mirror of
https://github.com/microsoft/mimalloc.git
synced 2024-12-27 13:33:18 +08:00
610 lines
24 KiB
C
610 lines
24 KiB
C
/* ----------------------------------------------------------------------------
|
|
Copyright (c) 2018-2021, Microsoft Research, Daan Leijen
|
|
This is free software; you can redistribute it and/or modify it under the
|
|
terms of the MIT license. A copy of the license can be found in the file
|
|
"LICENSE" at the root of this distribution.
|
|
-----------------------------------------------------------------------------*/
|
|
#pragma once
|
|
#ifndef MIMALLOC_TYPES_H
|
|
#define MIMALLOC_TYPES_H
|
|
|
|
#include <stddef.h> // ptrdiff_t
|
|
#include <stdint.h> // uintptr_t, uint16_t, etc
|
|
#include "mimalloc-atomic.h" // _Atomic
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(disable:4214) // bitfield is not int
|
|
#endif
|
|
|
|
// Minimal alignment necessary. On most platforms 16 bytes are needed
|
|
// due to SSE registers for example. This must be at least `sizeof(void*)`
|
|
#ifndef MI_MAX_ALIGN_SIZE
|
|
#define MI_MAX_ALIGN_SIZE 8 // sizeof(max_align_t)
|
|
#endif
|
|
|
|
// ------------------------------------------------------
|
|
// Variants
|
|
// ------------------------------------------------------
|
|
|
|
// Define NDEBUG in the release version to disable assertions.
|
|
// #define NDEBUG
|
|
|
|
// Define MI_VALGRIND to enable valgrind support
|
|
// #define MI_VALGRIND 1
|
|
|
|
// Define MI_STAT as 1 to maintain statistics; set it to 2 to have detailed statistics (but costs some performance).
|
|
// #define MI_STAT 1
|
|
|
|
// Define MI_SECURE to enable security mitigations
|
|
// #define MI_SECURE 1 // guard page around metadata
|
|
// #define MI_SECURE 2 // guard page around each mimalloc page
|
|
// #define MI_SECURE 3 // encode free lists (detect corrupted free list (buffer overflow), and invalid pointer free)
|
|
// #define MI_SECURE 4 // checks for double free. (may be more expensive)
|
|
|
|
#if !defined(MI_SECURE)
|
|
#define MI_SECURE 0
|
|
#endif
|
|
|
|
// Define MI_DEBUG for debug mode
|
|
// #define MI_DEBUG 1 // basic assertion checks and statistics, check double free, corrupted free list, and invalid pointer free.
|
|
// #define MI_DEBUG 2 // + internal assertion checks
|
|
// #define MI_DEBUG 3 // + extensive internal invariant checking (cmake -DMI_DEBUG_FULL=ON)
|
|
#if !defined(MI_DEBUG)
|
|
#if !defined(NDEBUG) || defined(_DEBUG)
|
|
#define MI_DEBUG 2
|
|
#else
|
|
#define MI_DEBUG 0
|
|
#endif
|
|
#endif
|
|
|
|
// Reserve extra padding at the end of each block to be more resilient against heap block overflows.
|
|
// The padding can detect byte-precise buffer overflow on free.
|
|
#if !defined(MI_PADDING) && (MI_DEBUG>=1 || MI_VALGRIND)
|
|
#define MI_PADDING 1
|
|
#endif
|
|
|
|
|
|
// Encoded free lists allow detection of corrupted free lists
|
|
// and can detect buffer overflows, modify after free, and double `free`s.
|
|
#if (MI_SECURE>=3 || MI_DEBUG>=1)
|
|
#define MI_ENCODE_FREELIST 1
|
|
#endif
|
|
|
|
|
|
// We used to abandon huge pages but to eagerly deallocate if freed from another thread,
|
|
// but that makes it not possible to visit them during a heap walk or include them in a
|
|
// `mi_heap_destroy`. We therefore instead reset/decommit the huge blocks if freed from
|
|
// another thread so most memory is available until it gets properly freed by the owning thread.
