redefine mi_likely/mi_unlikely to work with C++ 20 [[likely]] attributes

This commit is contained in:
Daan Leijen 2022-04-19 19:50:06 -07:00
parent d69d4c861f
commit 7bc602ebb4
12 changed files with 67 additions and 64 deletions

View File

@ -119,7 +119,7 @@
<PreprocessorDefinitions>MI_DEBUG=3;%(PreprocessorDefinitions);</PreprocessorDefinitions> <PreprocessorDefinitions>MI_DEBUG=3;%(PreprocessorDefinitions);</PreprocessorDefinitions>
<CompileAs>CompileAsCpp</CompileAs> <CompileAs>CompileAsCpp</CompileAs>
<SupportJustMyCode>false</SupportJustMyCode> <SupportJustMyCode>false</SupportJustMyCode>
<LanguageStandard>Default</LanguageStandard> <LanguageStandard>stdcpp20</LanguageStandard>
</ClCompile> </ClCompile>
<PostBuildEvent> <PostBuildEvent>
<Command> <Command>
@ -179,7 +179,7 @@
<InlineFunctionExpansion>Default</InlineFunctionExpansion> <InlineFunctionExpansion>Default</InlineFunctionExpansion>
<CompileAs>CompileAsCpp</CompileAs> <CompileAs>CompileAsCpp</CompileAs>
<IntrinsicFunctions>true</IntrinsicFunctions> <IntrinsicFunctions>true</IntrinsicFunctions>
<LanguageStandard>Default</LanguageStandard> <LanguageStandard>stdcpp20</LanguageStandard>
</ClCompile> </ClCompile>
<Link> <Link>
<EnableCOMDATFolding>true</EnableCOMDATFolding> <EnableCOMDATFolding>true</EnableCOMDATFolding>

View File

@ -154,8 +154,11 @@ bool _mi_page_is_valid(mi_page_t* page);
// ------------------------------------------------------ // ------------------------------------------------------
#if defined(__GNUC__) || defined(__clang__) #if defined(__GNUC__) || defined(__clang__)
#define mi_unlikely(x) __builtin_expect(!!(x),false) #define mi_unlikely(x) (__builtin_expect(!!(x),false))
#define mi_likely(x) __builtin_expect(!!(x),true) #define mi_likely(x) (__builtin_expect(!!(x),true))
#elif (defined(__cplusplus) && (__cplusplus >= 202002L)) || (defined(_MSVC_LANG) && _MSVC_LANG >= 202002L)
#define mi_unlikely(x) (x) [[unlikely]]
#define mi_likely(x) (x) [[likely]]
#else #else
#define mi_unlikely(x) (x) #define mi_unlikely(x) (x)
#define mi_likely(x) (x) #define mi_likely(x) (x)
@ -277,7 +280,7 @@ static inline bool mi_count_size_overflow(size_t count, size_t size, size_t* tot
*total = size; *total = size;
return false; return false;
} }
else if (mi_unlikely(mi_mul_overflow(count, size, total))) { else if mi_unlikely(mi_mul_overflow(count, size, total)) {
#if MI_DEBUG > 0 #if MI_DEBUG > 0
_mi_error_message(EOVERFLOW, "allocation request is too large (%zu * %zu bytes)\n", count, size); _mi_error_message(EOVERFLOW, "allocation request is too large (%zu * %zu bytes)\n", count, size);
#endif #endif
@ -351,7 +354,7 @@ extern mi_decl_thread mi_heap_t* _mi_heap_default; // default heap to allocate
static inline mi_heap_t* mi_get_default_heap(void) { static inline mi_heap_t* mi_get_default_heap(void) {
#if defined(MI_TLS_SLOT) #if defined(MI_TLS_SLOT)
mi_heap_t* heap = (mi_heap_t*)mi_tls_slot(MI_TLS_SLOT); mi_heap_t* heap = (mi_heap_t*)mi_tls_slot(MI_TLS_SLOT);
if (mi_unlikely(heap == NULL)) { if mi_unlikely(heap == NULL) {
#ifdef __GNUC__ #ifdef __GNUC__
__asm(""); // prevent conditional load of the address of _mi_heap_empty __asm(""); // prevent conditional load of the address of _mi_heap_empty
#endif #endif
