(const mi_page_t* page) {
mi_assert_internal(page != NULL && page->reserved > 0);
return (page->used < page->reserved || (mi_page_thread_free(page) != NULL));
}
// are there immediately available blocks, i.e. blocks available on the free list.
static inline bool mi_page_immediate_available(const mi_page_t* page) {
mi_assert_internal(page != NULL);
return (page->free != NULL);
}
// is more than 7/8th of a page in use?
static inline bool mi_page_mostly_used(const mi_page_t* page) {
if (page==NULL) return true;
uint16_t frac = page->reserved / 8U;
return (page->reserved - page->used <= frac);
}
static inline mi_page_queue_t* mi_page_queue(const mi_heap_t* heap, size_t size) {
return &((mi_heap_t*)heap)->pages[_mi_bin(size)];
}
//-----------------------------------------------------------
// Page flags
//-----------------------------------------------------------
static inline bool mi_page_is_in_full(const mi_page_t* page) {
return page->flags.x.in_full;
}
static inline void mi_page_set_in_full(mi_page_t* page, bool in_full) {
page->flags.x.in_full = in_full;
}
static inline bool mi_page_has_aligned(const mi_page_t* page) {
return page->flags.x.has_aligned;
}
static inline void mi_page_set_has_aligned(mi_page_t* page, bool has_aligned) {
page->flags.x.has_aligned = has_aligned;
}
/* -------------------------------------------------------------------
Encoding/Decoding the free list next pointers
This is to protect against buffer overflow exploits where the
free list is mutated. Many hardened allocators xor the next pointer `p`
with a secret key `k1`, as `p^k1`. This prevents overwriting with known
values but might be still too weak: if the attacker can guess
the pointer `p` this can reveal `k1` (since `p^k1^p == k1`).
Moreover, if multiple blocks can be read as well, the attacker can
xor both as `(p1^k1) ^ (p2^k1) == p1^p2` which may reveal a lot
about the pointers (and subsequently `k1`).
Instead mimalloc uses an extra key `k2` and encodes as `((p^k2)<<<k1)+k1`.
Since these operations are not associative, the above approaches do not
work so well any more even if the `p` can be guesstimated. For example,
for the read case we can subtract two entries to discard the `+k1` term,
but that leads to `((p1^k2)<<<k1) - ((p2^k2)<<<k1)` at best.
We include the left-rotation since xor and addition are otherwise linear
in the lowest bit. Finally, both keys are unique per page which reduces
the re-use of keys by a large factor.
We also pass a separate `null` value to be used as `NULL` or otherwise
`(k2<<<k1)+k1` would appear (too) often as a sentinel value.
------------------------------------------------------------------- */
static inline bool mi_is_in_same_segment(const void* p, const void* q) {
return (_mi_ptr_segment(p) == _mi_ptr_segment(q));
}
static inline bool mi_is_in_same_page(const void* p, const void* q) {
mi_segment_t* segment = _mi_ptr_segment(p);
if (_mi_ptr_segment(q) != segment) return false;
// assume q may be invalid // return (_mi_segment_page_of(segment, p) == _mi_segment_page_of(segment, q));
mi_page_t* page = _mi_segment_page_of(segment, p);
size_t psize;
uint8_t* start = _mi_segment_page_start(segment, page, &psize);
return (start <= (uint8_t*)q && (uint8_t*)q < start + psize);
}
static inline uintptr_t mi_rotl(uintptr_t x, uintptr_t shift) {
shift %= MI_INTPTR_BITS;
return (shift==0 ? x : ((x << shift) | (x >> (MI_INTPTR_BITS - shift))));
}
static inline uintptr_t mi_rotr(uintptr_t x, uintptr_t shift) {
shift %= MI_INTPTR_BITS;
return (shift==0 ? x : ((x >> shift) | (x << (MI_INTPTR_BITS - shift))));
}
static inline void* mi_ptr_decode(const void* null, const mi_encoded_t x, const uintptr_t* keys) {
void* p = (void*)(mi_rotr(x - keys[0], keys[0]) ^ keys[1]);
return (p==null ? NULL : p);
}
static inline mi_encoded_t mi_ptr_encode(const void* null, const void* p, const uintptr_t* keys) {
uintptr_t x = (uintptr_t)(p==NULL ? null : p);
return mi_rotl(x ^ keys[1], keys[0]) + keys[0];
}
static inline mi_block_t* mi_block_nextx( const void* null, const mi_block_t* block, const uintptr_t* keys ) {
mi_track_mem_defined(block,sizeof(mi_block_t));
mi_block_t* next;
#ifdef MI_ENCODE_FREELIST
next = (mi_block_t*)mi_ptr_decode(null, block->next, keys);
