mirror of
https://github.com/microsoft/mimalloc.git
synced 2025-01-14 00:27:59 +08:00
merge from dev (new free.c)
This commit is contained in:
commit
6399dbdc30
@ -168,7 +168,7 @@ void* mi_expand(void* p, size_t newsize);
|
||||
/// @returns A pointer to a block of \a count * \a size bytes, or \a NULL
|
||||
/// if out of memory or if \a count * \a size overflows.
|
||||
///
|
||||
/// If there is no overflow, it behaves exactly like `mi_malloc(p,count*size)`.
|
||||
/// If there is no overflow, it behaves exactly like `mi_malloc(count*size)`.
|
||||
/// @see mi_calloc()
|
||||
/// @see mi_zallocn()
|
||||
void* mi_mallocn(size_t count, size_t size);
|
||||
|
@ -30,7 +30,7 @@ terms of the MIT license. A copy of the license can be found in the file
|
||||
#define mi_decl_noinline __declspec(noinline)
|
||||
#define mi_decl_thread __declspec(thread)
|
||||
#define mi_decl_cache_align __declspec(align(MI_CACHE_LINE))
|
||||
#define mi_decl_weak
|
||||
#define mi_decl_weak
|
||||
#elif (defined(__GNUC__) && (__GNUC__ >= 3)) || defined(__clang__) // includes clang and icc
|
||||
#define mi_decl_noinline __attribute__((noinline))
|
||||
#define mi_decl_thread __thread
|
||||
@ -40,7 +40,7 @@ terms of the MIT license. A copy of the license can be found in the file
|
||||
#define mi_decl_noinline
|
||||
#define mi_decl_thread __thread // hope for the best :-)
|
||||
#define mi_decl_cache_align
|
||||
#define mi_decl_weak
|
||||
#define mi_decl_weak
|
||||
#endif
|
||||
|
||||
#if defined(__EMSCRIPTEN__) && !defined(__wasi__)
|
||||
@ -133,8 +133,8 @@ void _mi_arena_segment_mark_abandoned(mi_segment_t* segment);
|
||||
size_t _mi_arena_segment_abandoned_count(void);
|
||||
|
||||
typedef struct mi_arena_field_cursor_s { // abstract
|
||||
mi_arena_id_t start;
|
||||
int count;
|
||||
mi_arena_id_t start;
|
||||
int count;
|
||||
size_t bitmap_idx;
|
||||
} mi_arena_field_cursor_t;
|
||||
void _mi_arena_field_cursor_init(mi_heap_t* heap, mi_arena_field_cursor_t* current);
|
||||
@ -205,7 +205,7 @@ void* _mi_heap_malloc_zero_ex(mi_heap_t* heap, size_t size, bool zero, siz
|
||||
void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) mi_attr_noexcept;
|
||||
mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p);
|
||||
bool _mi_free_delayed_block(mi_block_t* block);
|
||||
void _mi_free_generic(const mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept; // for runtime integration
|
||||
void _mi_free_generic(mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept; // for runtime integration
|
||||
void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size);
|
||||
|
||||
// "libc.c"
|
||||
|
@ -281,7 +281,7 @@ typedef uintptr_t mi_thread_free_t;
|
||||
// and 12 are still good for address calculation)
|
||||
// - To limit the structure size, the `xblock_size` is 32-bits only; for
|
||||
// blocks > MI_HUGE_BLOCK_SIZE the size is determined from the segment page size
|
||||
// - `thread_free` uses the bottom bits as a delayed-free flags to optimize
|
||||
// - `xthread_free` uses the bottom bits as a delayed-free flags to optimize
|
||||
// concurrent frees where only the first concurrent free adds to the owning
|
||||
// heap `thread_delayed_free` list (see `alloc.c:mi_free_block_mt`).
|
||||
// The invariant is that no-delayed-free is only set if there is
|
||||
@ -303,9 +303,11 @@ typedef struct mi_page_s {
|
||||
uint8_t retire_expire : 7; // expiration count for retired blocks
|
||||
|
||||
mi_block_t* free; // list of available free blocks (`malloc` allocates from this list)
|
||||
uint32_t used; // number of blocks in use (including blocks in `local_free` and `thread_free`)
|
||||
uint32_t xblock_size; // size available in each block (always `>0`)
|
||||
mi_block_t* local_free; // list of deferred free blocks by this thread (migrates to `free`)
|
||||
uint16_t used; // number of blocks in use (including blocks in `thread_free`)
|
||||
uint8_t block_size_shift; // if not zero, then `(1 << block_size_shift) == block_size` (only used for fast path in `free.c:_mi_page_ptr_unalign`)
|
||||
uint8_t block_offset_adj; // if not zero, then `(mi_page_start(_,page,_) - (uint8_t*)page - MI_MAX_ALIGN_SIZE*(block_offset_adj-1)) % block_size == 0)` (only used for fast path in `free.c:_mi_page_ptr_unalign`)
|
||||
uint32_t xblock_size; // size available in each block (always `>0`)
|
||||
|
||||
#if (MI_ENCODE_FREELIST || MI_PADDING)
|
||||
uintptr_t keys[2]; // two random keys to encode the free lists (see `_mi_block_next`) or padding canary
|
||||
@ -498,8 +500,6 @@ typedef struct mi_padding_s {
|
||||
// A heap owns a set of pages.
|
||||
struct mi_heap_s {
|
||||
mi_tld_t* tld;
|
||||
mi_page_t* pages_free_direct[MI_PAGES_DIRECT]; // optimize: array where every entry points a page with possibly free blocks in the corresponding queue for that size.
|
||||
mi_page_queue_t pages[MI_BIN_FULL + 1]; // queue of pages for each size class (or "bin")
|
||||
_Atomic(mi_block_t*) thread_delayed_free;
|
||||
mi_threadid_t thread_id; // thread this heap belongs too
|
||||
mi_arena_id_t arena_id; // arena id if the heap belongs to a specific arena (or 0)
|
||||
@ -511,6 +511,8 @@ struct mi_heap_s {
|
||||
size_t page_retired_max; // largest retired index into the `pages` array.
|
||||
mi_heap_t* next; // list of heaps per thread
|
||||
bool no_reclaim; // `true` if this heap should not reclaim abandoned pages
|
||||
mi_page_t* pages_free_direct[MI_PAGES_DIRECT]; // optimize: array where every entry points a page with possibly free blocks in the corresponding queue for that size.
|
||||
mi_page_queue_t pages[MI_BIN_FULL + 1]; // queue of pages for each size class (or "bin")
|
||||
};
|
||||
|
||||
|
||||
|
539
src/alloc.c
539
src/alloc.c
@ -18,6 +18,7 @@ terms of the MIT license. A copy of the license can be found in the file
|
||||
|
||||
#define MI_IN_ALLOC_C
|
||||
#include "alloc-override.c"
|
||||
#include "free.c"
|
||||
#undef MI_IN_ALLOC_C
|
||||
|
||||
// ------------------------------------------------------
|
||||
@ -26,7 +27,9 @@ terms of the MIT license. A copy of the license can be found in the file
|
||||
|
||||
// Fast allocation in a page: just pop from the free list.
|
||||
// Fall back to generic allocation only if the list is empty.
|
||||
extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept {
|
||||
// Note: in release mode the (inlined) routine is about 7 instructions with a single test.