@ -453,7 +456,7 @@ static inline mi_page_t* _mi_ptr_page(void* p) {
static inline size_t mi_page_block_size(const mi_page_t* page) { static inline size_t mi_page_block_size(const mi_page_t* page) {
const size_t bsize = page->xblock_size; const size_t bsize = page->xblock_size;
mi_assert_internal(bsize > 0); mi_assert_internal(bsize > 0);
if (mi_likely(bsize < MI_HUGE_BLOCK_SIZE)) { if mi_likely(bsize < MI_HUGE_BLOCK_SIZE) {
return bsize; return bsize;
} }
else { else {
@ -607,11 +610,11 @@ static inline uintptr_t mi_rotr(uintptr_t x, uintptr_t shift) {
static inline void* mi_ptr_decode(const void* null, const mi_encoded_t x, const uintptr_t* keys) { static inline void* mi_ptr_decode(const void* null, const mi_encoded_t x, const uintptr_t* keys) {
void* p = (void*)(mi_rotr(x - keys[0], keys[0]) ^ keys[1]); void* p = (void*)(mi_rotr(x - keys[0], keys[0]) ^ keys[1]);
return (mi_unlikely(p==null) ? NULL : p); return (p==null ? NULL : p);
} }
static inline mi_encoded_t mi_ptr_encode(const void* null, const void* p, const uintptr_t* keys) { static inline mi_encoded_t mi_ptr_encode(const void* null, const void* p, const uintptr_t* keys) {
uintptr_t x = (uintptr_t)(mi_unlikely(p==NULL) ? null : p); uintptr_t x = (uintptr_t)(p==NULL ? null : p);
return mi_rotl(x ^ keys[1], keys[0]) + keys[0]; return mi_rotl(x ^ keys[1], keys[0]) + keys[0];
} }
@ -638,7 +641,7 @@ static inline mi_block_t* mi_block_next(const mi_page_t* page, const mi_block_t*
mi_block_t* next = mi_block_nextx(page,block,page->keys); mi_block_t* next = mi_block_nextx(page,block,page->keys);
// check for free list corruption: is `next` at least in the same page? // check for free list corruption: is `next` at least in the same page?
// TODO: check if `next` is `page->block_size` aligned? // TODO: check if `next` is `page->block_size` aligned?
if (mi_unlikely(next!=NULL && !mi_is_in_same_page(block, next))) { if mi_unlikely(next!=NULL && !mi_is_in_same_page(block, next)) {
_mi_error_message(EFAULT, "corrupted free list entry of size %zub at %p: value 0x%zx\n", mi_page_block_size(page), block, (uintptr_t)next); _mi_error_message(EFAULT, "corrupted free list entry of size %zub at %p: value 0x%zx\n", mi_page_block_size(page), block, (uintptr_t)next);
next = NULL; next = NULL;
} }
@ -691,12 +694,12 @@ size_t _mi_os_numa_node_count_get(void);
extern _Atomic(size_t) _mi_numa_node_count; extern _Atomic(size_t) _mi_numa_node_count;
static inline int _mi_os_numa_node(mi_os_tld_t* tld) { static inline int _mi_os_numa_node(mi_os_tld_t* tld) {
if (mi_likely(mi_atomic_load_relaxed(&_mi_numa_node_count) == 1)) return 0; if mi_likely(mi_atomic_load_relaxed(&_mi_numa_node_count) == 1) { return 0; }
else return _mi_os_numa_node_get(tld); else return _mi_os_numa_node_get(tld);
} }
static inline size_t _mi_os_numa_node_count(void) { static inline size_t _mi_os_numa_node_count(void) {
const size_t count = mi_atomic_load_relaxed(&_mi_numa_node_count); const size_t count = mi_atomic_load_relaxed(&_mi_numa_node_count);
if (mi_likely(count>0)) return count; if mi_likely(count > 0) { return count; }
else return _mi_os_numa_node_count_get(); else return _mi_os_numa_node_count_get();
} }

