mimalloc/include/mimalloc-internal.h
Carlo Marcelo Arenas Belón 0e35ec3879 avoid deadlock with OpenBSD
2019-09-01 01:06:01 -07:00

372 lines
14 KiB
C

/* ----------------------------------------------------------------------------
Copyright (c) 2018, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#pragma once
#ifndef MIMALLOC_INTERNAL_H
#define MIMALLOC_INTERNAL_H
#include "mimalloc-types.h"
#if defined(MI_MALLOC_OVERRIDE) && (defined(__APPLE__) || defined(__OpenBSD__))
#define MI_TLS_RECURSE_GUARD
#endif
#if (MI_DEBUG>0)
#define mi_trace_message(...) _mi_trace_message(__VA_ARGS__)
#else
#define mi_trace_message(...)
#endif
// "options.c"
void _mi_fprintf(FILE* out, const char* fmt, ...);
void _mi_error_message(const char* fmt, ...);
void _mi_warning_message(const char* fmt, ...);
void _mi_verbose_message(const char* fmt, ...);
void _mi_trace_message(const char* fmt, ...);
// "init.c"
extern mi_stats_t _mi_stats_main;
extern const mi_page_t _mi_page_empty;
bool _mi_is_main_thread(void);
uintptr_t _mi_ptr_cookie(const void* p);
uintptr_t _mi_random_shuffle(uintptr_t x);
uintptr_t _mi_random_init(uintptr_t seed /* can be zero */);
// os.c
size_t _mi_os_page_size(void);
uintptr_t _mi_align_up(uintptr_t sz, size_t alignment);
void _mi_os_init(void); // called from process init
void* _mi_os_alloc(size_t size, mi_stats_t* stats); // to allocate thread local data
void _mi_os_free(void* p, size_t size, mi_stats_t* stats); // to free thread local data
// memory.c
void* _mi_mem_alloc_aligned(size_t size, size_t alignment, bool commit, size_t* id, mi_os_tld_t* tld);
void* _mi_mem_alloc(size_t size, bool commit, size_t* id, mi_os_tld_t* tld);
void _mi_mem_free(void* p, size_t size, size_t id, mi_stats_t* stats);
bool _mi_mem_reset(void* p, size_t size, mi_stats_t* stats);
bool _mi_mem_unreset(void* p, size_t size, mi_stats_t* stats);
bool _mi_mem_commit(void* p, size_t size, mi_stats_t* stats);
bool _mi_mem_protect(void* addr, size_t size);
bool _mi_mem_unprotect(void* addr, size_t size);
void _mi_mem_collect(mi_stats_t* stats);
// "segment.c"
mi_page_t* _mi_segment_page_alloc(size_t block_wsize, mi_segments_tld_t* tld, mi_os_tld_t* os_tld);
void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld);
void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld);
bool _mi_segment_try_reclaim_abandoned( mi_heap_t* heap, bool try_all, mi_segments_tld_t* tld);
void _mi_segment_thread_collect(mi_segments_tld_t* tld);
uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t block_size, size_t* page_size); // page start for any page
// "page.c"
void* _mi_malloc_generic(mi_heap_t* heap, size_t size) mi_attr_noexcept mi_attr_malloc;
void _mi_page_retire(mi_page_t* page); // free the page if there are no other pages with many free blocks
void _mi_page_unfull(mi_page_t* page);
void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force); // free the page
void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq); // abandon the page, to be picked up by another thread...
void _mi_heap_delayed_free(mi_heap_t* heap);
void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay);
size_t _mi_page_queue_append(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_queue_t* append);
void _mi_deferred_free(mi_heap_t* heap, bool force);
void _mi_page_free_collect(mi_page_t* page);
void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page); // callback from segments
size_t _mi_bin_size(uint8_t bin); // for stats
uint8_t _mi_bin(size_t size); // for stats
uint8_t _mi_bsr(uintptr_t x); // bit-scan-right, used on BSD in "os.c"
// "heap.c"
void _mi_heap_destroy_pages(mi_heap_t* heap);
void _mi_heap_collect_abandon(mi_heap_t* heap);
uintptr_t _mi_heap_random(mi_heap_t* heap);
// "stats.c"
void _mi_stats_done(mi_stats_t* stats);
// "alloc.c"
void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size) mi_attr_noexcept; // called from `_mi_malloc_generic`
void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero);
void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero);
mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p);
bool _mi_free_delayed_block(mi_block_t* block);
#if MI_DEBUG>1
bool _mi_page_is_valid(mi_page_t* page);
#endif
// ------------------------------------------------------
// Branches
// ------------------------------------------------------
#if defined(__GNUC__) || defined(__clang__)
#define mi_unlikely(x) __builtin_expect((x),0)
#define mi_likely(x) __builtin_expect((x),1)
#else
#define mi_unlikely(x) (x)
#define mi_likely(x) (x)
#endif
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
#if defined(_MSC_VER)
#define mi_decl_noinline __declspec(noinline)
#elif defined(__GNUC__) || defined(__clang__)
#define mi_decl_noinline __attribute__((noinline))
#else
#define mi_decl_noinline
#endif
/* -----------------------------------------------------------
Inlined definitions
