/* ---------------------------------------------------------------------------- Copyright (c) 2018,2020 Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ #pragma once #ifndef MIMALLOC_ATOMIC_H #define MIMALLOC_ATOMIC_H // -------------------------------------------------------------------------------------------- // Atomics // We need to be portable between C, C++, and MSVC. // We base the primitives on the C/C++ atomics and create a mimimal wrapper for MSVC in C compilation mode. // This is why we try to use only `uintptr_t` and `*` as atomic types. // To gain better insight in the range of used atomics, we use explicitly named memory order operations // instead of passing the memory order as a parameter. // ----------------------------------------------------------------------------------------------- #if defined(__cplusplus) // Use C++ atomics #include #define _Atomic(tp) std::atomic #define mi_atomic(name) std::atomic_##name #define mi_memory_order(name) std::memory_order_##name #elif defined(_MSC_VER) // Use MSVC C wrapper for C11 atomics #define _Atomic(tp) tp #define ATOMIC_VAR_INIT(x) x #define mi_atomic(name) mi_atomic_##name #define mi_memory_order(name) mi_memory_order_##name #else // Use C11 atomics #include #define mi_atomic(name) atomic_##name #define mi_memory_order(name) memory_order_##name #endif // Various defines for all used memory orders in mimalloc #define mi_atomic_cas_weak(p,expected,desired,mem_success,mem_fail) \ mi_atomic(compare_exchange_weak_explicit)(p,expected,desired,mem_success,mem_fail) #define mi_atomic_cas_strong(p,expected,desired,mem_success,mem_fail) \ mi_atomic(compare_exchange_strong_explicit)(p,expected,desired,mem_success,mem_fail) #define mi_atomic_load_acquire(p) mi_atomic(load_explicit)(p,mi_memory_order(acquire)) #define mi_atomic_load_relaxed(p) mi_atomic(load_explicit)(p,mi_memory_order(relaxed)) #define mi_atomic_store_release(p,x) mi_atomic(store_explicit)(p,x,mi_memory_order(release)) #define mi_atomic_store_relaxed(p,x) mi_atomic(store_explicit)(p,x,mi_memory_order(relaxed)) #define mi_atomic_exchange_release(p,x) mi_atomic(exchange_explicit)(p,x,mi_memory_order(release)) #define mi_atomic_exchange_acq_rel(p,x) mi_atomic(exchange_explicit)(p,x,mi_memory_order(acq_rel)) #define mi_atomic_cas_weak_release(p,exp,des) mi_atomic_cas_weak(p,exp,des,mi_memory_order(release),mi_memory_order(relaxed)) #define mi_atomic_cas_weak_acq_rel(p,exp,des) mi_atomic_cas_weak(p,exp,des,mi_memory_order(acq_rel),mi_memory_order(acquire)) #define mi_atomic_cas_strong_release(p,exp,des) mi_atomic_cas_strong(p,exp,des,mi_memory_order(release),mi_memory_order(relaxed)) #define mi_atomic_cas_strong_acq_rel(p,exp,des) mi_atomic_cas_strong(p,exp,des,mi_memory_order(acq_rel),mi_memory_order(acquire)) #define mi_atomic_add_relaxed(p,x) mi_atomic(fetch_add_explicit)(p,x,mi_memory_order(relaxed)) #define mi_atomic_sub_relaxed(p,x) mi_atomic(fetch_sub_explicit)(p,x,mi_memory_order(relaxed)) #define mi_atomic_add_acq_rel(p,x) mi_atomic(fetch_add_explicit)(p,x,mi_memory_order(acq_rel)) #define mi_atomic_sub_acq_rel(p,x) mi_atomic(fetch_sub_explicit)(p,x,mi_memory_order(acq_rel)) #define mi_atomic_and_acq_rel(p,x) mi_atomic(fetch_and_explicit)(p,x,mi_memory_order(acq_rel)) #define mi_atomic_or_acq_rel(p,x) mi_atomic(fetch_or_explicit)(p,x,mi_memory_order(acq_rel)) #define mi_atomic_increment_relaxed(p) mi_atomic_add_relaxed(p,1) #define mi_atomic_decrement_relaxed(p) mi_atomic_sub_relaxed(p,1) #define mi_atomic_increment_acq_rel(p) mi_atomic_add_acq_rel(p,1) #define mi_atomic_decrement_acq_rel(p) mi_atomic_sub_acq_rel(p,1) static inline void mi_atomic_yield(void); static inline