View File

@ -49,19 +49,19 @@ static void* mi_heap_malloc_zero_aligned_at(mi_heap_t* const heap, const size_t
{ {
// note: we don't require `size > offset`, we just guarantee that the address at offset is aligned regardless of the allocated size. // note: we don't require `size > offset`, we just guarantee that the address at offset is aligned regardless of the allocated size.
mi_assert(alignment > 0); mi_assert(alignment > 0);
if (mi_unlikely(alignment==0 || !_mi_is_power_of_two(alignment))) { // require power-of-two (see <https://en.cppreference.com/w/c/memory/aligned_alloc>) if mi_unlikely(alignment==0 || !_mi_is_power_of_two(alignment)) { // require power-of-two (see <https://en.cppreference.com/w/c/memory/aligned_alloc>)
#if MI_DEBUG > 0 #if MI_DEBUG > 0
_mi_error_message(EOVERFLOW, "aligned allocation requires the alignment to be a power-of-two (size %zu, alignment %zu)\n", size, alignment); _mi_error_message(EOVERFLOW, "aligned allocation requires the alignment to be a power-of-two (size %zu, alignment %zu)\n", size, alignment);
#endif #endif
return NULL; return NULL;
} }
if (mi_unlikely(alignment > MI_ALIGNMENT_MAX)) { // we cannot align at a boundary larger than this (or otherwise we cannot find segment headers) if mi_unlikely(alignment > MI_ALIGNMENT_MAX) { // we cannot align at a boundary larger than this (or otherwise we cannot find segment headers)
#if MI_DEBUG > 0 #if MI_DEBUG > 0
_mi_error_message(EOVERFLOW, "aligned allocation has a maximum alignment of %zu (size %zu, alignment %zu)\n", MI_ALIGNMENT_MAX, size, alignment); _mi_error_message(EOVERFLOW, "aligned allocation has a maximum alignment of %zu (size %zu, alignment %zu)\n", MI_ALIGNMENT_MAX, size, alignment);
#endif #endif
return NULL; return NULL;
} }
if (mi_unlikely(size > PTRDIFF_MAX)) { // we don't allocate more than PTRDIFF_MAX (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>) if mi_unlikely(size > PTRDIFF_MAX) { // we don't allocate more than PTRDIFF_MAX (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>)
#if MI_DEBUG > 0 #if MI_DEBUG > 0
_mi_error_message(EOVERFLOW, "aligned allocation request is too large (size %zu, alignment %zu)\n", size, alignment); _mi_error_message(EOVERFLOW, "aligned allocation request is too large (size %zu, alignment %zu)\n", size, alignment);
#endif #endif
@ -71,10 +71,10 @@ static void* mi_heap_malloc_zero_aligned_at(mi_heap_t* const heap, const size_t
const size_t padsize = size + MI_PADDING_SIZE; // note: cannot overflow due to earlier size > PTRDIFF_MAX check const size_t padsize = size + MI_PADDING_SIZE; // note: cannot overflow due to earlier size > PTRDIFF_MAX check
// try first if there happens to be a small block available with just the right alignment // try first if there happens to be a small block available with just the right alignment
if (mi_likely(padsize <= MI_SMALL_SIZE_MAX)) { if mi_likely(padsize <= MI_SMALL_SIZE_MAX) {
mi_page_t* page = _mi_heap_get_free_small_page(heap, padsize); mi_page_t* page = _mi_heap_get_free_small_page(heap, padsize);
const bool is_aligned = (((uintptr_t)page->free+offset) & align_mask)==0; const bool is_aligned = (((uintptr_t)page->free+offset) & align_mask)==0;
if (mi_likely(page->free != NULL && is_aligned)) if mi_likely(page->free != NULL && is_aligned)
{ {
#if MI_STAT>1 #if MI_STAT>1
mi_heap_stat_increase(heap, malloc, size); mi_heap_stat_increase(heap, malloc, size);
@ -102,7 +102,7 @@ mi_decl_nodiscard mi_decl_restrict void* mi_heap_malloc_aligned(mi_heap_t* heap,
#if !MI_PADDING #if !MI_PADDING
// without padding, any small sized allocation is naturally aligned (see also `_mi_segment_page_start`) // without padding, any small sized allocation is naturally aligned (see also `_mi_segment_page_start`)
if (!_mi_is_power_of_two(alignment)) return NULL; if (!_mi_is_power_of_two(alignment)) return NULL;
if (mi_likely(_mi_is_power_of_two(size) && size >= alignment && size <= MI_SMALL_SIZE_MAX)) if mi_likely(_mi_is_power_of_two(size) && size >= alignment && size <= MI_SMALL_SIZE_MAX)
#else #else
// with padding, we can only guarantee this for fixed alignments // with padding, we can only guarantee this for fixed alignments
if (mi_likely((alignment == sizeof(void*) || (alignment == MI_MAX_ALIGN_SIZE && size > (MI_MAX_ALIGN_SIZE/2))) if (mi_likely((alignment == sizeof(void*) || (alignment == MI_MAX_ALIGN_SIZE && size > (MI_MAX_ALIGN_SIZE/2)))

View File

@ -254,7 +254,7 @@ static malloc_zone_t mi_malloc_zone = {
static inline malloc_zone_t* mi_get_default_zone(void) static inline malloc_zone_t* mi_get_default_zone(void)
{ {
static bool init; static bool init;
if (mi_unlikely(!init)) { if mi_unlikely(!init) {
init = true; init = true;
malloc_zone_register(&mi_malloc_zone); // by calling register we avoid a zone error on free (see <http://eatmyrandom.blogspot.com/2010/03/mallocfree-interception-on-mac-os-x.html>) malloc_zone_register(&mi_malloc_zone); // by calling register we avoid a zone error on free (see <http://eatmyrandom.blogspot.com/2010/03/mallocfree-interception-on-mac-os-x.html>)
} }

View File

@ -83,7 +83,7 @@ mi_decl_nodiscard mi_decl_restrict void* mi_pvalloc(size_t size) mi_attr_noexcep
} }
mi_decl_nodiscard mi_decl_restrict void* mi_aligned_alloc(size_t alignment, size_t size) mi_attr_noexcept { mi_decl_nodiscard mi_decl_restrict void* mi_aligned_alloc(size_t alignment, size_t size) mi_attr_noexcept {
if (mi_unlikely((size&(alignment-1)) != 0)) { // C11 requires alignment>0 && integral multiple, see <https://en.cppreference.com/w/c/memory/aligned_alloc> if mi_unlikely((size&(alignment-1)) != 0) { // C11 requires alignment>0 && integral multiple, see <https://en.cppreference.com/w/c/memory/aligned_alloc>
#if MI_DEBUG > 0 #if MI_DEBUG > 0
_mi_error_message(EOVERFLOW, "(mi_)aligned_alloc requires the size to be an integral multiple of the alignment (size %zu, alignment %zu)\n", size, alignment); _mi_error_message(EOVERFLOW, "(mi_)aligned_alloc requires the size to be an integral multiple of the alignment (size %zu, alignment %zu)\n", size, alignment);
#endif #endif
@ -109,7 +109,7 @@ mi_decl_nodiscard int mi_reallocarr( void* p, size_t count, size_t size ) mi_att
} }
void** op = (void**)p; void** op = (void**)p;
void* newp = mi_reallocarray(*op, count, size); void* newp = mi_reallocarray(*op, count, size);
if (mi_unlikely(newp == NULL)) return errno; if mi_unlikely(newp == NULL) { return errno; }
*op = newp; *op = newp;
return 0; return 0;
} }