|
||||
extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept
|
||||
{
|
||||
mi_assert_internal(page->xblock_size==0||mi_page_block_size(page) >= size);
|
||||
mi_block_t* const block = page->free;
|
||||
if mi_unlikely(block == NULL) {
|
||||
@ -34,8 +37,8 @@ extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t siz
|
||||
}
|
||||
mi_assert_internal(block != NULL && _mi_ptr_page(block) == page);
|
||||
// pop from the free list
|
||||
page->used++;
|
||||
page->free = mi_block_next(page, block);
|
||||
page->used++;
|
||||
mi_assert_internal(page->free == NULL || _mi_ptr_page(page->free) == page);
|
||||
#if MI_DEBUG>3
|
||||
if (page->free_is_zero) {
|
||||
@ -61,43 +64,43 @@ extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t siz
|
||||
}
|
||||
}
|
||||
|
||||
#if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN
|
||||
#if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN
|
||||
if (!zero && !mi_page_is_huge(page)) {
|
||||
memset(block, MI_DEBUG_UNINIT, mi_page_usable_block_size(page));
|
||||
}
|
||||
#elif (MI_SECURE!=0)
|
||||
#elif (MI_SECURE!=0)
|
||||
if (!zero) { block->next = 0; } // don't leak internal data
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if (MI_STAT>0)
|
||||
#if (MI_STAT>0)
|
||||
const size_t bsize = mi_page_usable_block_size(page);
|
||||
if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) {
|
||||
mi_heap_stat_increase(heap, normal, bsize);
|
||||
mi_heap_stat_counter_increase(heap, normal_count, 1);
|
||||
#if (MI_STAT>1)
|
||||
#if (MI_STAT>1)
|
||||
const size_t bin = _mi_bin(bsize);
|
||||
mi_heap_stat_increase(heap, normal_bins[bin], 1);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if MI_PADDING // && !MI_TRACK_ENABLED
|
||||
#if MI_PADDING // && !MI_TRACK_ENABLED
|
||||
mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + mi_page_usable_block_size(page));
|
||||
ptrdiff_t delta = ((uint8_t*)padding - (uint8_t*)block - (size - MI_PADDING_SIZE));
|
||||
#if (MI_DEBUG>=2)
|
||||
mi_assert_internal(delta >= 0 && mi_page_usable_block_size(page) >= (size - MI_PADDING_SIZE + delta));
|
||||
#endif
|
||||
#if (MI_DEBUG>=2)
|
||||
mi_assert_internal(delta >= 0 && mi_page_usable_block_size(page) >= (size - MI_PADDING_SIZE + delta));
|
||||
#endif
|
||||
mi_track_mem_defined(padding,sizeof(mi_padding_t)); // note: re-enable since mi_page_usable_block_size may set noaccess
|
||||
padding->canary = (uint32_t)(mi_ptr_encode(page,block,page->keys));
|
||||
padding->delta = (uint32_t)(delta);
|
||||
#if MI_PADDING_CHECK
|
||||
if (!mi_page_is_huge(page)) {
|
||||
uint8_t* fill = (uint8_t*)padding - delta;
|
||||
const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // set at most N initial padding bytes
|
||||
for (size_t i = 0; i < maxpad; i++) { fill[i] = MI_DEBUG_PADDING; }
|
||||
}
|
||||
#if MI_PADDING_CHECK
|
||||
if (!mi_page_is_huge(page)) {
|
||||
uint8_t* fill = (uint8_t*)padding - delta;
|
||||
const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // set at most N initial padding bytes
|
||||
for (size_t i = 0; i < maxpad; i++) { fill[i] = MI_DEBUG_PADDING; }
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
return block;
|
||||
}
|
||||
@ -112,9 +115,11 @@ static inline mi_decl_restrict void* mi_heap_malloc_small_zero(mi_heap_t* heap,
|
||||
#if (MI_PADDING)
|
||||
if (size == 0) { size = sizeof(void*); }
|
||||
#endif
|
||||
|
||||
mi_page_t* page = _mi_heap_get_free_small_page(heap, size + MI_PADDING_SIZE);
|
||||
void* const p = _mi_page_malloc(heap, page, size + MI_PADDING_SIZE, zero);
|
||||
mi_track_malloc(p,size,zero);
|
||||
|
||||
#if MI_STAT>1
|
||||
if (p != NULL) {
|
||||
if (!mi_heap_is_initialized(heap)) { heap = mi_prim_get_default_heap(); }
|
||||
@ -190,500 +195,6 @@ mi_decl_nodiscard mi_decl_restrict void* mi_zalloc(size_t size) mi_attr_noexcept
|
||||
}
|
||||
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Check for double free in secure and debug mode
|
||||
// This is somewhat expensive so only enabled for secure mode 4
|
||||
// ------------------------------------------------------
|
||||
|
||||
#if (MI_ENCODE_FREELIST && (MI_SECURE>=4 || MI_DEBUG!=0))
|
||||
// linear check if the free list contains a specific element
|
||||
static bool mi_list_contains(const mi_page_t* page, const mi_block_t* list, const mi_block_t* elem) {
|
||||
while (list != NULL) {
|
||||
if (elem==list) return true;
|
||||
list = mi_block_next(page, list);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static mi_decl_noinline bool mi_check_is_double_freex(const mi_page_t* page, const mi_block_t* block) {
|
||||
// The decoded value is in the same page (or NULL).
|
||||
// Walk the free lists to verify positively if it is already freed
|
||||
if (mi_list_contains(page, page->free, block) ||
|
||||
mi_list_contains(page, page->local_free, block) ||
|
||||
mi_list_contains(page, mi_page_thread_free(page), block))
|
||||
{
|
||||
_mi_error_message(EAGAIN, "double free detected of block %p with size %zu\n", block, mi_page_block_size(page));
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
#define mi_track_page(page,access) { size_t psize; void* pstart = _mi_page_start(_mi_page_segment(page),page,&psize); mi_track_mem_##access( pstart, psize); }
|
||||
|
||||
static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
|
||||
bool is_double_free = false;
|
||||
mi_block_t* n = mi_block_nextx(page, block, page->keys); // pretend it is freed, and get the decoded first field
|
||||
if (((uintptr_t)n & (MI_INTPTR_SIZE-1))==0 && // quick check: aligned pointer?
|
||||
(n==NULL || mi_is_in_same_page(block, n))) // quick check: in same page or NULL?
|
||||
{
|
||||
// Suspicous: decoded value a in block is in the same page (or NULL) -- maybe a double free?
|
||||
// (continue in separate function to improve code generation)
|
||||
is_double_free = mi_check_is_double_freex(page, block);
|
||||
}
|
||||
return is_double_free;
|
||||
}
|
||||
#else
|
||||
static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
|
||||
MI_UNUSED(page);
|
||||
MI_UNUSED(block);
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
// Check for heap block overflow by setting up padding at the end of the block
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
#if MI_PADDING // && !MI_TRACK_ENABLED
|
||||
static bool mi_page_decode_padding(const mi_page_t* page, const mi_block_t* block, size_t* delta, size_t* bsize) {
|
||||
*bsize = mi_page_usable_block_size(page);
|
||||
const mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + *bsize);
|
||||
mi_track_mem_defined(padding,sizeof(mi_padding_t));
|
||||
*delta = padding->delta;
|
||||
uint32_t canary = padding->canary;
|
||||
uintptr_t keys[2];
|
||||
keys[0] = page->keys[0];
|
||||
keys[1] = page->keys[1];
|
||||
bool ok = ((uint32_t)mi_ptr_encode(page,block,keys) == canary && *delta <= *bsize);
|
||||
mi_track_mem_noaccess(padding,sizeof(mi_padding_t));
|
||||
return ok;
|
||||
}
|
||||
|
||||
// Return the exact usable size of a block.
|
||||
static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
|
||||
size_t bsize;
|
||||
size_t delta;
|
||||
bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
|
||||
mi_assert_internal(ok); mi_assert_internal(delta <= bsize);
|
||||
return (ok ? bsize - delta : 0);
|
||||
}
|
||||
|
||||
// When a non-thread-local block is freed, it becomes part of the thread delayed free
|
||||
// list that is freed later by the owning heap. If the exact usable size is too small to
|
||||
// contain the pointer for the delayed list, then shrink the padding (by decreasing delta)
|
||||
// so it will later not trigger an overflow error in `mi_free_block`.