intptr_t mi_atomic_addi(_Atomic(intptr_t)* p, intptr_t add); static inline intptr_t mi_atomic_subi(_Atomic(intptr_t)* p, intptr_t sub); #if defined(__cplusplus) || !defined(_MSC_VER) // In C++/C11 atomics we have polymorpic atomics so can use the typed `ptr` variants // (where `tp` is the type of atomic value) // We use these macros so we can provide a typed wrapper in MSVC in C compilation mode as well #define mi_atomic_load_ptr_acquire(tp,p) mi_atomic_load_acquire(p) #define mi_atomic_load_ptr_relaxed(tp,p) mi_atomic_load_relaxed(p) #define mi_atomic_store_ptr_release(tp,p,x) mi_atomic_store_release(p,x) #define mi_atomic_store_ptr_relaxed(tp,p,x) mi_atomic_store_relaxed(p,x) #define mi_atomic_cas_ptr_weak_release(tp,p,exp,des) mi_atomic_cas_weak_release(p,exp,des) #define mi_atomic_cas_ptr_weak_acq_rel(tp,p,exp,des) mi_atomic_cas_weak_acq_rel(p,exp,des) #define mi_atomic_cas_ptr_strong_release(tp,p,exp,des) mi_atomic_cas_strong_release(p,exp,des) #define mi_atomic_exchange_ptr_release(tp,p,x) mi_atomic_exchange_release(p,x) #define mi_atomic_exchange_ptr_acq_rel(tp,p,x) mi_atomic_exchange_acq_rel(p,x) // These are used by the statistics static inline int64_t mi_atomic_addi64_relaxed(volatile int64_t* p, int64_t add) { return mi_atomic(fetch_add_explicit)((_Atomic(int64_t)*)p, add, mi_memory_order(relaxed)); } static inline void mi_atomic_maxi64_relaxed(volatile int64_t* p, int64_t x) { int64_t current = mi_atomic_load_relaxed((_Atomic(int64_t)*)p); while (current < x && !mi_atomic_cas_weak_release((_Atomic(int64_t)*)p, ¤t, x)) { /* nothing */ }; } #elif defined(_MSC_VER) // MSVC C compilation wrapper that uses Interlocked operations to model C11 atomics. #define WIN32_LEAN_AND_MEAN #include #include #ifdef _WIN64 typedef LONG64 msc_intptr_t; #define MI_64(f) f##64 #else typedef LONG msc_intptr_t; #define MI_64(f) f #endif typedef enum mi_memory_order_e { mi_memory_order_relaxed, mi_memory_order_consume, mi_memory_order_acquire, mi_memory_order_release, mi_memory_order_acq_rel, mi_memory_order_seq_cst } mi_memory_order; static inline uintptr_t mi_atomic_fetch_add_explicit(_Atomic(uintptr_t)* p, uintptr_t add, mi_memory_order mo) { return (uintptr_t)MI_64(_InterlockedExchangeAdd)((volatile msc_intptr_t*)p, (msc_intptr_t)add); } static inline uintptr_t mi_atomic_fetch_sub_explicit(_Atomic(uintptr_t)*p, uintptr_t sub, mi_memory_order mo) { return (uintptr_t)MI_64(_InterlockedExchangeAdd)((volatile msc_intptr_t*)p, -((msc_intptr_t)sub)); } static inline uintptr_t mi_atomic_fetch_and_explicit(_Atomic(uintptr_t)* p, uintptr_t x, mi_memory_order mo) { return (uintptr_t)MI_64(_InterlockedAnd)((volatile msc_intptr_t*)p, (msc_intptr_t)x); } static inline uintptr_t mi_atomic_fetch_or_explicit(_Atomic(uintptr_t)* p, uintptr_t x, mi_memory_order mo) { return (uintptr_t)MI_64(_InterlockedOr)((volatile msc_intptr_t*)p, (msc_intptr_t)x); } static inline bool mi_atomic_compare_exchange_strong_explicit(_Atomic(uintptr_t)* p, uintptr_t* expected, uintptr_t desired, mi_memory_order mo1, mi_memory_order mo2) { uintptr_t read = (uintptr_t)MI_64(_InterlockedCompareExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)desired, (msc_intptr_t)(*expected)); if (read == *expected) { return true; } else { *expected = read; return false; } } static inline bool mi_atomic_compare_exchange_weak_explicit(_Atomic(uintptr_t)*p, uintptr_t* expected, uintptr_t desired, mi_memory_order mo1, mi_memory_order mo2) { return mi_atomic_compare_exchange_strong_explicit(p, expected, desired, mo1, mo2); } static inline uintptr_t mi_atomic_exchange_explicit(_Atomic(uintptr_t)* p, uintptr_t exchange, mi_memory_order mo) { return (uintptr_t)MI_64(_InterlockedExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)exchange); } static inline mi_atomic_thread_fence(mi_memory_order mo) { _Atomic(uintptr_t)x = 0; mi_atomic_exchange_explicit(&x, 1, mo); } static inline uintptr_t mi_atomic_load_explicit(_Atomic(uintptr_t) const* p, mi_memory_order mo) { #if defined(_M_IX86) || defined(_M_X64) return *p; #else uintptr_t x = *p; if (mo > mi_memory_order_relaxed) { while (!mi_atomic_compare_exchange_weak_explicit(p, &x, x, mo, mi_memory_order_relaxed)) { /* nothing */ }; } return x; #endif } static inline void mi_atomic_store_explicit(_Atomic(uintptr_t)* p, uintptr_t x, mi_memory_order mo) { #if defined(_M_IX86) || defined(_M_X64) *p = x; #else mi_atomic_exchange_explicit(p,x,mo); #endif } // These are used by the statistics static inline int64_t mi_atomic_addi64_relaxed(volatile _Atomic(int64_t)* p, int64_t add) { #ifdef _WIN64 return (int64_t)mi_atomic_addi((int64_t*)p,add); #else int64_t current; int64_t sum; do { current = *p; sum = current + add; } while (_InterlockedCompareExchange64(p, sum, current) != current); return current; #endif } static inline void mi_atomic_maxi64_relaxed(volatile _Atomic(int64_t)*p, int64_t x) { int64_t current; do { current = *p; } while (current < x && _InterlockedCompareExchange64(p, x, current) != current); } // The pointer macros cast to `uintptr_t`. #define mi_atomic_load_ptr_acquire(tp,p) (tp*)mi_atomic_load_acquire((_Atomic(uintptr_t)*)(p)) #define mi_atomic_load_ptr_relaxed(tp,p) (tp*)mi_atomic_load_relaxed((_Atomic(uintptr_t)*)(p)) #define mi_atomic_store_ptr_release(tp,p,x) mi_atomic_store_release((_Atomic(uintptr_t)*)(p),(uintptr_t)(x)) #define mi_atomic_store_ptr_relaxed(tp,p,x) mi_atomic_store_relaxed((_Atomic(uintptr_t)*)(p),(uintptr_t)(x)) #define mi_atomic_cas_ptr_weak_release(tp,p,exp,des) mi_atomic_cas_weak_release((_Atomic(uintptr_t)*)(p),(uintptr_t*)exp,(uintptr_t)des) #define mi_atomic_cas_ptr_weak_acq_rel(tp,p,exp,des) mi_atomic_cas_weak_acq_rel((_Atomic(uintptr_t)*)(p),(uintptr_t*)exp,(uintptr_t)des) #define mi_atomic_cas_ptr_strong_release(tp,p,exp,des) mi_atomic_cas_strong_release((_Atomic(uintptr_t)*)(p),(uintptr_t*)exp,(uintptr_t)des) #define mi_atomic_exchange_ptr_release(tp,p,x) (tp*)mi_atomic_exchange_release((_Atomic(uintptr_t)*)(p),(uintptr_t)x) #define mi_atomic_exchange_ptr_acq_rel(tp,p,x) (tp*)mi_atomic_exchange_acq_rel((_Atomic(uintptr_t)*)(p),(uintptr_t)x) #endif // Atomically add a signed value; returns the previous value. static inline intptr_t mi_atomic_addi(_Atomic(intptr_t)*p, intptr_t add) { return (intptr_t)mi_atomic_add_acq_rel((_Atomic(uintptr_t)*)p, (uintptr_t)add); } // Atomically subtract a signed value; returns the previous value. static inline intptr_t mi_atomic_subi(_Atomic(intptr_t)*p, intptr_t sub) { return (intptr_t)mi_atomic_addi(p, -sub); } // Yield #if defined(__cplusplus) #include static inline void mi_atomic_yield(void) { std::this_thread::yield(); } #elif defined(_WIN32) #define WIN32_LEAN_AND_MEAN #include static inline void mi_atomic_yield(void) { YieldProcessor(); } #elif (defined(__GNUC__) || defined(__clang__)) && \ (defined(__x86_64__) || defined(__i386__) || defined(__arm__) || defined(__aarch64__)) #if defined(__x86_64__) || defined(__i386__) static inline void mi_atomic_yield(void) { asm volatile ("pause" ::: "memory"); } #elif defined(__arm__) || defined(__aarch64__) static inline void mi_atomic_yield(void) { asm volatile("yield"); } #endif #elif defined(__wasi__) #include static inline void mi_atomic_yield(void) { sched_yield(); } #else #include static inline void mi_atomic_yield(void) { sleep(0); } #endif #endif // __MIMALLOC_ATOMIC_H