|
|
// #define MI_HUGE_PAGE_ABANDON 1
|
|
|
|
|
|
// ------------------------------------------------------
|
|
// Platform specific values
|
|
// ------------------------------------------------------
|
|
|
|
// ------------------------------------------------------
|
|
// Size of a pointer.
|
|
// We assume that `sizeof(void*)==sizeof(intptr_t)`
|
|
// and it holds for all platforms we know of.
|
|
//
|
|
// However, the C standard only requires that:
|
|
// p == (void*)((intptr_t)p))
|
|
// but we also need:
|
|
// i == (intptr_t)((void*)i)
|
|
// or otherwise one might define an intptr_t type that is larger than a pointer...
|
|
// ------------------------------------------------------
|
|
|
|
#if INTPTR_MAX > INT64_MAX
|
|
# define MI_INTPTR_SHIFT (4) // assume 128-bit (as on arm CHERI for example)
|
|
#elif INTPTR_MAX == INT64_MAX
|
|
# define MI_INTPTR_SHIFT (3)
|
|
#elif INTPTR_MAX == INT32_MAX
|
|
# define MI_INTPTR_SHIFT (2)
|
|
#else
|
|
#error platform pointers must be 32, 64, or 128 bits
|
|
#endif
|
|
|
|
#if SIZE_MAX == UINT64_MAX
|
|
# define MI_SIZE_SHIFT (3)
|
|
typedef int64_t mi_ssize_t;
|
|
#elif SIZE_MAX == UINT32_MAX
|
|
# define MI_SIZE_SHIFT (2)
|
|
typedef int32_t mi_ssize_t;
|
|
#else
|
|
#error platform objects must be 32 or 64 bits
|
|
#endif
|
|
|
|
#if (SIZE_MAX/2) > LONG_MAX
|
|
# define MI_ZU(x) x##ULL
|
|
# define MI_ZI(x) x##LL
|
|
#else
|
|
# define MI_ZU(x) x##UL
|
|
# define MI_ZI(x) x##L
|
|
#endif
|
|
|
|
#define MI_INTPTR_SIZE (1<<MI_INTPTR_SHIFT)
|
|
#define MI_INTPTR_BITS (MI_INTPTR_SIZE*8)
|
|
|
|
#define MI_SIZE_SIZE (1<<MI_SIZE_SHIFT)
|
|
#define MI_SIZE_BITS (MI_SIZE_SIZE*8)
|
|
|
|
#define MI_KiB (MI_ZU(1024))
|
|
#define MI_MiB (MI_KiB*MI_KiB)
|
|
#define MI_GiB (MI_MiB*MI_KiB)
|
|
|
|
|
|
// ------------------------------------------------------
|
|
// Main internal data-structures
|
|
// ------------------------------------------------------
|
|
|
|
// Main tuning parameters for segment and page sizes
|
|
// Sizes for 64-bit (usually divide by two for 32-bit)
|
|
#define MI_SEGMENT_SLICE_SHIFT (13 + MI_INTPTR_SHIFT) // 64KiB (32KiB on 32-bit)
|
|
|
|
#if MI_INTPTR_SIZE > 4
|
|
#define MI_SEGMENT_SHIFT ( 9 + MI_SEGMENT_SLICE_SHIFT) // 32MiB
|
|
#else
|
|
#define MI_SEGMENT_SHIFT ( 7 + MI_SEGMENT_SLICE_SHIFT) // 4MiB on 32-bit
|
|
#endif
|
|
|
|
#define MI_SMALL_PAGE_SHIFT (MI_SEGMENT_SLICE_SHIFT) // 64KiB
|
|
#define MI_MEDIUM_PAGE_SHIFT ( 3 + MI_SMALL_PAGE_SHIFT) // 512KiB
|
|
|
|
|
|
// Derived constants
|
|
#define MI_SEGMENT_SIZE (MI_ZU(1)<<MI_SEGMENT_SHIFT)
|
|
#define MI_SEGMENT_ALIGN MI_SEGMENT_SIZE
|
|