#else
MI_UNUSED(keys); MI_UNUSED(null);
next = (mi_block_t*)block->next;
#endif
mi_track_mem_noaccess(block,sizeof(mi_block_t));
return next;
}
static inline void mi_block_set_nextx(const void* null, mi_block_t* block, const mi_block_t* next, const uintptr_t* keys) {
mi_track_mem_undefined(block,sizeof(mi_block_t));
#ifdef MI_ENCODE_FREELIST
block->next = mi_ptr_encode(null, next, keys);
#else
MI_UNUSED(keys); MI_UNUSED(null);
block->next = (mi_encoded_t)next;
#endif
mi_track_mem_noaccess(block,sizeof(mi_block_t));
}
static inline mi_block_t* mi_block_next(const mi_page_t* page, const mi_block_t* block) {
#ifdef MI_ENCODE_FREELIST
mi_block_t* next = mi_block_nextx(page,block,page->keys);
// check for free list corruption: is `next` at least in the same page?
// TODO: check if `next` is `page->block_size` aligned?
if mi_unlikely(next!=NULL && !mi_is_in_same_page(block, next)) {
_mi_error_message(EFAULT, "corrupted free list entry of size %zub at %p: value 0x%zx\n", mi_page_block_size(page), block, (uintptr_t)next);
next = NULL;
}
return next;
#else
MI_UNUSED(page);
return mi_block_nextx(page,block,NULL);
#endif
}
static inline void mi_block_set_next(const mi_page_t* page, mi_block_t* block, const mi_block_t* next) {
#ifdef MI_ENCODE_FREELIST
mi_block_set_nextx(page,block,next, page->keys);
#else
MI_UNUSED(page);
mi_block_set_nextx(page,block,next,NULL);
#endif
}
// -------------------------------------------------------------------
// commit mask
// -------------------------------------------------------------------
static inline void mi_commit_mask_create_empty(mi_commit_mask_t* cm) {
for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) {
cm->mask[i] = 0;
}
}
static inline void mi_commit_mask_create_full(mi_commit_mask_t* cm) {
for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) {
cm->mask[i] = ~((size_t)0);
}
}
static inline bool mi_commit_mask_is_empty(const mi_commit_mask_t* cm) {
for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) {
if (cm->mask[i] != 0) return false;
}
return true;
}
static inline bool mi_commit_mask_is_full(const mi_commit_mask_t* cm) {
for (size_t i = 0; i < MI_COMMIT_MASK_FIELD_COUNT; i++) {
if (cm->mask[i] != ~((size_t)0)) return false;
}
return true;
}
// defined in `segment.c`:
size_t _mi_commit_mask_committed_size(const mi_commit_mask_t* cm, size_t total);
size_t _mi_commit_mask_next_run(const mi_commit_mask_t* cm, size_t* idx);
#define mi_commit_mask_foreach(cm,idx,count) \
idx = 0; \
while ((count = _mi_commit_mask_next_run(cm,&idx)) > 0) {
#define mi_commit_mask_foreach_end() \
idx += count; \
}
// -------------------------------------------------------------------
// Fast "random" shuffle
// -------------------------------------------------------------------
static inline uintptr_t _mi_random_shuffle(uintptr_t x) {
if (x==0) { x = 17; } // ensure we don't get stuck in generating zeros
#if (MI_INTPTR_SIZE==8)
// by Sebastiano Vigna, see: <http://xoshiro.di.unimi.it/splitmix64.c>
x ^= x >> 30;
x *= 0xbf58476d1ce4e5b9UL;
x ^= x >> 27;
x *= 0x94d049bb133111ebUL;
x ^= x >> 31;
#elif (MI_INTPTR_SIZE==4)
// by Chris Wellons, see: <https://nullprogram.com/blog/2018/07/31/>
x ^= x >> 16;
x *= 0x7feb352dUL;
x ^= x >> 15;
x *= 0x846ca68bUL;
x ^= x >> 16;
#endif
return x;
}
// -------------------------------------------------------------------
// Optimize numa node access for the common case (= one node)
// -------------------------------------------------------------------
int _mi_os_numa_node_get(mi_os_tld_t* tld);
size_t _mi_os_numa_node_count_get(void);
extern _Atomic(size_t) _mi_numa_node_count;
static inline int _mi_os_numa_node(mi_os_tld_t* tld) {
if mi_likely(mi_atomic_load_relaxed(&_mi_numa_node_count) == 1) { return 0; }
else return _mi_os_numa_node_get(tld);
}
static inline size_t _mi_os_numa_node_count(void) {
const size_t count = mi_atomic_load_relaxed(&_mi_numa_node_count);
if mi_likely(count > 0) { return count; }
else return _mi_os_numa_node_count_get();
}
// -------------------------------------------------------------------
// Getting the thread id should be performant as it is called in the
// fast path of `_mi_free` and we specialize for various platforms.