|
||||
void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
|
||||
size_t bsize;
|
||||
size_t delta;
|
||||
bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
|
||||
mi_assert_internal(ok);
|
||||
if (!ok || (bsize - delta) >= min_size) return; // usually already enough space
|
||||
mi_assert_internal(bsize >= min_size);
|
||||
if (bsize < min_size) return; // should never happen
|
||||
size_t new_delta = (bsize - min_size);
|
||||
mi_assert_internal(new_delta < bsize);
|
||||
mi_padding_t* padding = (mi_padding_t*)((uint8_t*)block + bsize);
|
||||
mi_track_mem_defined(padding,sizeof(mi_padding_t));
|
||||
padding->delta = (uint32_t)new_delta;
|
||||
mi_track_mem_noaccess(padding,sizeof(mi_padding_t));
|
||||
}
|
||||
#else
|
||||
static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
|
||||
MI_UNUSED(block);
|
||||
return mi_page_usable_block_size(page);
|
||||
}
|
||||
|
||||
void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
|
||||
MI_UNUSED(page);
|
||||
MI_UNUSED(block);
|
||||
MI_UNUSED(min_size);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if MI_PADDING && MI_PADDING_CHECK
|
||||
|
||||
static bool mi_verify_padding(const mi_page_t* page, const mi_block_t* block, size_t* size, size_t* wrong) {
|
||||
size_t bsize;
|
||||
size_t delta;
|
||||
bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
|
||||
*size = *wrong = bsize;
|
||||
if (!ok) return false;
|
||||
mi_assert_internal(bsize >= delta);
|
||||
*size = bsize - delta;
|
||||
if (!mi_page_is_huge(page)) {
|
||||
uint8_t* fill = (uint8_t*)block + bsize - delta;
|
||||
const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // check at most the first N padding bytes
|
||||
mi_track_mem_defined(fill, maxpad);
|
||||
for (size_t i = 0; i < maxpad; i++) {
|
||||
if (fill[i] != MI_DEBUG_PADDING) {
|
||||
*wrong = bsize - delta + i;
|
||||
ok = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
mi_track_mem_noaccess(fill, maxpad);
|
||||
}
|
||||
return ok;
|
||||
}
|
||||
|
||||
static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
|
||||
size_t size;
|
||||
size_t wrong;
|
||||
if (!mi_verify_padding(page,block,&size,&wrong)) {
|
||||
_mi_error_message(EFAULT, "buffer overflow in heap block %p of size %zu: write after %zu bytes\n", block, size, wrong );
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
|
||||
MI_UNUSED(page);
|
||||
MI_UNUSED(block);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
// only maintain stats for smaller objects if requested
|
||||
#if (MI_STAT>0)
|
||||
static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
|
||||
#if (MI_STAT < 2)
|
||||
MI_UNUSED(block);
|
||||
#endif
|
||||
mi_heap_t* const heap = mi_heap_get_default();
|
||||
const size_t bsize = mi_page_usable_block_size(page);
|
||||
#if (MI_STAT>1)
|
||||
const size_t usize = mi_page_usable_size_of(page, block);
|
||||
mi_heap_stat_decrease(heap, malloc, usize);
|
||||
#endif
|
||||
if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) {
|
||||
mi_heap_stat_decrease(heap, normal, bsize);
|
||||
#if (MI_STAT > 1)
|
||||
mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], 1);
|
||||
#endif
|
||||
}
|
||||
else if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
|
||||
mi_heap_stat_decrease(heap, large, bsize);
|
||||
}
|
||||
else {
|
||||
mi_heap_stat_decrease(heap, huge, bsize);
|
||||
}
|
||||
}
|
||||
#else
|
||||
static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
|
||||
MI_UNUSED(page); MI_UNUSED(block);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if MI_HUGE_PAGE_ABANDON
|
||||
#if (MI_STAT>0)
|
||||
// maintain stats for huge objects
|
||||
static void mi_stat_huge_free(const mi_page_t* page) {
|
||||
mi_heap_t* const heap = mi_heap_get_default();
|
||||
const size_t bsize = mi_page_block_size(page); // to match stats in `page.c:mi_page_huge_alloc`
|
||||
if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
|
||||
mi_heap_stat_decrease(heap, large, bsize);
|
||||
}
|
||||
else {
|
||||
mi_heap_stat_decrease(heap, huge, bsize);
|
||||
}
|
||||
}
|
||||
#else
|
||||
static void mi_stat_huge_free(const mi_page_t* page) {
|
||||
MI_UNUSED(page);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Free
|
||||
// ------------------------------------------------------
|
||||
|
||||
// multi-threaded free (or free in huge block if compiled with MI_HUGE_PAGE_ABANDON)
|
||||
static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* block)
|
||||
{
|
||||
// first see if the segment was abandoned and we can reclaim it
|
||||
mi_segment_t* const segment = _mi_page_segment(page);
|
||||
if (mi_option_is_enabled(mi_option_abandoned_reclaim_on_free) &&
|
||||
#if MI_HUGE_PAGE_ABANDON
|
||||
segment->page_kind != MI_PAGE_HUGE &&
|
||||
#endif
|
||||
mi_atomic_load_relaxed(&segment->thread_id) == 0)
|
||||
{
|
||||
// the segment is abandoned, try to reclaim it into our heap
|
||||
mi_heap_t* heap = mi_heap_get_default();
|
||||
if (heap->tld != NULL && _mi_segment_attempt_reclaim(heap, segment)) {
|
||||
mi_assert_internal(_mi_prim_thread_id() == mi_atomic_load_relaxed(&segment->thread_id));
|
||||
mi_free(block); // recursively free as now it will be a local free in our heap
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// The padding check may access the non-thread-owned page for the key values.
|
||||
// that is safe as these are constant and the page won't be freed (as the block is not freed yet).
|
||||
mi_check_padding(page, block);
|
||||
_mi_padding_shrink(page, block, sizeof(mi_block_t)); // for small size, ensure we can fit the delayed thread pointers without triggering overflow detection
|
||||
|
||||
// huge page segments are always abandoned and can be freed immediately
|
||||
if (segment->kind == MI_SEGMENT_HUGE) {
|
||||
#if MI_HUGE_PAGE_ABANDON
|
||||
// huge page segments are always abandoned and can be freed immediately
|
||||
mi_stat_huge_free(page);
|
||||
_mi_segment_huge_page_free(segment, page, block);
|
||||
return;
|
||||
#else
|
||||
// huge pages are special as they occupy the entire segment
|
||||
// as these are large we reset the memory occupied by the page so it is available to other threads
|
||||
// (as the owning thread needs to actually free the memory later).
|
||||
_mi_segment_huge_page_reset(segment, page, block);
|
||||
#endif
|
||||
}
|
||||
|
||||
#if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN // note: when tracking, cannot use mi_usable_size with multi-threading
|
||||
if (segment->kind != MI_SEGMENT_HUGE) { // not for huge segments as we just reset the content
|
||||
memset(block, MI_DEBUG_FREED, mi_usable_size(block));
|
||||
}
|
||||
#endif
|
||||
|
||||
// Try to put the block on either the page-local thread free list, or the heap delayed free list.
|
||||
mi_thread_free_t tfreex;
|
||||
bool use_delayed;
|
||||
mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free);
|
||||
do {
|
||||
use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE);
|
||||
if mi_unlikely(use_delayed) {
|
||||
// unlikely: this only happens on the first concurrent free in a page that is in the full list
|
||||
tfreex = mi_tf_set_delayed(tfree,MI_DELAYED_FREEING);
|
||||
}
|
||||
else {
|
||||
// usual: directly add to page thread_free list
|
||||
mi_block_set_next(page, block, mi_tf_block(tfree));
|
||||
tfreex = mi_tf_set_block(tfree,block);
|
||||
}
|
||||
} while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
|
||||
|
||||
if mi_unlikely(use_delayed) {
|
||||
// racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`)
|
||||
mi_heap_t* const heap = (mi_heap_t*)(mi_atomic_load_acquire(&page->xheap)); //mi_page_heap(page);
|
||||
mi_assert_internal(heap != NULL);
|
||||
if (heap != NULL) {
|
||||
// add to the delayed free list of this heap. (do this atomically as the lock only protects heap memory validity)
|
||||
mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free);
|
||||
do {
|
||||
mi_block_set_nextx(heap,block,dfree, heap->keys);
|
||||
} while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block));
|
||||
}
|
||||
|
||||
// and reset the MI_DELAYED_FREEING flag
|
||||
tfree = mi_atomic_load_relaxed(&page->xthread_free);
|
||||
do {
|
||||
tfreex = tfree;
|
||||
mi_assert_internal(mi_tf_delayed(tfree) == MI_DELAYED_FREEING);
|
||||
tfreex = mi_tf_set_delayed(tfree,MI_NO_DELAYED_FREE);
|
||||
} while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
|
||||
}
|
||||
}
|
||||
|
||||
// regular free
|
||||
static inline void _mi_free_block(mi_page_t* page, bool local, mi_block_t* block)
|
||||
{
|
||||
// and push it on the free list
|
||||
//const size_t bsize = mi_page_block_size(page);
|
||||
if mi_likely(local) {
|
||||
// owning thread can free a block directly
|
||||
if mi_unlikely(mi_check_is_double_free(page, block)) return;
|
||||
mi_check_padding(page, block);
|
||||
#if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN
|
||||
if (!mi_page_is_huge(page)) { // huge page content may be already decommitted
|
||||
memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
|
||||
}
|
||||
#endif
|
||||
mi_block_set_next(page, block, page->local_free);
|
||||
page->local_free = block;
|
||||
page->used--;
|
||||
if mi_unlikely(mi_page_all_free(page)) {
|
||||
_mi_page_retire(page);
|
||||
}
|
||||
else if mi_unlikely(mi_page_is_in_full(page)) {
|
||||
_mi_page_unfull(page);
|
||||
}
|
||||
}
|
||||
else {
|
||||
_mi_free_block_mt(page,block);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Adjust a block that was allocated aligned, to the actual start of the block in the page.
|
||||
mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p) {
|
||||
mi_assert_internal(page!=NULL && p!=NULL);
|
||||
const size_t diff = (uint8_t*)p - _mi_page_start(segment, page, NULL);
|
||||
const size_t adjust = (diff % mi_page_block_size(page));
|
||||
return (mi_block_t*)((uintptr_t)p - adjust);
|
||||
}
|
||||
|
||||
|
||||
void mi_decl_noinline _mi_free_generic(const mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept {
|
||||
mi_block_t* const block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(segment, page, p) : (mi_block_t*)p);
|
||||
mi_stat_free(page, block); // stat_free may access the padding
|
||||
mi_track_free_size(block, mi_page_usable_size_of(page,block));
|
||||
_mi_free_block(page, is_local, block);
|
||||
}
|
||||
|
||||
// Get the segment data belonging to a pointer
|
||||
// This is just a single `and` in assembly but does further checks in debug mode
|
||||
// (and secure mode) if this was a valid pointer.