View File

@ -28,7 +28,7 @@ terms of the MIT license. A copy of the license can be found in the file
extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept { extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept {
mi_assert_internal(page->xblock_size==0||mi_page_block_size(page) >= size); mi_assert_internal(page->xblock_size==0||mi_page_block_size(page) >= size);
mi_block_t* const block = page->free; mi_block_t* const block = page->free;
if (mi_unlikely(block == NULL)) { if mi_unlikely(block == NULL) {
return _mi_malloc_generic(heap, size, zero); return _mi_malloc_generic(heap, size, zero);
} }
mi_assert_internal(block != NULL && _mi_ptr_page(block) == page); mi_assert_internal(block != NULL && _mi_ptr_page(block) == page);
@ -38,9 +38,9 @@ extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t siz
mi_assert_internal(page->free == NULL || _mi_ptr_page(page->free) == page); mi_assert_internal(page->free == NULL || _mi_ptr_page(page->free) == page);
// zero the block? // zero the block?
if (mi_unlikely(zero)) { if mi_unlikely(zero) {
mi_assert_internal(page->xblock_size != 0); // do not call with zero'ing for huge blocks mi_assert_internal(page->xblock_size != 0); // do not call with zero'ing for huge blocks
const size_t zsize = (mi_unlikely(page->is_zero) ? sizeof(block->next) : page->xblock_size); const size_t zsize = (page->is_zero ? sizeof(block->next) : page->xblock_size);
_mi_memzero_aligned(block, zsize); _mi_memzero_aligned(block, zsize);
} }
@ -108,7 +108,7 @@ mi_decl_nodiscard extern inline mi_decl_restrict void* mi_malloc_small(size_t si
// The main allocation function // The main allocation function
mi_decl_nodiscard extern inline void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept { mi_decl_nodiscard extern inline void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept {
if (mi_likely(size <= MI_SMALL_SIZE_MAX)) { if mi_likely(size <= MI_SMALL_SIZE_MAX) {
return mi_heap_malloc_small_zero(heap, size, zero); return mi_heap_malloc_small_zero(heap, size, zero);
} }
else { else {
@ -350,7 +350,7 @@ static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* bloc
mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free); mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free);
do { do {
use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE); use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE);
if (mi_unlikely(use_delayed)) { if mi_unlikely(use_delayed) {
// unlikely: this only happens on the first concurrent free in a page that is in the full list // unlikely: this only happens on the first concurrent free in a page that is in the full list
tfreex = mi_tf_set_delayed(tfree,MI_DELAYED_FREEING); tfreex = mi_tf_set_delayed(tfree,MI_DELAYED_FREEING);
} }
@ -361,7 +361,7 @@ static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* bloc
} }
} while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex)); } while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
if (mi_unlikely(use_delayed)) { if mi_unlikely(use_delayed) {
// racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`) // racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`)
mi_heap_t* const heap = (mi_heap_t*)(mi_atomic_load_acquire(&page->xheap)); //mi_page_heap(page); mi_heap_t* const heap = (mi_heap_t*)(mi_atomic_load_acquire(&page->xheap)); //mi_page_heap(page);
mi_assert_internal(heap != NULL); mi_assert_internal(heap != NULL);
@ -387,9 +387,9 @@ static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* bloc
static inline void _mi_free_block(mi_page_t* page, bool local, mi_block_t* block) static inline void _mi_free_block(mi_page_t* page, bool local, mi_block_t* block)
{ {
// and push it on the free list // and push it on the free list
if (mi_likely(local)) { if mi_likely(local) {
// owning thread can free a block directly // owning thread can free a block directly
if (mi_unlikely(mi_check_is_double_free(page, block))) return; if mi_unlikely(mi_check_is_double_free(page, block)) return;
mi_check_padding(page, block); mi_check_padding(page, block);
#if (MI_DEBUG!=0) #if (MI_DEBUG!=0)
memset(block, MI_DEBUG_FREED, mi_page_block_size(page)); memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
@ -397,10 +397,10 @@ static inline void _mi_free_block(mi_page_t* page, bool local, mi_block_t* block
mi_block_set_next(page, block, page->local_free); mi_block_set_next(page, block, page->local_free);
page->local_free = block; page->local_free = block;
page->used--; page->used--;