// We only require _mi_threadid() to return a unique id for each thread.
// -------------------------------------------------------------------
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
static inline mi_threadid_t _mi_thread_id(void) mi_attr_noexcept {
// Windows: works on Intel and ARM in both 32- and 64-bit
return (uintptr_t)NtCurrentTeb();
}
// We use assembly for a fast thread id on the main platforms. The TLS layout depends on
// both the OS and libc implementation so we use specific tests for each main platform.
// If you test on another platform and it works please send a PR :-)
// see also https://akkadia.org/drepper/tls.pdf for more info on the TLS register.
#elif defined(__GNUC__) && ( \
(defined(__GLIBC__) && (defined(__x86_64__) || defined(__i386__) || defined(__arm__) || defined(__aarch64__))) \
|| (defined(__APPLE__) && (defined(__x86_64__) || defined(__aarch64__))) \
|| (defined(__BIONIC__) && (defined(__x86_64__) || defined(__i386__) || defined(__arm__) || defined(__aarch64__))) \
|| (defined(__FreeBSD__) && (defined(__x86_64__) || defined(__i386__) || defined(__aarch64__))) \
|| (defined(__OpenBSD__) && (defined(__x86_64__) || defined(__i386__) || defined(__aarch64__))) \
)
static inline void* mi_tls_slot(size_t slot) mi_attr_noexcept {
void* res;
const size_t ofs = (slot*sizeof(void*));
#if defined(__i386__)
__asm__("movl %%gs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x86 32-bit always uses GS
#elif defined(__APPLE__) && defined(__x86_64__)
__asm__("movq %%gs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x86_64 macOSX uses GS
#elif defined(__x86_64__) && (MI_INTPTR_SIZE==4)
__asm__("movl %%fs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x32 ABI
#elif defined(__x86_64__)
__asm__("movq %%fs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x86_64 Linux, BSD uses FS
#elif defined(__arm__)
void** tcb; MI_UNUSED(ofs);
__asm__ volatile ("mrc p15, 0, %0, c13, c0, 3\nbic %0, %0, #3" : "=r" (tcb));
res = tcb[slot];
#elif defined(__aarch64__)
void** tcb; MI_UNUSED(ofs);
#if defined(__APPLE__) // M1, issue #343
__asm__ volatile ("mrs %0, tpidrro_el0\nbic %0, %0, #7" : "=r" (tcb));
#else
__asm__ volatile ("mrs %0, tpidr_el0" : "=r" (tcb));
#endif
res = tcb[slot];
#endif
return res;
}
// setting a tls slot is only used on macOS for now
static inline void mi_tls_slot_set(size_t slot, void* value) mi_attr_noexcept {
const size_t ofs = (slot*sizeof(void*));
#if defined(__i386__)
__asm__("movl %1,%%gs:%0" : "=m" (*((void**)ofs)) : "rn" (value) : ); // 32-bit always uses GS
#elif defined(__APPLE__) && defined(__x86_64__)
__asm__("movq %1,%%gs:%0" : "=m" (*((void**)ofs)) : "rn" (value) : ); // x86_64 macOS uses GS
#elif defined(__x86_64__) && (MI_INTPTR_SIZE==4)
__asm__("movl %1,%%fs:%0" : "=m" (*((void**)ofs)) : "rn" (value) : ); // x32 ABI
#elif defined(__x86_64__)
__asm__("movq %1,%%fs:%0" : "=m" (*((void**)ofs)) : "rn" (value) : ); // x86_64 Linux, BSD uses FS
#elif defined(__arm__)
void** tcb; MI_UNUSED(ofs);
__asm__ volatile ("mrc p15, 0, %0, c13, c0, 3\nbic %0, %0, #3" : "=r" (tcb));
tcb[slot] = value;
#elif defined(__aarch64__)
void** tcb; MI_UNUSED(ofs);
#if defined(__APPLE__) // M1, issue #343
__asm__ volatile ("mrs %0, tpidrro_el0\nbic %0, %0, #7" : "=r" (tcb));
#else
__asm__ volatile ("mrs %0, tpidr_el0" : "=r" (tcb));
#endif
tcb[slot] = value;
#endif
}
static inline mi_threadid_t _mi_thread_id(void) mi_attr_noexcept {
#if defined(__BIONIC__)
// issue #384, #495: on the Bionic libc (Android), slot 1 is the thread id
