/* ---------------------------------------------------------------------------- Copyright (c) 2018, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ #pragma once #ifndef MIMALLOC_INTERNAL_H #define MIMALLOC_INTERNAL_H #include "mimalloc-types.h" #if defined(MI_MALLOC_OVERRIDE) && (defined(__APPLE__) || defined(__OpenBSD__) || defined(__DragonFly__)) #define MI_TLS_RECURSE_GUARD #endif #if (MI_DEBUG>0) #define mi_trace_message(...) _mi_trace_message(__VA_ARGS__) #else #define mi_trace_message(...) #endif #if defined(_MSC_VER) #define mi_decl_noinline __declspec(noinline) #define mi_attr_noreturn #elif defined(__GNUC__) || defined(__clang__) #define mi_decl_noinline __attribute__((noinline)) #define mi_attr_noreturn __attribute__((noreturn)) #else #define mi_decl_noinline #define mi_attr_noreturn #endif // "options.c" void _mi_fputs(mi_output_fun* out, const char* prefix, const char* message); void _mi_fprintf(mi_output_fun* out, const char* fmt, ...); void _mi_error_message(const char* fmt, ...); void _mi_warning_message(const char* fmt, ...); void _mi_verbose_message(const char* fmt, ...); void _mi_trace_message(const char* fmt, ...); void _mi_options_init(void); void _mi_fatal_error(const char* fmt, ...) mi_attr_noreturn; // random.c void _mi_random_init(mi_random_ctx_t* ctx); void _mi_random_split(mi_random_ctx_t* ctx, mi_random_ctx_t* new_ctx); uintptr_t _mi_random_next(mi_random_ctx_t* ctx); uintptr_t _mi_heap_random_next(mi_heap_t* heap); static inline uintptr_t _mi_random_shuffle(uintptr_t x); // init.c extern mi_stats_t _mi_stats_main; extern const mi_page_t _mi_page_empty; bool _mi_is_main_thread(void); bool _mi_preloading(); // true while the C runtime is not ready // os.c size_t _mi_os_page_size(void); void _mi_os_init(void); // called from process init void* _mi_os_alloc(size_t size, mi_stats_t* stats); // to allocate thread local data void _mi_os_free(void* p, size_t size, mi_stats_t* stats); // to free thread local data size_t _mi_os_good_alloc_size(size_t size); // memory.c void* _mi_mem_alloc_aligned(size_t size, size_t alignment, bool* commit, bool* large, bool* is_zero, size_t* id, mi_os_tld_t* tld); void _mi_mem_free(void* p, size_t size, size_t id, bool fully_committed, bool any_reset, mi_os_tld_t* tld); bool _mi_mem_reset(void* p, size_t size, mi_os_tld_t* tld); bool _mi_mem_unreset(void* p, size_t size, bool* is_zero, mi_os_tld_t* tld); bool _mi_mem_commit(void* p, size_t size, bool* is_zero, mi_os_tld_t* tld); bool _mi_mem_protect(void* addr, size_t size); bool _mi_mem_unprotect(void* addr, size_t size); void _mi_mem_collect(mi_os_tld_t* tld); // "segment.c" mi_page_t* _mi_segment_page_alloc(size_t block_wsize, mi_segments_tld_t* tld, mi_os_tld_t* os_tld); void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld); void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld); bool _mi_segment_try_reclaim_abandoned( mi_heap_t* heap, bool try_all, mi_segments_tld_t* tld); void _mi_segment_thread_collect(mi_segments_tld_t* tld); uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t block_size, size_t* page_size, size_t* pre_size); // page start for any page // "page.c" void* _mi_malloc_generic(mi_heap_t* heap, size_t size) mi_attr_noexcept mi_attr_malloc; void _mi_page_retire(mi_page_t* page); // free the page if there are no other pages with many free blocks void _mi_page_unfull(mi_page_t* page); void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force); // free the page void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq); // abandon the page, to be picked up by another thread... void _mi_heap_delayed_free(mi_heap_t* heap); void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay); size_t _mi_page_queue_append(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_queue_t* append); void _mi_deferred_free(mi_heap_t* heap, bool force); void _mi_page_free_collect(mi_page_t* page,bool force); void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page); // callback from segments size_t _mi_bin_size(uint8_t bin); // for stats uint8_t _mi_bin(size_t size); // for stats uint8_t _mi_bsr(uintptr_t x); // bit-scan-right, used on BSD in "os.c" // "heap.c" void _mi_heap_destroy_pages(mi_heap_t* heap); void _mi_heap_collect_abandon(mi_heap_t* heap); void _mi_heap_set_default_direct(mi_heap_t* heap); // "stats.c" void _mi_stats_done(mi_stats_t* stats); mi_msecs_t _mi_clock_now(void); mi_msecs_t _mi_clock_end(mi_msecs_t start); mi_msecs_t _mi_clock_start(void); // "alloc.c" void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size) mi_attr_noexcept; // called from `_mi_malloc_generic` void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero); void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero); mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p); bool _mi_free_delayed_block(mi_block_t* block); void _mi_block_zero_init(const mi_page_t* page, void* p, size_t size); #if MI_DEBUG>1 bool _mi_page_is_valid(mi_page_t* page); #endif // ------------------------------------------------------ // Branches // ------------------------------------------------------ #if defined(__GNUC__) || defined(__clang__) #define mi_unlikely(x) __builtin_expect((x),0) #define mi_likely(x) __builtin_expect((x),1) #else #define mi_unlikely(x) (x) #define mi_likely(x) (x) #endif #ifndef __has_builtin #define __has_builtin(x) 0 #endif /* ----------------------------------------------------------- Inlined definitions ----------------------------------------------------------- */ #define UNUSED(x) (void)(x) #if (MI_DEBUG>0) #define UNUSED_RELEASE(x) #else #define UNUSED_RELEASE(x) UNUSED(x) #endif #define MI_INIT4(x) x(),x(),x(),x() #define MI_INIT8(x) MI_INIT4(x),MI_INIT4(x) #define MI_INIT16(x) MI_INIT8(x),MI_INIT8(x) #define MI_INIT32(x) MI_INIT16(x),MI_INIT16(x) #define MI_INIT64(x) MI_INIT32(x),MI_INIT32(x) #define MI_INIT128(x) MI_INIT64(x),MI_INIT64(x) #define MI_INIT256(x) MI_INIT128(x),MI_INIT128(x) // Overflow detecting multiply static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) { #if __has_builtin(__builtin_umul_overflow) || __GNUC__ >= 5 #include // UINT_MAX, ULONG_MAX #if (SIZE_MAX == UINT_MAX) return __builtin_umul_overflow(count, size, total); #elif (SIZE_MAX == ULONG_MAX) return __builtin_umull_overflow(count, size, total); #else return __builtin_umulll_overflow(count, size, total); #endif #else /* __builtin_umul_overflow is unavailable */ #define MI_MUL_NO_OVERFLOW ((size_t)1 << (4*sizeof(size_t))) // sqrt(SIZE_MAX) *total = count * size; return ((size >= MI_MUL_NO_OVERFLOW || count >= MI_MUL_NO_OVERFLOW) && size > 0 && (SIZE_MAX / size) < count); #endif } // Is `x` a power of two? (0 is considered a power of two) static inline bool _mi_is_power_of_two(uintptr_t x) { return ((x & (x - 1)) == 0); } // Align upwards static inline uintptr_t _mi_align_up(uintptr_t sz, size_t alignment) { mi_assert_internal(alignment != 0); uintptr_t mask = alignment - 1; if ((alignment & mask) == 0) { // power of two? return ((sz + mask) & ~mask); } else { return (((sz + mask)/alignment)*alignment); } } // Divide upwards: `s <= _mi_divide_up(s,d)*d < s+d`. static inline uintptr_t _mi_divide_up(uintptr_t size, size_t divider) { mi_assert_internal(divider != 0); return (divider == 0 ? size : ((size + divider - 1) / divider)); } // Is memory zero initialized? static inline bool mi_mem_is_zero(void* p, size_t size) { for (size_t i = 0; i < size; i++) { if (((uint8_t*)p)[i] != 0) return false; } return true; } // Align a byte size to a size in _machine words_, // i.e. byte size == `wsize*sizeof(void*)`. static inline size_t _mi_wsize_from_size(size_t size) { mi_assert_internal(size <= SIZE_MAX - sizeof(uintptr_t)); return (size + sizeof(uintptr_t) - 1) / sizeof(uintptr_t); } /* ----------------------------------------------------------- The thread local default heap ----------------------------------------------------------- */ extern const mi_heap_t _mi_heap_empty; // read-only empty heap, initial value of the thread local default heap extern mi_heap_t _mi_heap_main; // statically allocated main backing heap extern bool _mi_process_is_initialized; extern mi_decl_thread mi_heap_t* _mi_heap_default; // default heap to allocate from static inline mi_heap_t* mi_get_default_heap(void) { #ifdef MI_TLS_RECURSE_GUARD // on some BSD platforms, like macOS, the dynamic loader calls `malloc` // to initialize thread local data. To avoid recursion, we need to avoid // accessing the thread local `_mi_default_heap` until our module is loaded // and use the statically allocated main heap until that time. // TODO: patch ourselves dynamically to avoid this check every time? if (!_mi_process_is_initialized) return &_mi_heap_main; #endif return _mi_heap_default; } static inline bool mi_heap_is_default(const mi_heap_t* heap) { return (heap == mi_get_default_heap()); } static inline bool mi_heap_is_backing(const mi_heap_t* heap) { return (heap->tld->heap_backing == heap); } static inline bool mi_heap_is_initialized(mi_heap_t* heap) { mi_assert_internal(heap != NULL); return (heap != &_mi_heap_empty); } static inline uintptr_t _mi_ptr_cookie(const void* p) { return ((uintptr_t)p ^ _mi_heap_main.cookie); } /* ----------------------------------------------------------- Pages ----------------------------------------------------------- */ static inline mi_page_t* _mi_heap_get_free_small_page(mi_heap_t* heap, size_t size) { mi_assert_internal(size <= MI_SMALL_SIZE_MAX); return heap->pages_free_direct[_mi_wsize_from_size(size)]; } // Get the page belonging to a certain size class static inline mi_page_t* _mi_get_free_small_page(size_t size) { return _mi_heap_get_free_small_page(mi_get_default_heap(), size); } // Segment that contains the pointer static inline mi_segment_t* _mi_ptr_segment(const void* p) { // mi_assert_internal(p != NULL); return (mi_segment_t*)((uintptr_t)p & ~MI_SEGMENT_MASK); } // Segment belonging to a page static inline mi_segment_t* _mi_page_segment(const mi_page_t* page) { mi_segment_t* segment = _mi_ptr_segment(page); mi_assert_internal(segment == NULL || page == &segment->pages[page->segment_idx]); return segment; } // used internally static inline uintptr_t _mi_segment_page_idx_of(const mi_segment_t* segment, const void* p) { // if (segment->page_size > MI_SEGMENT_SIZE) return &segment->pages[0]; // huge pages ptrdiff_t diff = (uint8_t*)p - (uint8_t*)segment; mi_assert_internal(diff >= 0 && (size_t)diff < MI_SEGMENT_SIZE); uintptr_t idx = (uintptr_t)diff >> segment->page_shift; mi_assert_internal(idx < segment->capacity); mi_assert_internal(segment->page_kind <= MI_PAGE_MEDIUM || idx == 0); return idx; } // Get the page containing the pointer static inline mi_page_t* _mi_segment_page_of(const mi_segment_t* segment, const void* p) { uintptr_t idx = _mi_segment_page_idx_of(segment, p); return &((mi_segment_t*)segment)->pages[idx]; } // Quick page start for initialized pages static inline uint8_t* _mi_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size) { const size_t bsize = page->block_size; mi_assert_internal(bsize > 0 && (bsize%sizeof(void*)) == 0); return _mi_segment_page_start(segment, page, bsize, page_size, NULL); } // Get the page containing the pointer static inline mi_page_t* _mi_ptr_page(void* p) { return _mi_segment_page_of(_mi_ptr_segment(p), p); } // Thread free access