if (mi_unlikely(mi_page_all_free(page))) { if mi_unlikely(mi_page_all_free(page)) {
_mi_page_retire(page); _mi_page_retire(page);
} }
else if (mi_unlikely(mi_page_is_in_full(page))) { else if mi_unlikely(mi_page_is_in_full(page)) {
_mi_page_unfull(page); _mi_page_unfull(page);
} }
} }
@ -433,26 +433,26 @@ static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* ms
{ {
MI_UNUSED(msg); MI_UNUSED(msg);
#if (MI_DEBUG>0) #if (MI_DEBUG>0)
if (mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0)) { if mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0) {
_mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p); _mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p);
return NULL; return NULL;
} }
#endif #endif
mi_segment_t* const segment = _mi_ptr_segment(p); mi_segment_t* const segment = _mi_ptr_segment(p);
if (mi_unlikely(segment == NULL)) return NULL; // checks also for (p==NULL) if mi_unlikely(segment == NULL) return NULL; // checks also for (p==NULL)
#if (MI_DEBUG>0) #if (MI_DEBUG>0)
if (mi_unlikely(!mi_is_in_heap_region(p))) { if mi_unlikely(!mi_is_in_heap_region(p)) {
_mi_warning_message("%s: pointer might not point to a valid heap region: %p\n" _mi_warning_message("%s: pointer might not point to a valid heap region: %p\n"
"(this may still be a valid very large allocation (over 64MiB))\n", msg, p); "(this may still be a valid very large allocation (over 64MiB))\n", msg, p);
if (mi_likely(_mi_ptr_cookie(segment) == segment->cookie)) { if mi_likely(_mi_ptr_cookie(segment) == segment->cookie) {
_mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p); _mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p);
} }
} }
#endif #endif
#if (MI_DEBUG>0 || MI_SECURE>=4) #if (MI_DEBUG>0 || MI_SECURE>=4)
if (mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie)) { if mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie) {
_mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", msg, p); _mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", msg, p);
return NULL; return NULL;
} }
@ -464,15 +464,15 @@ static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* ms
void mi_free(void* p) mi_attr_noexcept void mi_free(void* p) mi_attr_noexcept
{ {
mi_segment_t* const segment = mi_checked_ptr_segment(p,"mi_free"); mi_segment_t* const segment = mi_checked_ptr_segment(p,"mi_free");
if (mi_unlikely(segment == NULL)) return; if mi_unlikely(segment == NULL) return;
mi_threadid_t tid = _mi_thread_id(); mi_threadid_t tid = _mi_thread_id();
mi_page_t* const page = _mi_segment_page_of(segment, p); mi_page_t* const page = _mi_segment_page_of(segment, p);
mi_block_t* const block = (mi_block_t*)p; mi_block_t* const block = (mi_block_t*)p;
if (mi_likely(tid == mi_atomic_load_relaxed(&segment->thread_id) && page->flags.full_aligned == 0)) { // the thread id matches and it is not a full page, nor has aligned blocks if mi_likely(tid == mi_atomic_load_relaxed(&segment->thread_id) && page->flags.full_aligned == 0) { // the thread id matches and it is not a full page, nor has aligned blocks
// local, and not full or aligned // local, and not full or aligned
if (mi_unlikely(mi_check_is_double_free(page,block))) return; if mi_unlikely(mi_check_is_double_free(page,block)) return;
mi_check_padding(page, block); mi_check_padding(page, block);
mi_stat_free(page, block); mi_stat_free(page, block);
#if (MI_DEBUG!=0) #if (MI_DEBUG!=0)
@ -480,7 +480,7 @@ void mi_free(void* p) mi_attr_noexcept
#endif #endif
mi_block_set_next(page, block, page->local_free); mi_block_set_next(page, block, page->local_free);
page->local_free = block; page->local_free = block;
if (mi_unlikely(--page->used == 0)) { // using this expression generates better code than: page->used--; if (mi_page_all_free(page)) if mi_unlikely(--page->used == 0) { // using this expression generates better code than: page->used--; if (mi_page_all_free(page))
_mi_page_retire(page); _mi_page_retire(page);
} }
} }
@ -526,7 +526,7 @@ static inline size_t _mi_usable_size(const void* p, const char* msg) mi_attr_noe
const mi_segment_t* const segment = mi_checked_ptr_segment(p, msg); const mi_segment_t* const segment = mi_checked_ptr_segment(p, msg);
if (segment==NULL) return 0; // also returns 0 if `p == NULL` if (segment==NULL) return 0; // also returns 0 if `p == NULL`
const mi_page_t* const page = _mi_segment_page_of(segment, p); const mi_page_t* const page = _mi_segment_page_of(segment, p);
if (mi_likely(!mi_page_has_aligned(page))) { if mi_likely(!mi_page_has_aligned(page)) {