|
||||
static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* msg)
|
||||
{
|
||||
MI_UNUSED(msg);
|
||||
mi_assert(p != NULL);
|
||||
|
||||
#if (MI_DEBUG>0)
|
||||
if mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0) {
|
||||
_mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p);
|
||||
return NULL;
|
||||
}
|
||||
#endif
|
||||
|
||||
mi_segment_t* const segment = _mi_ptr_segment(p);
|
||||
mi_assert_internal(segment != NULL);
|
||||
|
||||
#if (MI_DEBUG>0)
|
||||
if mi_unlikely(!mi_is_in_heap_region(p)) {
|
||||
#if (MI_INTPTR_SIZE == 8 && defined(__linux__))
|
||||
if (((uintptr_t)p >> 40) != 0x7F) { // linux tends to align large blocks above 0x7F000000000 (issue #640)
|
||||
#else
|
||||
{
|
||||
#endif
|
||||
_mi_warning_message("%s: pointer might not point to a valid heap region: %p\n"
|
||||
"(this may still be a valid very large allocation (over 64MiB))\n", msg, p);
|
||||
if mi_likely(_mi_ptr_cookie(segment) == segment->cookie) {
|
||||
_mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#if (MI_DEBUG>0 || MI_SECURE>=4)
|
||||
if mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie) {
|
||||
_mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", msg, p);
|
||||
return NULL;
|
||||
}
|
||||
#endif
|
||||
|
||||
return segment;
|
||||
}
|
||||
|
||||
// Free a block
|
||||
// fast path written carefully to prevent spilling on the stack
|
||||
void mi_free(void* p) mi_attr_noexcept
|
||||
{
|
||||
if mi_unlikely(p == NULL) return;
|
||||
mi_segment_t* const segment = mi_checked_ptr_segment(p,"mi_free");
|
||||
const bool is_local= (_mi_prim_thread_id() == mi_atomic_load_relaxed(&segment->thread_id));
|
||||
mi_page_t* const page = _mi_segment_page_of(segment, p);
|
||||
|
||||
if mi_likely(is_local) { // thread-local free?
|
||||
if mi_likely(page->flags.full_aligned == 0) // and it is not a full page (full pages need to move from the full bin), nor has aligned blocks (aligned blocks need to be unaligned)
|
||||
{
|
||||
mi_block_t* const block = (mi_block_t*)p;
|
||||
if mi_unlikely(mi_check_is_double_free(page, block)) return;
|
||||
mi_check_padding(page, block);
|
||||
mi_stat_free(page, block);
|
||||
#if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN
|
||||
memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
|
||||
#endif
|
||||
mi_track_free_size(p, mi_page_usable_size_of(page,block)); // faster then mi_usable_size as we already know the page and that p is unaligned
|
||||
mi_block_set_next(page, block, page->local_free);
|
||||
page->local_free = block;
|
||||
if mi_unlikely(--page->used == 0) { // using this expression generates better code than: page->used--; if (mi_page_all_free(page))
|
||||
_mi_page_retire(page);
|
||||
}
|
||||
}
|
||||
else {
|
||||
// page is full or contains (inner) aligned blocks; use generic path
|
||||
_mi_free_generic(segment, page, true, p);
|
||||
}
|
||||
}
|
||||
else {
|
||||
// not thread-local; use generic path
|
||||
_mi_free_generic(segment, page, false, p);
|
||||
}
|
||||
}
|
||||
|
||||
// return true if successful
|
||||
bool _mi_free_delayed_block(mi_block_t* block) {
|
||||
// get segment and page
|
||||
const mi_segment_t* const segment = _mi_ptr_segment(block);
|
||||
mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie);
|
||||
mi_assert_internal(_mi_thread_id() == segment->thread_id);
|
||||
mi_page_t* const page = _mi_segment_page_of(segment, block);
|
||||
|
||||
// Clear the no-delayed flag so delayed freeing is used again for this page.
|
||||
// This must be done before collecting the free lists on this page -- otherwise
|
||||
// some blocks may end up in the page `thread_free` list with no blocks in the
|
||||
// heap `thread_delayed_free` list which may cause the page to be never freed!
|
||||
// (it would only be freed if we happen to scan it in `mi_page_queue_find_free_ex`)
|
||||
if (!_mi_page_try_use_delayed_free(page, MI_USE_DELAYED_FREE, false /* dont overwrite never delayed */)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// collect all other non-local frees to ensure up-to-date `used` count
|
||||
_mi_page_free_collect(page, false);
|
||||
|
||||
// and free the block (possibly freeing the page as well since used is updated)
|
||||
_mi_free_block(page, true, block);
|
||||
return true;
|
||||
}
|
||||
|
||||
// Bytes available in a block
|
||||
mi_decl_noinline static size_t mi_page_usable_aligned_size_of(const mi_segment_t* segment, const mi_page_t* page, const void* p) mi_attr_noexcept {
|
||||
const mi_block_t* block = _mi_page_ptr_unalign(segment, page, p);
|
||||
const size_t size = mi_page_usable_size_of(page, block);
|
||||
const ptrdiff_t adjust = (uint8_t*)p - (uint8_t*)block;
|
||||
mi_assert_internal(adjust >= 0 && (size_t)adjust <= size);
|
||||
return (size - adjust);
|
||||
}
|
||||
|
||||
static inline size_t _mi_usable_size(const void* p, const char* msg) mi_attr_noexcept {
|
||||
if (p == NULL) return 0;
|
||||
const mi_segment_t* const segment = mi_checked_ptr_segment(p, msg);
|
||||
const mi_page_t* const page = _mi_segment_page_of(segment, p);
|
||||
if mi_likely(!mi_page_has_aligned(page)) {
|
||||
const mi_block_t* block = (const mi_block_t*)p;
|
||||
return mi_page_usable_size_of(page, block);
|
||||
}
|
||||
else {
|
||||
// split out to separate routine for improved code generation
|
||||
return mi_page_usable_aligned_size_of(segment, page, p);
|
||||
}
|
||||
}
|
||||
|
||||
mi_decl_nodiscard size_t mi_usable_size(const void* p) mi_attr_noexcept {
|
||||
return _mi_usable_size(p, "mi_usable_size");
|
||||
}
|
||||
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Allocation extensions
|
||||
// ------------------------------------------------------
|
||||
|
||||
void mi_free_size(void* p, size_t size) mi_attr_noexcept {
|
||||
MI_UNUSED_RELEASE(size);
|
||||
mi_assert(p == NULL || size <= _mi_usable_size(p,"mi_free_size"));
|
||||
mi_free(p);
|
||||
}
|
||||
|
||||
void mi_free_size_aligned(void* p, size_t size, size_t alignment) mi_attr_noexcept {
|
||||
MI_UNUSED_RELEASE(alignment);
|
||||
mi_assert(((uintptr_t)p % alignment) == 0);
|
||||
mi_free_size(p,size);
|
||||
}
|
||||
|
||||
void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept {
|
||||
MI_UNUSED_RELEASE(alignment);
|
||||
mi_assert(((uintptr_t)p % alignment) == 0);
|
||||
mi_free(p);
|
||||
}
|
||||
|
||||
mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept {
|
||||
size_t total;
|
||||
if (mi_count_size_overflow(count,size,&total)) return NULL;
|
||||
|
557
src/free.c
Normal file
557
src/free.c
Normal file
@ -0,0 +1,557 @@
|
||||
/* ----------------------------------------------------------------------------
|
||||
Copyright (c) 2018-2024, Microsoft Research, Daan Leijen
|
||||
This is free software; you can redistribute it and/or modify it under the
|
||||
terms of the MIT license. A copy of the license can be found in the file
|
||||
"LICENSE" at the root of this distribution.
|
||||
-----------------------------------------------------------------------------*/
|
||||
#if !defined(MI_IN_ALLOC_C)
|
||||
#error "this file should be included from 'alloc.c' (so aliases can work from alloc-override)"
|
||||
// add includes help an IDE
|
||||
#include "mimalloc.h"
|
||||
#include "mimalloc/internal.h"
|
||||
#include "mimalloc/atomic.h"
|
||||
#include "mimalloc/prim.h" // _mi_prim_thread_id()
|
||||
#endif
|
||||
|
||||
// forward declarations
|
||||
static void mi_check_padding(const mi_page_t* page, const mi_block_t* block);
|
||||
static bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block);
|
||||
static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block);
|
||||
static void mi_stat_free(const mi_page_t* page, const mi_block_t* block);
|
||||
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Free
|
||||
// ------------------------------------------------------
|
||||
|
||||
// forward declaration of multi-threaded free (`_mt`) (or free in huge block if compiled with MI_HUGE_PAGE_ABANDON)
|
||||
static mi_decl_noinline void mi_free_block_mt(mi_segment_t* segment, mi_page_t* page, mi_block_t* block);
|
||||
|
||||
// regular free of a (thread local) block pointer
|
||||
// fast path written carefully to prevent spilling on the stack
|
||||
static inline void mi_free_block_local(mi_page_t* page, mi_block_t* block, bool check_full)
|
||||
{
|
||||
// checks
|
||||
if mi_unlikely(mi_check_is_double_free(page, block)) return;
|
||||
mi_check_padding(page, block);
|
||||
mi_stat_free(page, block);
|
||||
#if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN
|
||||
if (!mi_page_is_huge(page)) { // huge page content may be already decommitted
|
||||
memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
|
||||
}
|
||||
#endif
|
||||
mi_track_free_size(p, mi_page_usable_size_of(page,block)); // faster then mi_usable_size as we already know the page and that p is unaligned
|
||||
|
||||
// actual free: push on the local free list
|
||||
mi_block_set_next(page, block, page->local_free);
|
||||
page->local_free = block;
|
||||
if mi_unlikely(--page->used == 0) {
|
||||
_mi_page_retire(page);
|
||||
}
|
||||
else if mi_unlikely(check_full && mi_page_is_in_full(page)) {
|
||||
_mi_page_unfull(page);
|
||||
}
|
||||
}
|
||||
|
||||
// Adjust a block that was allocated aligned, to the actual start of the block in the page.