static inline mi_block_t* mi_tf_block(mi_thread_free_t tf) { return (mi_block_t*)(tf & ~0x03); } static inline mi_delayed_t mi_tf_delayed(mi_thread_free_t tf) { return (mi_delayed_t)(tf & 0x03); } static inline mi_thread_free_t mi_tf_make(mi_block_t* block, mi_delayed_t delayed) { return (mi_thread_free_t)((uintptr_t)block | (uintptr_t)delayed); } static inline mi_thread_free_t mi_tf_set_delayed(mi_thread_free_t tf, mi_delayed_t delayed) { return mi_tf_make(mi_tf_block(tf),delayed); } static inline mi_thread_free_t mi_tf_set_block(mi_thread_free_t tf, mi_block_t* block) { return mi_tf_make(block, mi_tf_delayed(tf)); } // are all blocks in a page freed? static inline bool mi_page_all_free(const mi_page_t* page) { mi_assert_internal(page != NULL); return (page->used - page->thread_freed == 0); } // are there immediately available blocks static inline bool mi_page_immediate_available(const mi_page_t* page) { mi_assert_internal(page != NULL); return (page->free != NULL); } // are there free blocks in this page? static inline bool mi_page_has_free(mi_page_t* page) { mi_assert_internal(page != NULL); bool hasfree = (mi_page_immediate_available(page) || page->local_free != NULL || (mi_tf_block(page->thread_free) != NULL)); mi_assert_internal(hasfree || page->used - page->thread_freed == page->capacity); return hasfree; } // are all blocks in use? static inline bool mi_page_all_used(mi_page_t* page) { mi_assert_internal(page != NULL); return !mi_page_has_free(page); } // is more than 7/8th of a page in use? static inline bool mi_page_mostly_used(const mi_page_t* page) { if (page==NULL) return true; uint16_t frac = page->reserved / 8U; return (page->reserved - page->used + page->thread_freed <= frac); } static inline mi_page_queue_t* mi_page_queue(const mi_heap_t* heap, size_t size) { return &((mi_heap_t*)heap)->pages[_mi_bin(size)]; } //----------------------------------------------------------- // Page flags //----------------------------------------------------------- static inline bool mi_page_is_in_full(const mi_page_t* page) { return page->flags.x.in_full; } static inline void mi_page_set_in_full(mi_page_t* page, bool in_full) { page->flags.x.in_full = in_full; } static inline bool mi_page_has_aligned(const mi_page_t* page) { return page->flags.x.has_aligned; } static inline void mi_page_set_has_aligned(mi_page_t* page, bool has_aligned) { page->flags.x.has_aligned = has_aligned; } /* ------------------------------------------------------------------- Encoding/Decoding the free list next pointers This is to protect against buffer overflow exploits where the free list is mutated. Many hardened allocators xor the next pointer `p` with a secret key `k1`, as `p^k1`. This prevents overwriting with known values but might be still too weak: if the attacker can guess the pointer `p` this can reveal `k1` (since `p^k1^p == k1`). Moreover, if multiple blocks can be read as well, the attacker can xor both as `(p1^k1) ^ (p2^k1) == p1^p2` which may reveal a lot about the pointers (and subsequently `k1`). Instead mimalloc uses an extra key `k2` and encodes as `((p^k2)<<> (MI_INTPTR_BITS - shift))); } static inline uintptr_t mi_rotr(uintptr_t x, uintptr_t shift) { shift %= MI_INTPTR_BITS; return ((x >> shift) | (x << (MI_INTPTR_BITS - shift))); } static inline mi_block_t* mi_block_nextx( const void* null, const mi_block_t* block, uintptr_t key1, uintptr_t key2 ) { #ifdef MI_ENCODE_FREELIST mi_block_t* b = (mi_block_t*)(mi_rotr(block->next - key1, key1) ^ key2); if (mi_unlikely((void*)b==null)) { b = NULL; } return b; #else UNUSED(key1); UNUSED(key2); UNUSED(null); return (mi_block_t*)block->next; #endif } static inline void mi_block_set_nextx(const void* null, mi_block_t* block, const mi_block_t* next, uintptr_t key1, uintptr_t