----------------------------------------------------------- */
#define UNUSED(x) (void)(x)
#if (MI_DEBUG>0)
#define UNUSED_RELEASE(x)
#else
#define UNUSED_RELEASE(x) UNUSED(x)
#endif
#define MI_INIT4(x) x(),x(),x(),x()
#define MI_INIT8(x) MI_INIT4(x),MI_INIT4(x)
#define MI_INIT16(x) MI_INIT8(x),MI_INIT8(x)
#define MI_INIT32(x) MI_INIT16(x),MI_INIT16(x)
#define MI_INIT64(x) MI_INIT32(x),MI_INIT32(x)
#define MI_INIT128(x) MI_INIT64(x),MI_INIT64(x)
#define MI_INIT256(x) MI_INIT128(x),MI_INIT128(x)
// Overflow detecting multiply
#define MI_MUL_NO_OVERFLOW ((size_t)1 << (4*sizeof(size_t))) // sqrt(SIZE_MAX)
static inline bool mi_mul_overflow(size_t size, size_t count, size_t* total) {
#if __has_builtin(__builtin_umul_overflow) || __GNUC__ >= 5
#if (MI_INTPTR_SIZE == 4)
return __builtin_umul_overflow(size, count, total);
#else
return __builtin_umull_overflow(size, count, total);
#endif
#else /* __builtin_umul_overflow is unavailable */
*total = size * count;
return ((size >= MI_MUL_NO_OVERFLOW || count >= MI_MUL_NO_OVERFLOW)
&& size > 0 && (SIZE_MAX / size) < count);
#endif
}
// Align a byte size to a size in _machine words_,
// i.e. byte size == `wsize*sizeof(void*)`.
static inline size_t _mi_wsize_from_size(size_t size) {
mi_assert_internal(size <= SIZE_MAX - sizeof(uintptr_t));
return (size + sizeof(uintptr_t) - 1) / sizeof(uintptr_t);
}
extern const mi_heap_t _mi_heap_empty; // read-only empty heap, initial value of the thread local default heap
extern mi_heap_t _mi_heap_main; // statically allocated main backing heap
extern bool _mi_process_is_initialized;
extern mi_decl_thread mi_heap_t* _mi_heap_default; // default heap to allocate from
static inline mi_heap_t* mi_get_default_heap(void) {
#ifdef MI_TLS_RECURSE_GUARD
// on some platforms, like macOS, the dynamic loader calls `malloc`
// to initialize thread local data. To avoid recursion, we need to avoid
// accessing the thread local `_mi_default_heap` until our module is loaded
// and use the statically allocated main heap until that time.
// TODO: patch ourselves dynamically to avoid this check every time?
if (!_mi_process_is_initialized) return &_mi_heap_main;
#endif
return _mi_heap_default;
}
static inline bool mi_heap_is_default(const mi_heap_t* heap) {
return (heap == mi_get_default_heap());
}
static inline bool mi_heap_is_backing(const mi_heap_t* heap) {
return (heap->tld->heap_backing == heap);
}
static inline bool mi_heap_is_initialized(mi_heap_t* heap) {
mi_assert_internal(heap != NULL);
return (heap != &_mi_heap_empty);
}
static inline mi_page_t* _mi_heap_get_free_small_page(mi_heap_t* heap, size_t size) {
mi_assert_internal(size <= MI_SMALL_SIZE_MAX);
return heap->pages_free_direct[_mi_wsize_from_size(size)];
}
// Get the page belonging to a certain size class
static inline mi_page_t* _mi_get_free_small_page(size_t size) {
return _mi_heap_get_free_small_page(mi_get_default_heap(), size);
}
// Segment that contains the pointer
static inline mi_segment_t* _mi_ptr_segment(const void* p) {
// mi_assert_internal(p != NULL);
return (mi_segment_t*)((uintptr_t)p & ~MI_SEGMENT_MASK);
}
// Segment belonging to a page
static inline mi_segment_t* _mi_page_segment(const mi_page_t* page) {
mi_segment_t* segment = _mi_ptr_segment(page);
mi_assert_internal(segment == NULL || page == &segment->pages[page->segment_idx]);
return segment;
}
// Get the page containing the pointer
static inline mi_page_t* _mi_segment_page_of(const mi_segment_t* segment, const void* p) {
// if (segment->page_size > MI_SEGMENT_SIZE) return &segment->pages[0]; // huge pages
ptrdiff_t diff = (uint8_t*)p - (uint8_t*)segment;
mi_assert_internal(diff >= 0 && diff < MI_SEGMENT_SIZE);
uintptr_t idx = (uintptr_t)diff >> segment->page_shift;
mi_assert_internal(idx < segment->capacity);
mi_assert_internal(segment->page_kind <= MI_PAGE_MEDIUM || idx == 0);
return &((mi_segment_t*)segment)->pages[idx];
}
// Quick page start for initialized pages
static inline uint8_t* _mi_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size) {
return _mi_segment_page_start(segment, page, page->block_size, page_size);
}
// Get the page containing the pointer
static inline mi_page_t* _mi_ptr_page(void* p) {
return _mi_segment_page_of(_mi_ptr_segment(p), p);
}
// Thread free access
static inline mi_block_t* mi_tf_block(mi_thread_free_t tf) {
return (mi_block_t*)(tf & ~0x03);
}
static inline mi_delayed_t mi_tf_delayed(mi_thread_free_t tf) {
return (mi_delayed_t)(tf & 0x03);
}
static inline mi_thread_free_t mi_tf_make(mi_block_t* block, mi_delayed_t delayed) {
return (mi_thread_free_t)((uintptr_t)block | (uintptr_t)delayed);
}
static inline mi_thread_free_t mi_tf_set_delayed(mi_thread_free_t tf, mi_delayed_t delayed) {
return mi_tf_make(mi_tf_block(tf),delayed);
}
static inline mi_thread_free_t mi_tf_set_block(mi_thread_free_t tf, mi_block_t* block) {
return mi_tf_make(block, mi_tf_delayed(tf));
}
// are all blocks in a page freed?