#define MI_SEGMENT_MASK (MI_SEGMENT_ALIGN - 1)
|
|
#define MI_SEGMENT_SLICE_SIZE (MI_ZU(1)<< MI_SEGMENT_SLICE_SHIFT)
|
|
#define MI_SLICES_PER_SEGMENT (MI_SEGMENT_SIZE / MI_SEGMENT_SLICE_SIZE) // 1024
|
|
|
|
#define MI_SMALL_PAGE_SIZE (MI_ZU(1)<<MI_SMALL_PAGE_SHIFT)
|
|
#define MI_MEDIUM_PAGE_SIZE (MI_ZU(1)<<MI_MEDIUM_PAGE_SHIFT)
|
|
|
|
#define MI_SMALL_OBJ_SIZE_MAX (MI_SMALL_PAGE_SIZE/4) // 8KiB on 64-bit
|
|
#define MI_MEDIUM_OBJ_SIZE_MAX (MI_MEDIUM_PAGE_SIZE/4) // 128KiB on 64-bit
|
|
#define MI_MEDIUM_OBJ_WSIZE_MAX (MI_MEDIUM_OBJ_SIZE_MAX/MI_INTPTR_SIZE)
|
|
#define MI_LARGE_OBJ_SIZE_MAX (MI_SEGMENT_SIZE/2) // 32MiB on 64-bit
|
|
#define MI_LARGE_OBJ_WSIZE_MAX (MI_LARGE_OBJ_SIZE_MAX/MI_INTPTR_SIZE)
|
|
|
|
// Maximum number of size classes. (spaced exponentially in 12.5% increments)
|
|
#define MI_BIN_HUGE (73U)
|
|
|
|
#if (MI_MEDIUM_OBJ_WSIZE_MAX >= 655360)
|
|
#error "mimalloc internal: define more bins"
|
|
#endif
|
|
|
|
// Maximum slice offset (15)
|
|
#define MI_MAX_SLICE_OFFSET ((MI_ALIGNMENT_MAX / MI_SEGMENT_SLICE_SIZE) - 1)
|
|
|
|
// Used as a special value to encode block sizes in 32 bits.
|
|
#define MI_HUGE_BLOCK_SIZE ((uint32_t)(2*MI_GiB))
|
|
|
|
// blocks up to this size are always allocated aligned
|
|
#define MI_MAX_ALIGN_GUARANTEE (8*MI_MAX_ALIGN_SIZE)
|
|
|
|
// Alignments over MI_ALIGNMENT_MAX are allocated in dedicated huge page segments
|
|
#define MI_ALIGNMENT_MAX (MI_SEGMENT_SIZE >> 1)
|
|
|
|
|
|
// ------------------------------------------------------
|
|
// Mimalloc pages contain allocated blocks
|
|
// ------------------------------------------------------
|
|
|
|
// The free lists use encoded next fields
|
|
// (Only actually encodes when MI_ENCODED_FREELIST is defined.)
|
|
typedef uintptr_t mi_encoded_t;
|
|
|
|
// thread id's
|
|
typedef size_t mi_threadid_t;
|
|
|
|
// free lists contain blocks
|
|
typedef struct mi_block_s {
|
|
mi_encoded_t next;
|
|
} mi_block_t;
|
|
|
|
|
|
// The delayed flags are used for efficient multi-threaded free-ing
|
|
typedef enum mi_delayed_e {
|
|
MI_USE_DELAYED_FREE = 0, // push on the owning heap thread delayed list
|
|
MI_DELAYED_FREEING = 1, // temporary: another thread is accessing the owning heap
|
|
MI_NO_DELAYED_FREE = 2, // optimize: push on page local thread free queue if another block is already in the heap thread delayed free list
|
|
MI_NEVER_DELAYED_FREE = 3 // sticky, only resets on page reclaim
|
|
} mi_delayed_t;
|
|
|
|
|
|
// The `in_full` and `has_aligned` page flags are put in a union to efficiently
|
|
// test if both are false (`full_aligned == 0`) in the `mi_free` routine.