|
||||
mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p) {
|
||||
mi_assert_internal(page!=NULL && p!=NULL);
|
||||
|
||||
size_t diff;
|
||||
if mi_likely(page->block_offset_adj != 0) {
|
||||
diff = (uint8_t*)p - (uint8_t*)page - (MI_MAX_ALIGN_SIZE*(page->block_offset_adj - 1));
|
||||
}
|
||||
else {
|
||||
diff = (uint8_t*)p - _mi_page_start(segment, page, NULL);
|
||||
}
|
||||
|
||||
size_t adjust;
|
||||
if mi_likely(page->block_size_shift != 0) {
|
||||
adjust = diff & (((size_t)1 << page->block_size_shift) - 1);
|
||||
}
|
||||
else {
|
||||
adjust = diff % mi_page_block_size(page);
|
||||
}
|
||||
|
||||
return (mi_block_t*)((uintptr_t)p - adjust);
|
||||
}
|
||||
|
||||
// free a local pointer (page parameter comes first for better codegen)
|
||||
static void mi_decl_noinline mi_free_generic_local(mi_page_t* page, mi_segment_t* segment, void* p) mi_attr_noexcept {
|
||||
mi_block_t* const block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(segment, page, p) : (mi_block_t*)p);
|
||||
mi_free_block_local(page, block, true);
|
||||
}
|
||||
|
||||
// free a pointer owned by another thread (page parameter comes first for better codegen)
|
||||
static void mi_decl_noinline mi_free_generic_mt(mi_page_t* page, mi_segment_t* segment, void* p) mi_attr_noexcept {
|
||||
mi_block_t* const block = _mi_page_ptr_unalign(segment, page, p); // don't check `has_aligned` flag to avoid a race (issue #865)
|
||||
mi_free_block_mt(segment, page, block);
|
||||
}
|
||||
|
||||
// generic free (for runtime integration)
|
||||
void mi_decl_noinline _mi_free_generic(mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept {
|
||||
if (is_local) mi_free_generic_local(page,segment,p);
|
||||
else mi_free_generic_mt(page,segment,p);
|
||||
}
|
||||
|
||||
// Get the segment data belonging to a pointer
|
||||
// This is just a single `and` in release mode but does further checks in debug mode
|
||||
// (and secure mode) to see if this was a valid pointer.
|
||||
static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* msg)
|
||||
{
|
||||
MI_UNUSED(msg);
|
||||
mi_assert(p != NULL);
|
||||
|
||||
#if (MI_DEBUG>0)
|
||||
if mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0) {
|
||||
_mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p);
|
||||
return NULL;
|
||||
}
|
||||
#endif
|
||||
|
||||
mi_segment_t* const segment = _mi_ptr_segment(p);
|
||||
mi_assert_internal(segment != NULL);
|
||||
|
||||
#if (MI_DEBUG>0)
|
||||
if mi_unlikely(!mi_is_in_heap_region(p)) {
|
||||
#if (MI_INTPTR_SIZE == 8 && defined(__linux__))
|
||||
if (((uintptr_t)p >> 40) != 0x7F) { // linux tends to align large blocks above 0x7F000000000 (issue #640)
|
||||
#else
|
||||
{
|
||||
#endif
|
||||
_mi_warning_message("%s: pointer might not point to a valid heap region: %p\n"
|
||||
"(this may still be a valid very large allocation (over 64MiB))\n", msg, p);
|
||||
if mi_likely(_mi_ptr_cookie(segment) == segment->cookie) {
|
||||
_mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#if (MI_DEBUG>0 || MI_SECURE>=4)
|
||||
if mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie) {
|
||||
_mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", msg, p);
|
||||
return NULL;
|
||||
}
|
||||
#endif
|
||||
|
||||
return segment;
|
||||
}
|
||||
|
||||
// Free a block
|
||||
// Fast path written carefully to prevent register spilling on the stack
|
||||
void mi_free(void* p) mi_attr_noexcept
|
||||
{
|
||||
if mi_unlikely(p == NULL) return;
|
||||
mi_segment_t* const segment = mi_checked_ptr_segment(p,"mi_free");
|
||||
const bool is_local= (_mi_prim_thread_id() == mi_atomic_load_relaxed(&segment->thread_id));
|
||||
mi_page_t* const page = _mi_segment_page_of(segment, p);
|
||||
|
||||
if mi_likely(is_local) { // thread-local free?
|
||||
if mi_likely(page->flags.full_aligned == 0) { // and it is not a full page (full pages need to move from the full bin), nor has aligned blocks (aligned blocks need to be unaligned)
|
||||
// thread-local, aligned, and not a full page
|
||||
mi_block_t* const block = (mi_block_t*)p;
|
||||
mi_free_block_local(page, block, false /* no need to check if the page is full */);
|
||||
}
|
||||
else {
|
||||
// page is full or contains (inner) aligned blocks; use generic path
|
||||
mi_free_generic_local(page, segment, p);
|
||||
}
|
||||
}
|
||||
else {
|
||||
// not thread-local; use generic path
|
||||
mi_free_generic_mt(page, segment, p);
|
||||
}
|
||||
}
|
||||
|
||||
// return true if successful
|
||||
bool _mi_free_delayed_block(mi_block_t* block) {
|
||||
// get segment and page
|
||||
const mi_segment_t* const segment = _mi_ptr_segment(block);
|
||||
mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie);
|
||||
mi_assert_internal(_mi_thread_id() == segment->thread_id);
|
||||
mi_page_t* const page = _mi_segment_page_of(segment, block);
|
||||
|
||||
// Clear the no-delayed flag so delayed freeing is used again for this page.
|
||||
// This must be done before collecting the free lists on this page -- otherwise
|
||||
// some blocks may end up in the page `thread_free` list with no blocks in the
|
||||
// heap `thread_delayed_free` list which may cause the page to be never freed!
|
||||
// (it would only be freed if we happen to scan it in `mi_page_queue_find_free_ex`)
|
||||
if (!_mi_page_try_use_delayed_free(page, MI_USE_DELAYED_FREE, false /* dont overwrite never delayed */)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// collect all other non-local frees to ensure up-to-date `used` count
|
||||
_mi_page_free_collect(page, false);
|
||||
|
||||
// and free the block (possibly freeing the page as well since used is updated)
|
||||
mi_free_block_local(page, block, true);
|
||||
return true;
|
||||
}
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Multi-threaded Free (`_mt`)
|
||||
// ------------------------------------------------------
|
||||
|
||||
// Push a block that is owned by another thread on its page-local thread free
|
||||
// list or it's heap delayed free list. Such blocks are later collected by
|
||||
// the owning thread in `_mi_free_delayed_block`.
|
||||
static void mi_decl_noinline mi_free_block_delayed_mt( mi_page_t* page, mi_block_t* block )
|
||||
{
|
||||
// Try to put the block on either the page-local thread free list,
|
||||
// or the heap delayed free list (if this is the first non-local free in that page)
|
||||
mi_thread_free_t tfreex;
|
||||
bool use_delayed;
|
||||
mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free);
|
||||
do {
|
||||
use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE);
|
||||
if mi_unlikely(use_delayed) {
|
||||
// unlikely: this only happens on the first concurrent free in a page that is in the full list
|
||||
tfreex = mi_tf_set_delayed(tfree,MI_DELAYED_FREEING);
|
||||
}
|
||||
else {
|
||||
// usual: directly add to page thread_free list
|
||||
mi_block_set_next(page, block, mi_tf_block(tfree));
|
||||
tfreex = mi_tf_set_block(tfree,block);
|
||||
}
|
||||
} while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
|
||||
|
||||
// If this was the first non-local free, we need to push it on the heap delayed free list instead
|
||||
if mi_unlikely(use_delayed) {
|
||||
// racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`)
|
||||
mi_heap_t* const heap = (mi_heap_t*)(mi_atomic_load_acquire(&page->xheap)); //mi_page_heap(page);
|
||||
mi_assert_internal(heap != NULL);
|
||||
if (heap != NULL) {
|
||||
// add to the delayed free list of this heap. (do this atomically as the lock only protects heap memory validity)
|
||||
mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free);
|
||||
do {
|
||||
mi_block_set_nextx(heap,block,dfree, heap->keys);
|
||||
} while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block));
|
||||
}
|
||||
|
||||
// and reset the MI_DELAYED_FREEING flag
|
||||
tfree = mi_atomic_load_relaxed(&page->xthread_free);
|
||||
do {
|
||||
tfreex = tfree;
|
||||
mi_assert_internal(mi_tf_delayed(tfree) == MI_DELAYED_FREEING);
|
||||
tfreex = mi_tf_set_delayed(tfree,MI_NO_DELAYED_FREE);
|
||||
} while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
|
||||
}
|
||||
}
|
||||
|
||||
#if MI_HUGE_PAGE_ABANDON
|
||||
static void mi_stat_huge_free(const mi_page_t* page);
|
||||
#endif
|
||||
|
||||
// Multi-threaded free (`_mt`) (or free in huge block if compiled with MI_HUGE_PAGE_ABANDON)
|
||||
static void mi_decl_noinline mi_free_block_mt(mi_segment_t* segment, mi_page_t* page, mi_block_t* block)
|
||||
{
|
||||
// first see if the segment was abandoned and if we can reclaim it into our thread
|
||||
if (mi_option_is_enabled(mi_option_abandoned_reclaim_on_free) &&
|
||||
#if MI_HUGE_PAGE_ABANDON
|
||||
segment->page_kind != MI_PAGE_HUGE &&
|
||||
#endif
|
||||
mi_atomic_load_relaxed(&segment->thread_id) == 0)
|
||||
{
|
||||
// the segment is abandoned, try to reclaim it into our heap
|
||||
if (_mi_segment_attempt_reclaim(mi_heap_get_default(), segment)) {
|
||||
mi_assert_internal(_mi_prim_thread_id() == mi_atomic_load_relaxed(&segment->thread_id));
|
||||
mi_free(block); // recursively free as now it will be a local free in our heap
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// The padding check may access the non-thread-owned page for the key values.