const mi_block_t* block = (const mi_block_t*)p; const mi_block_t* block = (const mi_block_t*)p;
return mi_page_usable_size_of(page, block); return mi_page_usable_size_of(page, block);
} }
@ -621,18 +621,18 @@ void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero)
// else if size == 0 then reallocate to a zero-sized block (and don't return NULL, just as mi_malloc(0)). // else if size == 0 then reallocate to a zero-sized block (and don't return NULL, just as mi_malloc(0)).
// (this means that returning NULL always indicates an error, and `p` will not have been freed in that case.) // (this means that returning NULL always indicates an error, and `p` will not have been freed in that case.)
const size_t size = _mi_usable_size(p,"mi_realloc"); // also works if p == NULL (with size 0) const size_t size = _mi_usable_size(p,"mi_realloc"); // also works if p == NULL (with size 0)
if (mi_unlikely(newsize <= size && newsize >= (size / 2) && newsize > 0)) { // note: newsize must be > 0 or otherwise we return NULL for realloc(NULL,0) if mi_unlikely(newsize <= size && newsize >= (size / 2) && newsize > 0) { // note: newsize must be > 0 or otherwise we return NULL for realloc(NULL,0)
// todo: adjust potential padding to reflect the new size? // todo: adjust potential padding to reflect the new size?
return p; // reallocation still fits and not more than 50% waste return p; // reallocation still fits and not more than 50% waste
} }
void* newp = mi_heap_malloc(heap,newsize); void* newp = mi_heap_malloc(heap,newsize);
if (mi_likely(newp != NULL)) { if mi_likely(newp != NULL) {
if (zero && newsize > size) { if (zero && newsize > size) {
// also set last word in the previous allocation to zero to ensure any padding is zero-initialized // also set last word in the previous allocation to zero to ensure any padding is zero-initialized
const size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0); const size_t start = (size >= sizeof(intptr_t) ? size - sizeof(intptr_t) : 0);
memset((uint8_t*)newp + start, 0, newsize - start); memset((uint8_t*)newp + start, 0, newsize - start);
} }
if (mi_likely(p != NULL)) { if mi_likely(p != NULL) {
_mi_memcpy_aligned(newp, p, (newsize > size ? size : newsize)); _mi_memcpy_aligned(newp, p, (newsize > size ? size : newsize));
mi_free(p); // only free the original pointer if successful mi_free(p); // only free the original pointer if successful
} }
@ -857,13 +857,13 @@ static mi_decl_noinline void* mi_try_new(size_t size, bool nothrow ) {
mi_decl_nodiscard mi_decl_restrict void* mi_new(size_t size) { mi_decl_nodiscard mi_decl_restrict void* mi_new(size_t size) {
void* p = mi_malloc(size); void* p = mi_malloc(size);
if (mi_unlikely(p == NULL)) return mi_try_new(size,false); if mi_unlikely(p == NULL) return mi_try_new(size,false);
return p; return p;
} }
mi_decl_nodiscard mi_decl_restrict void* mi_new_nothrow(size_t size) mi_attr_noexcept { mi_decl_nodiscard mi_decl_restrict void* mi_new_nothrow(size_t size) mi_attr_noexcept {
void* p = mi_malloc(size); void* p = mi_malloc(size);
if (mi_unlikely(p == NULL)) return mi_try_new(size, true); if mi_unlikely(p == NULL) return mi_try_new(size, true);
return p; return p;
} }
@ -887,7 +887,7 @@ mi_decl_nodiscard mi_decl_restrict void* mi_new_aligned_nothrow(size_t size, siz
mi_decl_nodiscard mi_decl_restrict void* mi_new_n(size_t count, size_t size) { mi_decl_nodiscard mi_decl_restrict void* mi_new_n(size_t count, size_t size) {
size_t total; size_t total;
if (mi_unlikely(mi_count_size_overflow(count, size, &total))) { if mi_unlikely(mi_count_size_overflow(count, size, &total)) {
mi_try_new_handler(false); // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc mi_try_new_handler(false); // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc
return NULL; return NULL;
} }
@ -906,7 +906,7 @@ mi_decl_nodiscard void* mi_new_realloc(void* p, size_t newsize) {
mi_decl_nodiscard void* mi_new_reallocn(void* p, size_t newcount, size_t size) { mi_decl_nodiscard void* mi_new_reallocn(void* p, size_t newcount, size_t size) {
size_t total; size_t total;
if (mi_unlikely(mi_count_size_overflow(newcount, size, &total))) { if mi_unlikely(mi_count_size_overflow(newcount, size, &total)) {
mi_try_new_handler(false); // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc mi_try_new_handler(false); // on overflow we invoke the try_new_handler once to potentially throw std::bad_alloc
return NULL; return NULL;
} }