|
|
#if !MI_TSAN
|
|
typedef union mi_page_flags_s {
|
|
uint8_t full_aligned;
|
|
struct {
|
|
uint8_t in_full : 1;
|
|
uint8_t has_aligned : 1;
|
|
} x;
|
|
} mi_page_flags_t;
|
|
#else
|
|
// under thread sanitizer, use a byte for each flag to suppress warning, issue #130
|
|
typedef union mi_page_flags_s {
|
|
uint16_t full_aligned;
|
|
struct {
|
|
uint8_t in_full;
|
|
uint8_t has_aligned;
|
|
} x;
|
|
} mi_page_flags_t;
|
|
#endif
|
|
|
|
// Thread free list.
|
|
// We use the bottom 2 bits of the pointer for mi_delayed_t flags
|
|
typedef uintptr_t mi_thread_free_t;
|
|
|
|
// A page contains blocks of one specific size (`block_size`).
|
|
// Each page has three list of free blocks:
|
|
// `free` for blocks that can be allocated,
|
|
// `local_free` for freed blocks that are not yet available to `mi_malloc`
|
|
// `thread_free` for freed blocks by other threads
|
|
// The `local_free` and `thread_free` lists are migrated to the `free` list
|
|
// when it is exhausted. The separate `local_free` list is necessary to
|
|
// implement a monotonic heartbeat. The `thread_free` list is needed for
|
|
// avoiding atomic operations in the common case.
|
|
//
|
|
//
|
|
// `used - |thread_free|` == actual blocks that are in use (alive)
|
|
// `used - |thread_free| + |free| + |local_free| == capacity`
|
|
//
|
|
// We don't count `freed` (as |free|) but use `used` to reduce
|
|
// the number of memory accesses in the `mi_page_all_free` function(s).
|
|
//
|
|
// Notes:
|
|
// - Access is optimized for `mi_free` and `mi_page_alloc` (in `alloc.c`)
|
|
// - Using `uint16_t` does not seem to slow things down
|
|
// - The size is 8 words on 64-bit which helps the page index calculations
|
|
// (and 10 words on 32-bit, and encoded free lists add 2 words. Sizes 10
|
|
// and 12 are still good for address calculation)
|
|
// - To limit the structure size, the `xblock_size` is 32-bits only; for
|
|
// blocks > MI_HUGE_BLOCK_SIZE the size is determined from the segment page size
|
|
// - `thread_free` uses the bottom bits as a delayed-free flags to optimize
|
|
// concurrent frees where only the first concurrent free adds to the owning
|
|
// heap `thread_delayed_free` list (see `alloc.c:mi_free_block_mt`).
|
|
// The invariant is that no-delayed-free is only set if there is
|
|
// at least one block that will be added, or as already been added, to
|
|
// the owning heap `thread_delayed_free` list. This guarantees that pages
|
|
// will be freed correctly even if only other threads free blocks.
|
|
typedef struct mi_page_s {
|
|
// "owned" by the segment
|
|
uint32_t slice_count; // slices in this page (0 if not a page)
|
|
uint32_t slice_offset; // distance from the actual page data slice (0 if a page)
|
|
uint8_t is_reset : 1; // `true` if the page memory was reset
|
|
uint8_t is_committed : 1; // `true` if the page virtual memory is committed
|
|
uint8_t is_zero_init : 1; // `true` if the page was zero initialized
|
|
|
|
// layout like this to optimize access in `mi_malloc` and `mi_free`
|
|
uint16_t capacity; // number of blocks committed, must be the first field, see `segment.c:page_clear`
|
|
uint16_t reserved; // number of blocks reserved in memory
|
|
mi_page_flags_t flags; // `in_full` and `has_aligned` flags (8 bits)
|
|
uint8_t is_zero : 1; // `true` if the blocks in the free list are zero initialized
|
|
uint8_t retire_expire : 7; // expiration count for retired blocks
|
|
|
|
mi_block_t* free; // list of available free blocks (`malloc` allocates from this list)
|
|
uint32_t used; // number of blocks in use (including blocks in `local_free` and `thread_free`)
|
|
uint32_t xblock_size; // size available in each block (always `>0`)
|
|
mi_block_t* local_free; // list of deferred free blocks by this thread (migrates to `free`)
|
|
|
|
#ifdef MI_ENCODE_FREELIST
|
|
uintptr_t keys[2]; // two random keys to encode the free lists (see `_mi_block_next`)
|
|
#endif
|
|
|
|
_Atomic(mi_thread_free_t) xthread_free; // list of deferred free blocks freed by other threads
|
|
_Atomic(uintptr_t) xheap;
|
|
|
|
struct mi_page_s* next; // next page owned by this thread with the same `block_size`
|
|
struct mi_page_s* prev; // previous page owned by this thread with the same `block_size`
|
|
|
|
// 64-bit 9 words, 32-bit 12 words, (+2 for secure)
|
|
#if MI_INTPTR_SIZE==8
|
|
uintptr_t padding[1];
|
|
#endif
|
|
} mi_page_t;
|
|
|
|
|
|
|
|
typedef enum mi_page_kind_e {
|
|
MI_PAGE_SMALL, // small blocks go into 64KiB pages inside a segment
|
|
MI_PAGE_MEDIUM, // medium blocks go into medium pages inside a segment
|
|
MI_PAGE_LARGE, // larger blocks go into a page of just one block
|
|
MI_PAGE_HUGE, // huge blocks (> 16 MiB) are put into a single page in a single segment.