|
||||
// that is safe as these are constant and the page won't be freed (as the block is not freed yet).
|
||||
mi_check_padding(page, block);
|
||||
|
||||
// adjust stats (after padding check and potential recursive `mi_free` above)
|
||||
mi_stat_free(page, block); // stat_free may access the padding
|
||||
mi_track_free_size(block, mi_page_usable_size_of(page,block));
|
||||
|
||||
// for small size, ensure we can fit the delayed thread pointers without triggering overflow detection
|
||||
_mi_padding_shrink(page, block, sizeof(mi_block_t));
|
||||
|
||||
if (segment->kind == MI_SEGMENT_HUGE) {
|
||||
#if MI_HUGE_PAGE_ABANDON
|
||||
// huge page segments are always abandoned and can be freed immediately
|
||||
mi_stat_huge_free(page);
|
||||
_mi_segment_huge_page_free(segment, page, block);
|
||||
return;
|
||||
#else
|
||||
// huge pages are special as they occupy the entire segment
|
||||
// as these are large we reset the memory occupied by the page so it is available to other threads
|
||||
// (as the owning thread needs to actually free the memory later).
|
||||
_mi_segment_huge_page_reset(segment, page, block);
|
||||
#endif
|
||||
}
|
||||
else {
|
||||
#if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN // note: when tracking, cannot use mi_usable_size with multi-threading
|
||||
memset(block, MI_DEBUG_FREED, mi_usable_size(block));
|
||||
#endif
|
||||
}
|
||||
|
||||
// and finally free the actual block by pushing it on the owning heap
|
||||
// thread_delayed free list (or heap delayed free list)
|
||||
mi_free_block_delayed_mt(page,block);
|
||||
}
|
||||
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Usable size
|
||||
// ------------------------------------------------------
|
||||
|
||||
// Bytes available in a block
|
||||
static size_t mi_decl_noinline mi_page_usable_aligned_size_of(const mi_segment_t* segment, const mi_page_t* page, const void* p) mi_attr_noexcept {
|
||||
const mi_block_t* block = _mi_page_ptr_unalign(segment, page, p);
|
||||
const size_t size = mi_page_usable_size_of(page, block);
|
||||
const ptrdiff_t adjust = (uint8_t*)p - (uint8_t*)block;
|
||||
mi_assert_internal(adjust >= 0 && (size_t)adjust <= size);
|
||||
return (size - adjust);
|
||||
}
|
||||
|
||||
static inline size_t _mi_usable_size(const void* p, const char* msg) mi_attr_noexcept {
|
||||
if (p == NULL) return 0;
|
||||
const mi_segment_t* const segment = mi_checked_ptr_segment(p, msg);
|
||||
const mi_page_t* const page = _mi_segment_page_of(segment, p);
|
||||
if mi_likely(!mi_page_has_aligned(page)) {
|
||||
const mi_block_t* block = (const mi_block_t*)p;
|
||||
return mi_page_usable_size_of(page, block);
|
||||
}
|
||||
else {
|
||||
// split out to separate routine for improved code generation
|
||||
return mi_page_usable_aligned_size_of(segment, page, p);
|
||||
}
|
||||
}
|
||||
|
||||
mi_decl_nodiscard size_t mi_usable_size(const void* p) mi_attr_noexcept {
|
||||
return _mi_usable_size(p, "mi_usable_size");
|
||||
}
|
||||
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Free variants
|
||||
// ------------------------------------------------------
|
||||
|
||||
void mi_free_size(void* p, size_t size) mi_attr_noexcept {
|
||||
MI_UNUSED_RELEASE(size);
|
||||
mi_assert(p == NULL || size <= _mi_usable_size(p,"mi_free_size"));
|
||||
mi_free(p);
|
||||
}
|
||||
|
||||
void mi_free_size_aligned(void* p, size_t size, size_t alignment) mi_attr_noexcept {
|
||||
MI_UNUSED_RELEASE(alignment);
|
||||
mi_assert(((uintptr_t)p % alignment) == 0);
|
||||
mi_free_size(p,size);
|
||||
}
|
||||
|
||||
void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept {
|
||||
MI_UNUSED_RELEASE(alignment);
|
||||
mi_assert(((uintptr_t)p % alignment) == 0);
|
||||
mi_free(p);
|
||||
}
|
||||
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Check for double free in secure and debug mode
|
||||
// This is somewhat expensive so only enabled for secure mode 4
|
||||
// ------------------------------------------------------
|
||||
|
||||
#if (MI_ENCODE_FREELIST && (MI_SECURE>=4 || MI_DEBUG!=0))
|
||||
// linear check if the free list contains a specific element
|
||||
static bool mi_list_contains(const mi_page_t* page, const mi_block_t* list, const mi_block_t* elem) {
|
||||
while (list != NULL) {
|
||||
if (elem==list) return true;
|
||||
list = mi_block_next(page, list);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static mi_decl_noinline bool mi_check_is_double_freex(const mi_page_t* page, const mi_block_t* block) {
|
||||
// The decoded value is in the same page (or NULL).
|
||||
// Walk the free lists to verify positively if it is already freed
|
||||
if (mi_list_contains(page, page->free, block) ||
|
||||
mi_list_contains(page, page->local_free, block) ||
|
||||
mi_list_contains(page, mi_page_thread_free(page), block))
|
||||
{
|
||||
_mi_error_message(EAGAIN, "double free detected of block %p with size %zu\n", block, mi_page_block_size(page));
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
#define mi_track_page(page,access) { size_t psize; void* pstart = _mi_page_start(_mi_page_segment(page),page,&psize); mi_track_mem_##access( pstart, psize); }
|
||||
|
||||
static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
|
||||
bool is_double_free = false;
|
||||
mi_block_t* n = mi_block_nextx(page, block, page->keys); // pretend it is freed, and get the decoded first field
|
||||
if (((uintptr_t)n & (MI_INTPTR_SIZE-1))==0 && // quick check: aligned pointer?
|
||||
(n==NULL || mi_is_in_same_page(block, n))) // quick check: in same page or NULL?
|
||||
{
|
||||
// Suspicous: decoded value a in block is in the same page (or NULL) -- maybe a double free?
|
||||
// (continue in separate function to improve code generation)
|
||||
is_double_free = mi_check_is_double_freex(page, block);
|
||||
}
|
||||
return is_double_free;
|
||||
}
|
||||
#else
|
||||
static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
|
||||
MI_UNUSED(page);
|
||||
MI_UNUSED(block);
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
// Check for heap block overflow by setting up padding at the end of the block
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
#if MI_PADDING // && !MI_TRACK_ENABLED
|
||||
static bool mi_page_decode_padding(const mi_page_t* page, const mi_block_t* block, size_t* delta, size_t* bsize) {
|
||||
*bsize = mi_page_usable_block_size(page);
|
||||
const mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + *bsize);
|
||||
mi_track_mem_defined(padding,sizeof(mi_padding_t));
|
||||
*delta = padding->delta;
|
||||
uint32_t canary = padding->canary;
|
||||
uintptr_t keys[2];
|
||||
keys[0] = page->keys[0];
|
||||
keys[1] = page->keys[1];
|
||||
bool ok = ((uint32_t)mi_ptr_encode(page,block,keys) == canary && *delta <= *bsize);
|
||||
mi_track_mem_noaccess(padding,sizeof(mi_padding_t));
|
||||
return ok;
|
||||
}
|
||||
|
||||
// Return the exact usable size of a block.
|
||||
static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
|
||||
size_t bsize;
|
||||
size_t delta;
|
||||
bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
|
||||
mi_assert_internal(ok); mi_assert_internal(delta <= bsize);
|
||||
return (ok ? bsize - delta : 0);
|
||||
}
|
||||
|
||||
// When a non-thread-local block is freed, it becomes part of the thread delayed free
|
||||
// list that is freed later by the owning heap. If the exact usable size is too small to
|
||||
// contain the pointer for the delayed list, then shrink the padding (by decreasing delta)
|
||||
// so it will later not trigger an overflow error in `mi_free_block`.