// see: https://github.com/aosp-mirror/platform_bionic/blob/c44b1d0676ded732df4b3b21c5f798eacae93228/libc/platform/bionic/tls_defines.h#L86
return (uintptr_t)mi_tls_slot(1);
#else
// in all our other targets, slot 0 is the thread id
// glibc: https://sourceware.org/git/?p=glibc.git;a=blob_plain;f=sysdeps/x86_64/nptl/tls.h
// apple: https://github.com/apple/darwin-xnu/blob/main/libsyscall/os/tsd.h#L36
return (uintptr_t)mi_tls_slot(0);
#endif
}
#else
// otherwise use portable C, taking the address of a thread local variable (this is still very fast on most platforms).
static inline mi_threadid_t _mi_thread_id(void) mi_attr_noexcept {
return (uintptr_t)&_mi_heap_default;
}
#endif
// -----------------------------------------------------------------------
// Count bits: trailing or leading zeros (with MI_INTPTR_BITS on all zero)
// -----------------------------------------------------------------------
#if defined(__GNUC__)
#include <limits.h> // LONG_MAX
#define MI_HAVE_FAST_BITSCAN
static inline size_t mi_clz(uintptr_t x) {
if (x==0) return MI_INTPTR_BITS;
#if (INTPTR_MAX == LONG_MAX)
return __builtin_clzl(x);
#else
return __builtin_clzll(x);
#endif
}
static inline size_t mi_ctz(uintptr_t x) {
if (x==0) return MI_INTPTR_BITS;
#if (INTPTR_MAX == LONG_MAX)
return __builtin_ctzl(x);
#else
return __builtin_ctzll(x);
#endif
}
#elif defined(_MSC_VER)
#include <limits.h> // LONG_MAX
#define MI_HAVE_FAST_BITSCAN
static inline size_t mi_clz(uintptr_t x) {
if (x==0) return MI_INTPTR_BITS;
unsigned long idx;
#if (INTPTR_MAX == LONG_MAX)
_BitScanReverse(&idx, x);
#else
_BitScanReverse64(&idx, x);
#endif
return ((MI_INTPTR_BITS - 1) - idx);
}
static inline size_t mi_ctz(uintptr_t x) {
if (x==0) return MI_INTPTR_BITS;
unsigned long idx;
#if (INTPTR_MAX == LONG_MAX)
_BitScanForward(&idx, x);
#else
_BitScanForward64(&idx, x);
#endif
return idx;
}
#else
static inline size_t mi_ctz32(uint32_t x) {
// de Bruijn multiplication, see <http://supertech.csail.mit.edu/papers/debruijn.pdf>
static const unsigned char debruijn[32] = {
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
};
if (x==0) return 32;
return debruijn[((x & -(int32_t)x) * 0x077CB531UL) >> 27];
}
static inline size_t mi_clz32(uint32_t x) {
// de Bruijn multiplication, see <http://supertech.csail.mit.edu/papers/debruijn.pdf>
static const uint8_t debruijn[32] = {
31, 22, 30, 21, 18, 10, 29, 2, 20, 17, 15, 13, 9, 6, 28, 1,
23, 19, 11, 3, 16, 14, 7, 24, 12, 4, 8, 25, 5, 26, 27, 0
};
if (x==0) return 32;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return debruijn[(uint32_t)(x * 0x07C4ACDDUL) >> 27];
}
static inline size_t mi_clz(uintptr_t x) {
if (x==0) return MI_INTPTR_BITS;
#if (MI_INTPTR_BITS <= 32)
return mi_clz32((uint32_t)x);
#else
size_t count = mi_clz32((uint32_t)(x >> 32));
if (count < 32) return count;
return (32 + mi_clz32((uint32_t)x));
#endif
}
static inline size_t mi_ctz(uintptr_t x) {
if (x==0) return MI_INTPTR_BITS;
#if (MI_INTPTR_BITS <= 32)
return mi_ctz32((uint32_t)x);
#else
size_t count = mi_ctz32((uint32_t)x);
if (count < 32) return count;
return (32 + mi_ctz32((uint32_t)(x>>32)));
#endif
}
#endif
// "bit scan reverse": Return index of the highest bit (or MI_INTPTR_BITS if `x` is zero)
static inline size_t mi_bsr(uintptr_t x) {
return (x==0 ? MI_INTPTR_BITS : MI_INTPTR_BITS - 1 - mi_clz(x));
}
// ---------------------------------------------------------------------------------
// Provide our own `_mi_memcpy` for potential performance optimizations.