key2) { #ifdef MI_ENCODE_FREELIST if (mi_unlikely(next==NULL)) { next = (mi_block_t*)null; } block->next = mi_rotl((uintptr_t)next ^ key2, key1) + key1; #else UNUSED(key1); UNUSED(key2); UNUSED(null); block->next = (mi_encoded_t)next; #endif } static inline mi_block_t* mi_block_next(const mi_page_t* page, const mi_block_t* block) { #ifdef MI_ENCODE_FREELIST mi_block_t* next = mi_block_nextx(page,block,page->key[0],page->key[1]); // check for free list corruption: is `next` at least in the same page? // TODO: check if `next` is `page->block_size` aligned? if (mi_unlikely(next!=NULL && !mi_is_in_same_page(block, next))) { _mi_fatal_error("corrupted free list entry of size %zub at %p: value 0x%zx\n", page->block_size, block, (uintptr_t)next); next = NULL; } return next; #else UNUSED(page); return mi_block_nextx(page,block,0,0); #endif } static inline void mi_block_set_next(const mi_page_t* page, mi_block_t* block, const mi_block_t* next) { #ifdef MI_ENCODE_FREELIST mi_block_set_nextx(page,block,next, page->key[0], page->key[1]); #else UNUSED(page); mi_block_set_nextx(page,block, next,0,0); #endif } // ------------------------------------------------------------------- // Fast "random" shuffle // ------------------------------------------------------------------- static inline uintptr_t _mi_random_shuffle(uintptr_t x) { if (x==0) { x = 17; } // ensure we don't get stuck in generating zeros #if (MI_INTPTR_SIZE==8) // by Sebastiano Vigna, see: x ^= x >> 30; x *= 0xbf58476d1ce4e5b9UL; x ^= x >> 27; x *= 0x94d049bb133111ebUL; x ^= x >> 31; #elif (MI_INTPTR_SIZE==4) // by Chris Wellons, see: x ^= x >> 16; x *= 0x7feb352dUL; x ^= x >> 15; x *= 0x846ca68bUL; x ^= x >> 16; #endif return x; } // ------------------------------------------------------------------- // Optimize numa node access for the common case (= one node) // ------------------------------------------------------------------- int _mi_os_numa_node_get(mi_os_tld_t* tld); size_t _mi_os_numa_node_count_get(void); extern size_t _mi_numa_node_count; static inline int _mi_os_numa_node(mi_os_tld_t* tld) { if (mi_likely(_mi_numa_node_count == 1)) return 0; else return _mi_os_numa_node_get(tld); } static inline size_t _mi_os_numa_node_count(void) { if (mi_likely(_mi_numa_node_count>0)) return _mi_numa_node_count; else return _mi_os_numa_node_count_get(); } // ------------------------------------------------------------------- // Getting the thread id should be performant // as it is called in the fast path of `_mi_free`, // so we specialize for various platforms. // ------------------------------------------------------------------- #if defined(_WIN32) #define WIN32_LEAN_AND_MEAN #include static inline uintptr_t _mi_thread_id(void) mi_attr_noexcept { // Windows: works on Intel and ARM in both 32- and 64-bit return (uintptr_t)NtCurrentTeb(); } #elif (defined(__GNUC__) || defined(__clang__)) && \ (defined(__x86_64__) || defined(__i386__) || defined(__arm__) || defined(__aarch64__)) // TLS register on x86 is in the FS or GS register // see: https://akkadia.org/drepper/tls.pdf static inline uintptr_t _mi_thread_id(void) mi_attr_noexcept { uintptr_t tid; #if defined(__i386__) __asm__("movl %%gs:0, %0" : "=r" (tid) : : ); // 32-bit always uses GS #elif defined(__MACH__) __asm__("movq %%gs:0, %0" : "=r" (tid) : : ); // x86_64 macOS uses GS #elif defined(__x86_64__) __asm__("movq %%fs:0, %0" : "=r" (tid) : : ); // x86_64 Linux, BSD uses FS #elif defined(__arm__) asm volatile ("mrc p15, 0, %0, c13, c0, 3" : "=r" (tid)); #elif defined(__aarch64__) asm volatile ("mrs %0, tpidr_el0" : "=r" (tid)); #endif return tid; } #else // otherwise use standard C static inline uintptr_t _mi_thread_id(void) mi_attr_noexcept { return (uintptr_t)&_mi_heap_default; } #endif #endif