View File

@ -283,7 +283,7 @@ bool _mi_bitmap_try_find_from_claim_across(mi_bitmap_t bitmap, const size_t bitm
static size_t mi_bitmap_mask_across(mi_bitmap_index_t bitmap_idx, size_t bitmap_fields, size_t count, size_t* pre_mask, size_t* mid_mask, size_t* post_mask) { static size_t mi_bitmap_mask_across(mi_bitmap_index_t bitmap_idx, size_t bitmap_fields, size_t count, size_t* pre_mask, size_t* mid_mask, size_t* post_mask) {
MI_UNUSED_RELEASE(bitmap_fields); MI_UNUSED_RELEASE(bitmap_fields);
const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx); const size_t bitidx = mi_bitmap_index_bit_in_field(bitmap_idx);
if (mi_likely(bitidx + count <= MI_BITMAP_FIELD_BITS)) { if mi_likely(bitidx + count <= MI_BITMAP_FIELD_BITS) {
*pre_mask = mi_bitmap_mask_(count, bitidx); *pre_mask = mi_bitmap_mask_(count, bitidx);
*mid_mask = 0; *mid_mask = 0;
*post_mask = 0; *post_mask = 0;

View File

@ -410,7 +410,7 @@ static mi_heap_t* mi_heap_of_block(const void* p) {
mi_segment_t* segment = _mi_ptr_segment(p); mi_segment_t* segment = _mi_ptr_segment(p);
bool valid = (_mi_ptr_cookie(segment) == segment->cookie); bool valid = (_mi_ptr_cookie(segment) == segment->cookie);
mi_assert_internal(valid); mi_assert_internal(valid);
if (mi_unlikely(!valid)) return NULL; if mi_unlikely(!valid) return NULL;
return mi_page_heap(_mi_segment_page_of(segment,p)); return mi_page_heap(_mi_segment_page_of(segment,p));
} }

View File

@ -119,7 +119,7 @@ mi_decl_nodiscard long mi_option_get(mi_option_t option) {
if (option < 0 || option >= _mi_option_last) return 0; if (option < 0 || option >= _mi_option_last) return 0;
mi_option_desc_t* desc = &options[option]; mi_option_desc_t* desc = &options[option];
mi_assert(desc->option == option); // index should match the option mi_assert(desc->option == option); // index should match the option
if (mi_unlikely(desc->init == UNINIT)) { if mi_unlikely(desc->init == UNINIT) {
mi_option_init(desc); mi_option_init(desc);
} }
return desc->value; return desc->value;

View File

@ -133,7 +133,7 @@ size_t _mi_os_good_alloc_size(size_t size) {
else if (size < 8*MI_MiB) align_size = 256*MI_KiB; else if (size < 8*MI_MiB) align_size = 256*MI_KiB;
else if (size < 32*MI_MiB) align_size = 1*MI_MiB; else if (size < 32*MI_MiB) align_size = 1*MI_MiB;
else align_size = 4*MI_MiB; else align_size = 4*MI_MiB;
if (mi_unlikely(size >= (SIZE_MAX - align_size))) return size; // possible overflow? if mi_unlikely(size >= (SIZE_MAX - align_size)) return size; // possible overflow?
return _mi_align_up(size, align_size); return _mi_align_up(size, align_size);
} }