//
// For now, only on Windows with msvc/clang-cl we optimize to `rep movsb` if
// we happen to run on x86/x64 cpu's that have "fast short rep movsb" (FSRM) support
// (AMD Zen3+ (~2020) or Intel Ice Lake+ (~2017). See also issue #201 and pr #253.
// ---------------------------------------------------------------------------------
#if !MI_TRACK_ENABLED && defined(_WIN32) && (defined(_M_IX86) || defined(_M_X64))
#include <intrin.h>
#include <string.h>
extern bool _mi_cpu_has_fsrm;
static inline void _mi_memcpy(void* dst, const void* src, size_t n) {
if (_mi_cpu_has_fsrm) {
__movsb((unsigned char*)dst, (const unsigned char*)src, n);
}
else {
memcpy(dst, src, n);
}
}
static inline void _mi_memzero(void* dst, size_t n) {
if (_mi_cpu_has_fsrm) {
__stosb((unsigned char*)dst, 0, n);
}
else {
memset(dst, 0, n);
}
}
#else
#include <string.h>
static inline void _mi_memcpy(void* dst, const void* src, size_t n) {
memcpy(dst, src, n);
}
static inline void _mi_memzero(void* dst, size_t n) {
memset(dst, 0, n);
}
#endif
// -------------------------------------------------------------------------------
// The `_mi_memcpy_aligned` can be used if the pointers are machine-word aligned
// This is used for example in `mi_realloc`.
// -------------------------------------------------------------------------------
#if (defined(__GNUC__) && (__GNUC__ >= 4)) || defined(__clang__)
// On GCC/CLang we provide a hint that the pointers are word aligned.
#include <string.h>
static inline void _mi_memcpy_aligned(void* dst, const void* src, size_t n) {
mi_assert_internal(((uintptr_t)dst % MI_INTPTR_SIZE == 0) && ((uintptr_t)src % MI_INTPTR_SIZE == 0));
void* adst = __builtin_assume_aligned(dst, MI_INTPTR_SIZE);
const void* asrc = __builtin_assume_aligned(src, MI_INTPTR_SIZE);
_mi_memcpy(adst, asrc, n);
}
static inline void _mi_memzero_aligned(void* dst, size_t n) {
mi_assert_internal((uintptr_t)dst % MI_INTPTR_SIZE == 0);
void* adst = __builtin_assume_aligned(dst, MI_INTPTR_SIZE);
_mi_memzero(adst, n);
}
#else
// Default fallback on `_mi_memcpy`
static inline void _mi_memcpy_aligned(void* dst, const void* src, size_t n) {
mi_assert_internal(((uintptr_t)dst % MI_INTPTR_SIZE == 0) && ((uintptr_t)src % MI_INTPTR_SIZE == 0));
_mi_memcpy(dst, src, n);
}
static inline void _mi_memzero_aligned(void* dst, size_t n) {
mi_assert_internal((uintptr_t)dst % MI_INTPTR_SIZE == 0);
_mi_memzero(dst, n);
}
#endif
#endif