|
|
} mi_page_kind_t;
|
|
|
|
typedef enum mi_segment_kind_e {
|
|
MI_SEGMENT_NORMAL, // MI_SEGMENT_SIZE size with pages inside.
|
|
MI_SEGMENT_HUGE, // > MI_LARGE_SIZE_MAX segment with just one huge page inside.
|
|
} mi_segment_kind_t;
|
|
|
|
// ------------------------------------------------------
|
|
// A segment holds a commit mask where a bit is set if
|
|
// the corresponding MI_COMMIT_SIZE area is committed.
|
|
// The MI_COMMIT_SIZE must be a multiple of the slice
|
|
// size. If it is equal we have the most fine grained
|
|
// decommit (but setting it higher can be more efficient).
|
|
// The MI_MINIMAL_COMMIT_SIZE is the minimal amount that will
|
|
// be committed in one go which can be set higher than
|
|
// MI_COMMIT_SIZE for efficiency (while the decommit mask
|
|
// is still tracked in fine-grained MI_COMMIT_SIZE chunks)
|
|
// ------------------------------------------------------
|
|
|
|
#define MI_MINIMAL_COMMIT_SIZE (16*MI_SEGMENT_SLICE_SIZE) // 1MiB
|
|
#define MI_COMMIT_SIZE (MI_SEGMENT_SLICE_SIZE) // 64KiB
|
|
#define MI_COMMIT_MASK_BITS (MI_SEGMENT_SIZE / MI_COMMIT_SIZE)
|
|
#define MI_COMMIT_MASK_FIELD_BITS MI_SIZE_BITS
|
|
#define MI_COMMIT_MASK_FIELD_COUNT (MI_COMMIT_MASK_BITS / MI_COMMIT_MASK_FIELD_BITS)
|
|
|
|
#if (MI_COMMIT_MASK_BITS != (MI_COMMIT_MASK_FIELD_COUNT * MI_COMMIT_MASK_FIELD_BITS))
|
|
#error "the segment size must be exactly divisible by the (commit size * size_t bits)"
|
|
#endif
|
|
|
|
typedef struct mi_commit_mask_s {
|
|
size_t mask[MI_COMMIT_MASK_FIELD_COUNT];
|
|
} mi_commit_mask_t;
|
|
|
|
typedef mi_page_t mi_slice_t;
|
|
typedef int64_t mi_msecs_t;
|
|
|
|
|
|
// Segments are large allocated memory blocks (8mb on 64 bit) from
|
|
// the OS. Inside segments we allocated fixed size _pages_ that
|
|
// contain blocks.
|
|
typedef struct mi_segment_s {
|
|
size_t memid; // memory id for arena allocation
|
|
bool mem_is_pinned; // `true` if we cannot decommit/reset/protect in this memory (i.e. when allocated using large OS pages)
|
|
bool mem_is_large; // in large/huge os pages?