|
||||
void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
|
||||
size_t bsize;
|
||||
size_t delta;
|
||||
bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
|
||||
mi_assert_internal(ok);
|
||||
if (!ok || (bsize - delta) >= min_size) return; // usually already enough space
|
||||
mi_assert_internal(bsize >= min_size);
|
||||
if (bsize < min_size) return; // should never happen
|
||||
size_t new_delta = (bsize - min_size);
|
||||
mi_assert_internal(new_delta < bsize);
|
||||
mi_padding_t* padding = (mi_padding_t*)((uint8_t*)block + bsize);
|
||||
mi_track_mem_defined(padding,sizeof(mi_padding_t));
|
||||
padding->delta = (uint32_t)new_delta;
|
||||
mi_track_mem_noaccess(padding,sizeof(mi_padding_t));
|
||||
}
|
||||
#else
|
||||
static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
|
||||
MI_UNUSED(block);
|
||||
return mi_page_usable_block_size(page);
|
||||
}
|
||||
|
||||
void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
|
||||
MI_UNUSED(page);
|
||||
MI_UNUSED(block);
|
||||
MI_UNUSED(min_size);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if MI_PADDING && MI_PADDING_CHECK
|
||||
|
||||
static bool mi_verify_padding(const mi_page_t* page, const mi_block_t* block, size_t* size, size_t* wrong) {
|
||||
size_t bsize;
|
||||
size_t delta;
|
||||
bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
|
||||
*size = *wrong = bsize;
|
||||
if (!ok) return false;
|
||||
mi_assert_internal(bsize >= delta);
|
||||
*size = bsize - delta;
|
||||
if (!mi_page_is_huge(page)) {
|
||||
uint8_t* fill = (uint8_t*)block + bsize - delta;
|
||||
const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // check at most the first N padding bytes
|
||||
mi_track_mem_defined(fill, maxpad);
|
||||
for (size_t i = 0; i < maxpad; i++) {
|
||||
if (fill[i] != MI_DEBUG_PADDING) {
|
||||
*wrong = bsize - delta + i;
|
||||
ok = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
mi_track_mem_noaccess(fill, maxpad);
|
||||
}
|
||||
return ok;
|
||||
}
|
||||
|
||||
static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
|
||||
size_t size;
|
||||
size_t wrong;
|
||||
if (!mi_verify_padding(page,block,&size,&wrong)) {
|
||||
_mi_error_message(EFAULT, "buffer overflow in heap block %p of size %zu: write after %zu bytes\n", block, size, wrong );
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
|
||||
MI_UNUSED(page);
|
||||
MI_UNUSED(block);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
// only maintain stats for smaller objects if requested
|
||||
#if (MI_STAT>0)
|
||||
static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
|
||||
#if (MI_STAT < 2)
|
||||
MI_UNUSED(block);
|
||||
#endif
|
||||
mi_heap_t* const heap = mi_heap_get_default();
|
||||
const size_t bsize = mi_page_usable_block_size(page);
|
||||
#if (MI_STAT>1)
|
||||
const size_t usize = mi_page_usable_size_of(page, block);
|
||||
mi_heap_stat_decrease(heap, malloc, usize);
|
||||
#endif
|
||||
if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) {
|
||||
mi_heap_stat_decrease(heap, normal, bsize);
|
||||
#if (MI_STAT > 1)
|
||||
mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], 1);
|
||||
#endif
|
||||
}
|
||||
else if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
|
||||
mi_heap_stat_decrease(heap, large, bsize);
|
||||
}
|
||||
else {
|
||||
mi_heap_stat_decrease(heap, huge, bsize);
|
||||
}
|
||||
}
|
||||
#else
|
||||
static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
|
||||
MI_UNUSED(page); MI_UNUSED(block);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if MI_HUGE_PAGE_ABANDON
|
||||
#if (MI_STAT>0)
|
||||
// maintain stats for huge objects
|
||||
static void mi_stat_huge_free(const mi_page_t* page) {
|
||||
mi_heap_t* const heap = mi_heap_get_default();
|
||||
const size_t bsize = mi_page_block_size(page); // to match stats in `page.c:mi_page_huge_alloc`
|
||||
if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
|
||||
mi_heap_stat_decrease(heap, large, bsize);
|
||||
}
|
||||
else {
|
||||
mi_heap_stat_decrease(heap, huge, bsize);
|
||||
}
|
||||
}
|
||||
#else
|
||||
static void mi_stat_huge_free(const mi_page_t* page) {
|
||||
MI_UNUSED(page);
|
||||
}
|
||||
#endif
|
||||
#endif
|
18
src/init.c
18
src/init.c
@ -21,9 +21,11 @@ const mi_page_t _mi_page_empty = {
|
||||
false, // is_zero
|
||||
0, // retire_expire
|
||||
NULL, // free
|
||||
0, // used
|
||||
0, // xblock_size
|
||||
NULL, // local_free
|
||||
0, // used
|
||||
0, // block size shift
|
||||
0, // block offset adj
|
||||
0, // xblock_size
|
||||
#if (MI_PADDING || MI_ENCODE_FREELIST)
|
||||
{ 0, 0 },
|
||||
#endif
|
||||
@ -111,8 +113,6 @@ const mi_page_t _mi_page_empty = {
|
||||
|
||||
mi_decl_cache_align const mi_heap_t _mi_heap_empty = {
|
||||
NULL,
|
||||
MI_SMALL_PAGES_EMPTY,
|
||||
MI_PAGE_QUEUES_EMPTY,
|
||||
MI_ATOMIC_VAR_INIT(NULL),
|
||||
0, // tid
|
||||
0, // cookie
|
||||
@ -122,7 +122,9 @@ mi_decl_cache_align const mi_heap_t _mi_heap_empty = {
|
||||
0, // page count
|
||||
MI_BIN_FULL, 0, // page retired min/max
|
||||
NULL, // next
|
||||
false
|
||||
false,
|
||||
MI_SMALL_PAGES_EMPTY,
|
||||
MI_PAGE_QUEUES_EMPTY
|
||||
};
|
||||
|
||||
#define tld_empty_stats ((mi_stats_t*)((uint8_t*)&tld_empty + offsetof(mi_tld_t,stats)))
|
||||
@ -156,8 +158,6 @@ static mi_tld_t tld_main = {
|
||||
|
||||
mi_heap_t _mi_heap_main = {
|
||||
&tld_main,
|
||||
MI_SMALL_PAGES_EMPTY,
|
||||
MI_PAGE_QUEUES_EMPTY,
|
||||
MI_ATOMIC_VAR_INIT(NULL),
|
||||
0, // thread id
|
||||
0, // initial cookie
|
||||
@ -167,7 +167,9 @@ mi_heap_t _mi_heap_main = {
|
||||
0, // page count
|
||||
MI_BIN_FULL, 0, // page retired min/max
|
||||
NULL, // next heap
|
||||
false // can reclaim
|
||||
false, // can reclaim
|
||||
MI_SMALL_PAGES_EMPTY,
|
||||
MI_PAGE_QUEUES_EMPTY
|
||||
};
|
||||
|
||||
bool _mi_process_is_initialized = false; // set to `true` in `mi_process_init`.
|
||||
|
49
src/page.c
49
src/page.c
@ -125,9 +125,9 @@ bool _mi_page_is_valid(mi_page_t* page) {
|
||||
|
||||
mi_assert_internal(!_mi_process_is_initialized || segment->thread_id==0 || segment->thread_id == mi_page_heap(page)->thread_id);
|
||||
#if MI_HUGE_PAGE_ABANDON
|
||||
if (segment->kind != MI_SEGMENT_HUGE)
|
||||
if (segment->kind != MI_SEGMENT_HUGE)
|
||||
#endif
|
||||
{
|
||||
{
|
||||
mi_page_queue_t* pq = mi_page_queue_of(page);
|
||||
mi_assert_internal(mi_page_queue_contains(pq, page));
|
||||
mi_assert_internal(pq->block_size==mi_page_block_size(page) || mi_page_block_size(page) > MI_MEDIUM_OBJ_SIZE_MAX || mi_page_is_in_full(page));
|
||||
@ -193,8 +193,8 @@ static void _mi_page_thread_free_collect(mi_page_t* page)
|
||||
if (head == NULL) return;
|
||||
|
||||
// find the tail -- also to get a proper count (without data races)
|
||||
uint32_t max_count = page->capacity; // cannot collect more than capacity
|
||||
uint32_t count = 1;
|
||||
size_t max_count = page->capacity; // cannot collect more than capacity
|
||||
size_t count = 1;
|
||||
mi_block_t* tail = head;
|
||||
mi_block_t* next;
|
||||
while ((next = mi_block_next(page,tail)) != NULL && count <= max_count) {
|
||||
@ -212,7 +212,7 @@ static void _mi_page_thread_free_collect(mi_page_t* page)
|
||||
page->local_free = head;
|
||||
|
||||
// update counts now
|
||||
page->used -= count;
|
||||
page->used -= (uint16_t)count;
|
||||
}
|
||||
|
||||
void _mi_page_free_collect(mi_page_t* page, bool force) {
|
||||
@ -263,7 +263,7 @@ void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page) {
|
||||
#if MI_HUGE_PAGE_ABANDON
|
||||
mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE);
|
||||
#endif
|
||||
|
||||
|
||||
// TODO: push on full queue immediately if it is full?