View File

@ -130,7 +130,7 @@ void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool overrid
tfree = mi_atomic_load_acquire(&page->xthread_free); // note: must acquire as we can break/repeat this loop and not do a CAS; tfree = mi_atomic_load_acquire(&page->xthread_free); // note: must acquire as we can break/repeat this loop and not do a CAS;
tfreex = mi_tf_set_delayed(tfree, delay); tfreex = mi_tf_set_delayed(tfree, delay);
old_delay = mi_tf_delayed(tfree); old_delay = mi_tf_delayed(tfree);
if (mi_unlikely(old_delay == MI_DELAYED_FREEING)) { if mi_unlikely(old_delay == MI_DELAYED_FREEING) {
mi_atomic_yield(); // delay until outstanding MI_DELAYED_FREEING are done. mi_atomic_yield(); // delay until outstanding MI_DELAYED_FREEING are done.
// tfree = mi_tf_set_delayed(tfree, MI_NO_DELAYED_FREE); // will cause CAS to busy fail // tfree = mi_tf_set_delayed(tfree, MI_NO_DELAYED_FREE); // will cause CAS to busy fail
} }
@ -198,7 +198,7 @@ void _mi_page_free_collect(mi_page_t* page, bool force) {
// and the local free list // and the local free list
if (page->local_free != NULL) { if (page->local_free != NULL) {
if (mi_likely(page->free == NULL)) { if mi_likely(page->free == NULL) {
// usual case // usual case
page->free = page->local_free; page->free = page->local_free;
page->local_free = NULL; page->local_free = NULL;
@ -400,7 +400,7 @@ void _mi_page_retire(mi_page_t* page) mi_attr_noexcept {
// how to check this efficiently though... // how to check this efficiently though...
// for now, we don't retire if it is the only page left of this size class. // for now, we don't retire if it is the only page left of this size class.
mi_page_queue_t* pq = mi_page_queue_of(page); mi_page_queue_t* pq = mi_page_queue_of(page);
if (mi_likely(page->xblock_size <= MI_MAX_RETIRE_SIZE && !mi_page_is_in_full(page))) { if mi_likely(page->xblock_size <= MI_MAX_RETIRE_SIZE && !mi_page_is_in_full(page)) {
if (pq->last==page && pq->first==page) { // the only page in the queue? if (pq->last==page && pq->first==page) { // the only page in the queue?
mi_stat_counter_increase(_mi_stats_main.page_no_retire,1); mi_stat_counter_increase(_mi_stats_main.page_no_retire,1);
page->retire_expire = (page->xblock_size <= MI_SMALL_OBJ_SIZE_MAX ? MI_RETIRE_CYCLES : MI_RETIRE_CYCLES/4); page->retire_expire = (page->xblock_size <= MI_SMALL_OBJ_SIZE_MAX ? MI_RETIRE_CYCLES : MI_RETIRE_CYCLES/4);
@ -797,8 +797,8 @@ static mi_page_t* mi_huge_page_alloc(mi_heap_t* heap, size_t size) {
static mi_page_t* mi_find_page(mi_heap_t* heap, size_t size) mi_attr_noexcept { static mi_page_t* mi_find_page(mi_heap_t* heap, size_t size) mi_attr_noexcept {
// huge allocation? // huge allocation?
const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size` const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size`
if (mi_unlikely(req_size > (MI_LARGE_OBJ_SIZE_MAX - MI_PADDING_SIZE) )) { if mi_unlikely(req_size > (MI_LARGE_OBJ_SIZE_MAX - MI_PADDING_SIZE) ) {
if (mi_unlikely(req_size > PTRDIFF_MAX)) { // we don't allocate more than PTRDIFF_MAX (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>) if mi_unlikely(req_size > PTRDIFF_MAX) { // we don't allocate more than PTRDIFF_MAX (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>)
_mi_error_message(EOVERFLOW, "allocation request is too large (%zu bytes)\n", req_size); _mi_error_message(EOVERFLOW, "allocation request is too large (%zu bytes)\n", req_size);
return NULL; return NULL;
} }
@ -820,10 +820,10 @@ void* _mi_malloc_generic(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexce
mi_assert_internal(heap != NULL); mi_assert_internal(heap != NULL);
// initialize if necessary // initialize if necessary
if (mi_unlikely(!mi_heap_is_initialized(heap))) { if mi_unlikely(!mi_heap_is_initialized(heap)) {
mi_thread_init(); // calls `_mi_heap_init` in turn mi_thread_init(); // calls `_mi_heap_init` in turn
heap = mi_get_default_heap(); heap = mi_get_default_heap();
if (mi_unlikely(!mi_heap_is_initialized(heap))) { return NULL; } if mi_unlikely(!mi_heap_is_initialized(heap)) { return NULL; }
} }
mi_assert_internal(mi_heap_is_initialized(heap)); mi_assert_internal(mi_heap_is_initialized(heap));
@ -835,12 +835,12 @@ void* _mi_malloc_generic(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexce
// find (or allocate) a page of the right size // find (or allocate) a page of the right size
mi_page_t* page = mi_find_page(heap, size); mi_page_t* page = mi_find_page(heap, size);
if (mi_unlikely(page == NULL)) { // first time out of memory, try to collect and retry the allocation once more if mi_unlikely(page == NULL) { // first time out of memory, try to collect and retry the allocation once more
mi_heap_collect(heap, true /* force */); mi_heap_collect(heap, true /* force */);
page = mi_find_page(heap, size); page = mi_find_page(heap, size);
} }
if (mi_unlikely(page == NULL)) { // out of memory if mi_unlikely(page == NULL) { // out of memory
const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size` const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size`
_mi_error_message(ENOMEM, "unable to allocate memory (%zu bytes)\n", req_size); _mi_error_message(ENOMEM, "unable to allocate memory (%zu bytes)\n", req_size);
return NULL; return NULL;
@ -850,7 +850,7 @@ void* _mi_malloc_generic(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexce
mi_assert_internal(mi_page_block_size(page) >= size); mi_assert_internal(mi_page_block_size(page) >= size);
// and try again, this time succeeding! (i.e. this should never recurse through _mi_page_malloc) // and try again, this time succeeding! (i.e. this should never recurse through _mi_page_malloc)
if (mi_unlikely(zero && page->xblock_size == 0)) { if mi_unlikely(zero && page->xblock_size == 0) {
// note: we cannot call _mi_page_malloc with zeroing for huge blocks; we zero it afterwards in that case. // note: we cannot call _mi_page_malloc with zeroing for huge blocks; we zero it afterwards in that case.
void* p = _mi_page_malloc(heap, page, size, false); void* p = _mi_page_malloc(heap, page, size, false);
mi_assert_internal(p != NULL); mi_assert_internal(p != NULL);

View File

@ -930,8 +930,8 @@ static mi_segment_t* mi_abandoned_pop(void) {
// Check efficiently if it is empty (or if the visited list needs to be moved) // Check efficiently if it is empty (or if the visited list needs to be moved)
mi_tagged_segment_t ts = mi_atomic_load_relaxed(&abandoned); mi_tagged_segment_t ts = mi_atomic_load_relaxed(&abandoned);
segment = mi_tagged_segment_ptr(ts); segment = mi_tagged_segment_ptr(ts);
if (mi_likely(segment == NULL)) { if mi_likely(segment == NULL) {
if (mi_likely(!mi_abandoned_visited_revisit())) { // try to swap in the visited list on NULL if mi_likely(!mi_abandoned_visited_revisit()) { // try to swap in the visited list on NULL
return NULL; return NULL;
} }
} }