|
|
bool mem_is_committed; // `true` if the whole segment is eagerly committed
|
|
size_t mem_alignment; // page alignment for huge pages (only used for alignment > MI_ALIGNMENT_MAX)
|
|
size_t mem_align_offset; // offset for huge page alignment (only used for alignment > MI_ALIGNMENT_MAX)
|
|
|
|
bool allow_decommit;
|
|
mi_msecs_t decommit_expire;
|
|
mi_commit_mask_t decommit_mask;
|
|
mi_commit_mask_t commit_mask;
|
|
|
|
_Atomic(struct mi_segment_s*) abandoned_next;
|
|
|
|
// from here is zero initialized
|
|
struct mi_segment_s* next; // the list of freed segments in the cache (must be first field, see `segment.c:mi_segment_init`)
|
|
|
|
size_t abandoned; // abandoned pages (i.e. the original owning thread stopped) (`abandoned <= used`)
|
|
size_t abandoned_visits; // count how often this segment is visited in the abandoned list (to force reclaim it it is too long)
|
|
size_t used; // count of pages in use
|
|
uintptr_t cookie; // verify addresses in debug mode: `mi_ptr_cookie(segment) == segment->cookie`
|
|
|
|
size_t segment_slices; // for huge segments this may be different from `MI_SLICES_PER_SEGMENT`
|
|
size_t segment_info_slices; // initial slices we are using segment info and possible guard pages.
|
|
|
|
// layout like this to optimize access in `mi_free`
|
|
mi_segment_kind_t kind;
|
|
size_t slice_entries; // entries in the `slices` array, at most `MI_SLICES_PER_SEGMENT`
|
|
_Atomic(mi_threadid_t) thread_id; // unique id of the thread owning this segment
|
|
|
|
mi_slice_t slices[MI_SLICES_PER_SEGMENT+1]; // one more for huge blocks with large alignment
|
|
} mi_segment_t;
|
|
|
|
|
|
// ------------------------------------------------------
|
|
// Heaps
|
|
// Provide first-class heaps to allocate from.
|
|
// A heap just owns a set of pages for allocation and
|
|
// can only be allocate/reallocate from the thread that created it.
|
|
// Freeing blocks can be done from any thread though.
|
|
// Per thread, the segments are shared among its heaps.
|
|
// Per thread, there is always a default heap that is
|
|
// used for allocation; it is initialized to statically
|
|
// point to an empty heap to avoid initialization checks
|
|
// in the fast path.
|
|
// ------------------------------------------------------
|
|
|
|
// Thread local data
|
|
typedef struct mi_tld_s mi_tld_t;
|
|
|
|
// Pages of a certain block size are held in a queue.
|
|
typedef struct mi_page_queue_s {
|
|
mi_page_t* first;
|
|
mi_page_t* last;
|
|
size_t block_size;
|
|
} mi_page_queue_t;
|
|
|
|
#define MI_BIN_FULL (MI_BIN_HUGE+1)
|
|
|
|
// Random context
|
|
typedef struct mi_random_cxt_s {
|
|
uint32_t input[16];
|
|
uint32_t output[16];
|
|
int output_available;
|
|
bool weak;
|
|
} mi_random_ctx_t;
|
|
|
|
|
|
// In debug mode there is a padding structure at the end of the blocks to check for buffer overflows
|
|
#if (MI_PADDING)
|
|
typedef struct mi_padding_s {
|
|
uint32_t canary; // encoded block value to check validity of the padding (in case of overflow)
|
|
uint32_t delta; // padding bytes before the block. (mi_usable_size(p) - delta == exact allocated bytes)
|
|
} mi_padding_t;
|
|
#define MI_PADDING_SIZE (sizeof(mi_padding_t))
|
|
#define MI_PADDING_WSIZE ((MI_PADDING_SIZE + MI_INTPTR_SIZE - 1) / MI_INTPTR_SIZE)
|
|
#else
|
|
#define MI_PADDING_SIZE 0
|
|
#define MI_PADDING_WSIZE 0
|
|
#endif
|
|
|
|
#define MI_PAGES_DIRECT (MI_SMALL_WSIZE_MAX + MI_PADDING_WSIZE + 1)
|
|
|
|
|
|
// A heap owns a set of pages.