|
||||
mi_page_queue_t* pq = mi_page_queue(heap, mi_page_block_size(page));
|
||||
mi_page_queue_push(heap, pq, page);
|
||||
@ -441,7 +441,7 @@ void _mi_page_retire(mi_page_t* page) mi_attr_noexcept {
|
||||
mi_assert_internal(page != NULL);
|
||||
mi_assert_expensive(_mi_page_is_valid(page));
|
||||
mi_assert_internal(mi_page_all_free(page));
|
||||
|
||||
|
||||
mi_page_set_has_aligned(page, false);
|
||||
|
||||
// don't retire too often..
|
||||
@ -454,7 +454,7 @@ void _mi_page_retire(mi_page_t* page) mi_attr_noexcept {
|
||||
if mi_likely(page->xblock_size <= MI_MAX_RETIRE_SIZE && !mi_page_queue_is_special(pq)) { // not too large && not full or huge queue?
|
||||
if (pq->last==page && pq->first==page) { // the only page in the queue?
|
||||
mi_stat_counter_increase(_mi_stats_main.page_no_retire,1);
|
||||
page->retire_expire = 1 + (page->xblock_size <= MI_SMALL_OBJ_SIZE_MAX ? MI_RETIRE_CYCLES : MI_RETIRE_CYCLES/4);
|
||||
page->retire_expire = 1 + (page->xblock_size <= MI_SMALL_OBJ_SIZE_MAX ? MI_RETIRE_CYCLES : MI_RETIRE_CYCLES/4);
|
||||
mi_heap_t* heap = mi_page_heap(page);
|
||||
mi_assert_internal(pq >= heap->pages);
|
||||
const size_t index = pq - heap->pages;
|
||||
@ -608,7 +608,7 @@ static mi_decl_noinline void mi_page_free_list_extend( mi_page_t* const page, co
|
||||
// allocations but this did not speed up any benchmark (due to an
|
||||
// extra test in malloc? or cache effects?)
|
||||
static void mi_page_extend_free(mi_heap_t* heap, mi_page_t* page, mi_tld_t* tld) {
|
||||
MI_UNUSED(tld);
|
||||
MI_UNUSED(tld);
|
||||
mi_assert_expensive(mi_page_is_valid_init(page));
|
||||
#if (MI_SECURE<=2)
|
||||
mi_assert(page->free == NULL);
|
||||
@ -663,7 +663,6 @@ static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi
|
||||
page->xblock_size = (block_size < MI_HUGE_BLOCK_SIZE ? (uint32_t)block_size : MI_HUGE_BLOCK_SIZE); // initialize before _mi_segment_page_start
|
||||
size_t page_size;
|
||||
const void* page_start = _mi_segment_page_start(segment, page, &page_size);
|
||||
MI_UNUSED(page_start);
|
||||
mi_track_mem_noaccess(page_start,page_size);
|
||||
mi_assert_internal(mi_page_block_size(page) <= page_size);
|
||||
mi_assert_internal(page_size <= page->slice_count*MI_SEGMENT_SLICE_SIZE);
|
||||
@ -681,8 +680,20 @@ static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi
|
||||
mi_assert_expensive(mi_mem_is_zero(page_start, page_size));
|
||||
}
|
||||
#endif
|
||||
|
||||
mi_assert_internal(page->is_committed);
|
||||
if (block_size > 0 && _mi_is_power_of_two(block_size)) {
|
||||
page->block_size_shift = (uint8_t)(mi_ctz((uintptr_t)block_size));
|
||||
}
|
||||
if (block_size > 0) {
|
||||
const ptrdiff_t start_offset = (uint8_t*)page_start - (uint8_t*)page;
|
||||
const ptrdiff_t start_adjust = start_offset % block_size;
|
||||
if (start_offset >= 0 && (start_adjust % MI_MAX_ALIGN_SIZE) == 0 && (start_adjust / MI_MAX_ALIGN_SIZE) < 255) {
|
||||
const ptrdiff_t adjust = (start_adjust / MI_MAX_ALIGN_SIZE);
|
||||
mi_assert_internal(adjust + 1 == (uint8_t)(adjust + 1));
|
||||
page->block_offset_adj = (uint8_t)(adjust + 1);
|
||||
}
|
||||
}
|
||||
|
||||
mi_assert_internal(page->capacity == 0);
|
||||
mi_assert_internal(page->free == NULL);
|
||||
mi_assert_internal(page->used == 0);
|
||||
@ -695,6 +706,8 @@ static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi
|
||||
mi_assert_internal(page->keys[0] != 0);
|
||||
mi_assert_internal(page->keys[1] != 0);
|
||||
#endif
|
||||
mi_assert_internal(page->block_size_shift == 0 || (block_size == (1UL << page->block_size_shift)));
|
||||
mi_assert_internal(page->block_offset_adj == 0 || (((uint8_t*)page_start - (uint8_t*)page - MI_MAX_ALIGN_SIZE*(page->block_offset_adj-1))) % block_size == 0);
|
||||
mi_assert_expensive(mi_page_is_valid_init(page));
|
||||
|
||||
// initialize an initial free list
|
||||
@ -718,7 +731,7 @@ static mi_page_t* mi_page_queue_find_free_ex(mi_heap_t* heap, mi_page_queue_t* p
|
||||
while (page != NULL)
|
||||
{
|
||||
mi_page_t* next = page->next; // remember next
|
||||
#if MI_STAT
|
||||
#if MI_STAT
|
||||
count++;
|
||||
#endif
|
||||
|
||||
@ -838,19 +851,19 @@ static mi_page_t* mi_large_huge_page_alloc(mi_heap_t* heap, size_t size, size_t
|
||||
mi_page_t* page = mi_page_fresh_alloc(heap, pq, block_size, page_alignment);
|
||||
if (page != NULL) {
|
||||
mi_assert_internal(mi_page_immediate_available(page));
|
||||
|
||||
|
||||
if (is_huge) {
|
||||
mi_assert_internal(_mi_page_segment(page)->kind == MI_SEGMENT_HUGE);
|
||||
mi_assert_internal(_mi_page_segment(page)->used==1);
|
||||
#if MI_HUGE_PAGE_ABANDON
|
||||
mi_assert_internal(_mi_page_segment(page)->thread_id==0); // abandoned, not in the huge queue
|
||||
mi_page_set_heap(page, NULL);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
else {
|
||||
mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE);
|
||||
}
|
||||
|
||||
|
||||
const size_t bsize = mi_page_usable_block_size(page); // note: not `mi_page_block_size` to account for padding
|
||||
if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
|
||||
mi_heap_stat_increase(heap, large, bsize);
|
||||
@ -869,7 +882,7 @@ static mi_page_t* mi_large_huge_page_alloc(mi_heap_t* heap, size_t size, size_t
|
||||
// Note: in debug mode the size includes MI_PADDING_SIZE and might have overflowed.
|
||||
static mi_page_t* mi_find_page(mi_heap_t* heap, size_t size, size_t huge_alignment) mi_attr_noexcept {
|
||||
// huge allocation?
|
||||
const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size`
|
||||
const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size`
|
||||
if mi_unlikely(req_size > (MI_MEDIUM_OBJ_SIZE_MAX - MI_PADDING_SIZE) || huge_alignment > 0) {
|
||||
if mi_unlikely(req_size > PTRDIFF_MAX) { // we don't allocate more than PTRDIFF_MAX (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>)
|
||||
_mi_error_message(EOVERFLOW, "allocation request is too large (%zu bytes)\n", req_size);
|
||||
@ -882,7 +895,7 @@ static mi_page_t* mi_find_page(mi_heap_t* heap, size_t size, size_t huge_alignme
|
||||
else {
|
||||
// otherwise find a page with free blocks in our size segregated queues
|
||||
#if MI_PADDING
|
||||
mi_assert_internal(size >= MI_PADDING_SIZE);
|
||||
mi_assert_internal(size >= MI_PADDING_SIZE);
|
||||
#endif
|
||||
return mi_find_free_page(heap, size);
|
||||
}
|
||||
@ -898,7 +911,7 @@ void* _mi_malloc_generic(mi_heap_t* heap, size_t size, bool zero, size_t huge_al
|
||||
|
||||
// initialize if necessary
|
||||
if mi_unlikely(!mi_heap_is_initialized(heap)) {
|
||||
heap = mi_heap_get_default(); // calls mi_thread_init
|
||||
heap = mi_heap_get_default(); // calls mi_thread_init
|
||||
if mi_unlikely(!mi_heap_is_initialized(heap)) { return NULL; }
|
||||
}
|
||||
mi_assert_internal(mi_heap_is_initialized(heap));
|
||||
|
@ -1048,6 +1048,11 @@ reuse their pages and/or free them eventually. The
|
||||
|
||||
When a block is freed in an abandoned segment, the segment
|
||||
is reclaimed into that thread.
|
||||
|
||||
Moreover, if threads are looking for a fresh segment, they
|
||||
will first consider abondoned segments -- these can be found
|
||||
by scanning the arena memory
|
||||
(segments outside arena memoryare only reclaimed by a free).
|
||||
----------------------------------------------------------- */
|
||||
|
||||
// legacy: Wait until there are no more pending reads on segments that used to be in the abandoned list
|
||||
|
Loading…
x
Reference in New Issue
Block a user