static inline bool mi_page_all_free(const mi_page_t* page) {
mi_assert_internal(page != NULL);
return (page->used - page->thread_freed == 0);
}
// are there immediately available blocks
static inline bool mi_page_immediate_available(const mi_page_t* page) {
mi_assert_internal(page != NULL);
return (page->free != NULL);
}
// are there free blocks in this page?
static inline bool mi_page_has_free(mi_page_t* page) {
mi_assert_internal(page != NULL);
bool hasfree = (mi_page_immediate_available(page) || page->local_free != NULL || (mi_tf_block(page->thread_free) != NULL));
mi_assert_internal(hasfree || page->used - page->thread_freed == page->capacity);
return hasfree;
}
// are all blocks in use?
static inline bool mi_page_all_used(mi_page_t* page) {
mi_assert_internal(page != NULL);
return !mi_page_has_free(page);
}
// is more than 7/8th of a page in use?
static inline bool mi_page_mostly_used(const mi_page_t* page) {
if (page==NULL) return true;
uint16_t frac = page->reserved / 8U;
return (page->reserved - page->used + page->thread_freed < frac);
}
static inline mi_page_queue_t* mi_page_queue(const mi_heap_t* heap, size_t size) {
return &((mi_heap_t*)heap)->pages[_mi_bin(size)];
}
// -------------------------------------------------------------------
// Encoding/Decoding the free list next pointers
// -------------------------------------------------------------------
static inline mi_block_t* mi_block_nextx( uintptr_t cookie, mi_block_t* block ) {
#if MI_SECURE
return (mi_block_t*)(block->next ^ cookie);
#else
UNUSED(cookie);
return (mi_block_t*)block->next;
#endif
}
static inline void mi_block_set_nextx(uintptr_t cookie, mi_block_t* block, mi_block_t* next) {
#if MI_SECURE
block->next = (mi_encoded_t)next ^ cookie;
#else
UNUSED(cookie);
block->next = (mi_encoded_t)next;
#endif
}
static inline mi_block_t* mi_block_next(mi_page_t* page, mi_block_t* block) {
return mi_block_nextx(page->cookie,block);
}
static inline void mi_block_set_next(mi_page_t* page, mi_block_t* block, mi_block_t* next) {
mi_block_set_nextx(page->cookie,block,next);
}
// -------------------------------------------------------------------
// Getting the thread id should be performant
// as it is called in the fast path of `_mi_free`,
// so we specialize for various platforms.
// -------------------------------------------------------------------
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
static inline uintptr_t _mi_thread_id(void) mi_attr_noexcept {
// Windows: works on Intel and ARM in both 32- and 64-bit
return (uintptr_t)NtCurrentTeb();
}
#elif (defined(__GNUC__) || defined(__clang__)) && \
(defined(__x86_64__) || defined(__i386__) || defined(__arm__) || defined(__aarch64__))
// TLS register on x86 is in the FS or GS register
// see: https://akkadia.org/drepper/tls.pdf
static inline uintptr_t _mi_thread_id(void) mi_attr_noexcept {
uintptr_t tid;
#if defined(__i386__)
__asm__("movl %%gs:0, %0" : "=r" (tid) : : ); // 32-bit always uses GS
#elif defined(__MACH__)
__asm__("movq %%gs:0, %0" : "=r" (tid) : : ); // x86_64 macOS uses GS
#elif defined(__x86_64__)
__asm__("movq %%fs:0, %0" : "=r" (tid) : : ); // x86_64 Linux, BSD uses FS
#elif defined(__arm__)
asm volatile ("mrc p15, 0, %0, c13, c0, 3" : "=r" (tid));
#elif defined(__aarch64__)
asm volatile ("mrs %0, tpidr_el0" : "=r" (tid));
#endif
return tid;
}
#else
// otherwise use standard C
static inline uintptr_t _mi_thread_id(void) mi_attr_noexcept {
return (uintptr_t)&_mi_heap_default;
}
#endif
#endif