|
|
struct mi_heap_s {
|
|
mi_tld_t* tld;
|
|
mi_page_t* pages_free_direct[MI_PAGES_DIRECT]; // optimize: array where every entry points a page with possibly free blocks in the corresponding queue for that size.
|
|
mi_page_queue_t pages[MI_BIN_FULL + 1]; // queue of pages for each size class (or "bin")
|
|
_Atomic(mi_block_t*) thread_delayed_free;
|
|
mi_threadid_t thread_id; // thread this heap belongs too
|
|
mi_arena_id_t arena_id; // arena id if the heap belongs to a specific arena (or 0)
|
|
uintptr_t cookie; // random cookie to verify pointers (see `_mi_ptr_cookie`)
|
|
uintptr_t keys[2]; // two random keys used to encode the `thread_delayed_free` list
|
|
mi_random_ctx_t random; // random number context used for secure allocation
|
|
size_t page_count; // total number of pages in the `pages` queues.
|
|
size_t page_retired_min; // smallest retired index (retired pages are fully free, but still in the page queues)
|
|
size_t page_retired_max; // largest retired index into the `pages` array.
|
|
mi_heap_t* next; // list of heaps per thread
|
|
bool no_reclaim; // `true` if this heap should not reclaim abandoned pages
|
|
};
|
|
|
|
|
|
|
|
// ------------------------------------------------------
|
|
// Debug
|
|
// ------------------------------------------------------
|
|
|
|
#if !defined(MI_DEBUG_UNINIT)
|
|
#define MI_DEBUG_UNINIT (0xD0)
|
|
#endif
|
|
#if !defined(MI_DEBUG_FREED)
|
|
#define MI_DEBUG_FREED (0xDF)
|
|
#endif
|
|
#if !defined(MI_DEBUG_PADDING)
|
|
#define MI_DEBUG_PADDING (0xDE)
|
|
#endif
|
|
|
|
#if (MI_DEBUG)
|
|
// use our own assertion to print without memory allocation
|
|
void _mi_assert_fail(const char* assertion, const char* fname, unsigned int line, const char* func );
|
|
#define mi_assert(expr) ((expr) ? (void)0 : _mi_assert_fail(#expr,__FILE__,__LINE__,__func__))
|
|
#else
|
|
#define mi_assert(x)
|
|
#endif
|
|
|
|
#if (MI_DEBUG>1)
|
|
#define mi_assert_internal mi_assert
|
|
#else
|
|
#define mi_assert_internal(x)
|
|
#endif
|
|
|
|
#if (MI_DEBUG>2)
|
|
#define mi_assert_expensive mi_assert
|
|
#else
|
|
#define mi_assert_expensive(x)
|
|
#endif
|
|
|
|
// ------------------------------------------------------
|
|
// Statistics
|
|
// ------------------------------------------------------
|
|
|
|
#ifndef MI_STAT
|
|
#if (MI_DEBUG>0)
|
|
#define MI_STAT 2
|
|
#else
|
|
#define MI_STAT 0
|
|
#endif
|
|
#endif
|
|
|
|
typedef struct mi_stat_count_s {
|
|
int64_t allocated;
|
|
int64_t freed;
|
|
int64_t peak;
|
|
int64_t current;
|
|
} mi_stat_count_t;
|
|
|
|
typedef struct mi_stat_counter_s {
|
|
int64_t total;
|
|
int64_t count;
|
|
} mi_stat_counter_t;
|
|
|
|
typedef struct mi_stats_s {
|
|
mi_stat_count_t segments;
|
|
mi_stat_count_t pages;
|
|
mi_stat_count_t reserved;
|
|
mi_stat_count_t committed;
|
|
mi_stat_count_t reset;
|
|
mi_stat_count_t page_committed;
|
|
mi_stat_count_t segments_abandoned;
|
|
mi_stat_count_t pages_abandoned;
|
|
mi_stat_count_t threads;
|
|
mi_stat_count_t normal;
|
|
mi_stat_count_t huge;
|
|
mi_stat_count_t large;
|
|
mi_stat_count_t malloc;
|
|
mi_stat_count_t segments_cache;
|
|
mi_stat_counter_t pages_extended;
|
|
mi_stat_counter_t mmap_calls;
|
|
mi_stat_counter_t commit_calls;
|
|
mi_stat_counter_t page_no_retire;
|
|
mi_stat_counter_t searches;
|
|
mi_stat_counter_t normal_count;
|
|
mi_stat_counter_t huge_count;
|
|
mi_stat_counter_t large_count;
|
|
#if MI_STAT>1
|
|
mi_stat_count_t normal_bins[MI_BIN_HUGE+1];
|
|
#endif
|
|
} mi_stats_t;
|
|
|
|
|
|
void _mi_stat_increase(mi_stat_count_t* stat, size_t amount);
|
|
void _mi_stat_decrease(mi_stat_count_t* stat, size_t amount);
|
|
void _mi_stat_counter_increase(mi_stat_counter_t* stat, size_t amount);
|
|
|
|
#if (MI_STAT)
|
|
#define mi_stat_increase(stat,amount) _mi_stat_increase( &(stat), amount)
|
|
#define mi_stat_decrease(stat,amount) _mi_stat_decrease( &(stat), amount)
|
|
#define mi_stat_counter_increase(stat,amount) _mi_stat_counter_increase( &(stat), amount)
|
|
#else
|
|
#define mi_stat_increase(stat,amount) (void)0
|
|
#define mi_stat_decrease(stat,amount) (void)0
|
|
#define mi_stat_counter_increase(stat,amount) (void)0
|
|
#endif
|
|
|
|
#define mi_heap_stat_counter_increase(heap,stat,amount) mi_stat_counter_increase( (heap)->tld->stats.stat, amount)
|
|
#define mi_heap_stat_increase(heap,stat,amount) mi_stat_increase( (heap)->tld->stats.stat, amount)
|
|
#define mi_heap_stat_decrease(heap,stat,amount) mi_stat_decrease( (heap)->tld->stats.stat, amount)
|
|
|
|
// ------------------------------------------------------
|
|
// Thread Local data
|
|
// ------------------------------------------------------
|
|
|
|
// A "span" is is an available range of slices. The span queues keep
|
|
// track of slice spans of at most the given `slice_count` (but more than the previous size class).
|
|
typedef struct mi_span_queue_s {
|
|
mi_slice_t* first;
|
|
mi_slice_t* last;
|
|
size_t slice_count;
|
|
} mi_span_queue_t;
|
|
|
|
#define MI_SEGMENT_BIN_MAX (35) // 35 == mi_segment_bin(MI_SLICES_PER_SEGMENT)
|
|
|
|
// OS thread local data
|
|
typedef struct mi_os_tld_s {
|
|
size_t region_idx; // start point for next allocation
|
|
mi_stats_t* stats; // points to tld stats
|
|
} mi_os_tld_t;
|
|
|
|
|
|
// Segments thread local data
|
|
typedef struct mi_segments_tld_s {
|
|
mi_span_queue_t spans[MI_SEGMENT_BIN_MAX+1]; // free slice spans inside segments
|
|
size_t count; // current number of segments;
|
|
size_t peak_count; // peak number of segments
|
|
size_t current_size; // current size of all segments
|
|
size_t peak_size; // peak size of all segments
|
|
mi_stats_t* stats; // points to tld stats
|
|
mi_os_tld_t* os; // points to os stats
|
|
} mi_segments_tld_t;
|
|
|
|
// Thread local data
|
|
struct mi_tld_s {
|
|
unsigned long long heartbeat; // monotonic heartbeat count
|
|
bool recurse; // true if deferred was called; used to prevent infinite recursion.
|
|
mi_heap_t* heap_backing; // backing heap of this thread (cannot be deleted)
|
|
mi_heap_t* heaps; // list of heaps in this thread (so we can abandon all when the thread terminates)
|
|
mi_segments_tld_t segments; // segment tld
|
|
mi_os_tld_t os; // os tld
|
|
mi_stats_t stats; // statistics
|
|
};
|
|
|
|
#endif
|