merge from dev (new free.c)

This commit is contained in:
Daan Leijen 2024-03-24 09:56:26 -07:00
commit 6399dbdc30
8 changed files with 641 additions and 551 deletions

View File

@ -168,7 +168,7 @@ void* mi_expand(void* p, size_t newsize);
/// @returns A pointer to a block of \a count * \a size bytes, or \a NULL /// @returns A pointer to a block of \a count * \a size bytes, or \a NULL
/// if out of memory or if \a count * \a size overflows. /// if out of memory or if \a count * \a size overflows.
/// ///
/// If there is no overflow, it behaves exactly like `mi_malloc(p,count*size)`. /// If there is no overflow, it behaves exactly like `mi_malloc(count*size)`.
/// @see mi_calloc() /// @see mi_calloc()
/// @see mi_zallocn() /// @see mi_zallocn()
void* mi_mallocn(size_t count, size_t size); void* mi_mallocn(size_t count, size_t size);

View File

@ -30,7 +30,7 @@ terms of the MIT license. A copy of the license can be found in the file
#define mi_decl_noinline __declspec(noinline) #define mi_decl_noinline __declspec(noinline)
#define mi_decl_thread __declspec(thread) #define mi_decl_thread __declspec(thread)
#define mi_decl_cache_align __declspec(align(MI_CACHE_LINE)) #define mi_decl_cache_align __declspec(align(MI_CACHE_LINE))
#define mi_decl_weak #define mi_decl_weak
#elif (defined(__GNUC__) && (__GNUC__ >= 3)) || defined(__clang__) // includes clang and icc #elif (defined(__GNUC__) && (__GNUC__ >= 3)) || defined(__clang__) // includes clang and icc
#define mi_decl_noinline __attribute__((noinline)) #define mi_decl_noinline __attribute__((noinline))
#define mi_decl_thread __thread #define mi_decl_thread __thread
@ -40,7 +40,7 @@ terms of the MIT license. A copy of the license can be found in the file
#define mi_decl_noinline #define mi_decl_noinline
#define mi_decl_thread __thread // hope for the best :-) #define mi_decl_thread __thread // hope for the best :-)
#define mi_decl_cache_align #define mi_decl_cache_align
#define mi_decl_weak #define mi_decl_weak
#endif #endif
#if defined(__EMSCRIPTEN__) && !defined(__wasi__) #if defined(__EMSCRIPTEN__) && !defined(__wasi__)
@ -133,8 +133,8 @@ void _mi_arena_segment_mark_abandoned(mi_segment_t* segment);
size_t _mi_arena_segment_abandoned_count(void); size_t _mi_arena_segment_abandoned_count(void);
typedef struct mi_arena_field_cursor_s { // abstract typedef struct mi_arena_field_cursor_s { // abstract
mi_arena_id_t start; mi_arena_id_t start;
int count; int count;
size_t bitmap_idx; size_t bitmap_idx;
} mi_arena_field_cursor_t; } mi_arena_field_cursor_t;
void _mi_arena_field_cursor_init(mi_heap_t* heap, mi_arena_field_cursor_t* current); void _mi_arena_field_cursor_init(mi_heap_t* heap, mi_arena_field_cursor_t* current);
@ -205,7 +205,7 @@ void* _mi_heap_malloc_zero_ex(mi_heap_t* heap, size_t size, bool zero, siz
void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) mi_attr_noexcept; void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) mi_attr_noexcept;
mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p); mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p);
bool _mi_free_delayed_block(mi_block_t* block); bool _mi_free_delayed_block(mi_block_t* block);
void _mi_free_generic(const mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept; // for runtime integration void _mi_free_generic(mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept; // for runtime integration
void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size); void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size);
// "libc.c" // "libc.c"

View File

@ -281,7 +281,7 @@ typedef uintptr_t mi_thread_free_t;
// and 12 are still good for address calculation) // and 12 are still good for address calculation)
// - To limit the structure size, the `xblock_size` is 32-bits only; for // - To limit the structure size, the `xblock_size` is 32-bits only; for
// blocks > MI_HUGE_BLOCK_SIZE the size is determined from the segment page size // blocks > MI_HUGE_BLOCK_SIZE the size is determined from the segment page size
// - `thread_free` uses the bottom bits as a delayed-free flags to optimize // - `xthread_free` uses the bottom bits as a delayed-free flags to optimize
// concurrent frees where only the first concurrent free adds to the owning // concurrent frees where only the first concurrent free adds to the owning
// heap `thread_delayed_free` list (see `alloc.c:mi_free_block_mt`). // heap `thread_delayed_free` list (see `alloc.c:mi_free_block_mt`).
// The invariant is that no-delayed-free is only set if there is // The invariant is that no-delayed-free is only set if there is
@ -303,9 +303,11 @@ typedef struct mi_page_s {
uint8_t retire_expire : 7; // expiration count for retired blocks uint8_t retire_expire : 7; // expiration count for retired blocks
mi_block_t* free; // list of available free blocks (`malloc` allocates from this list) mi_block_t* free; // list of available free blocks (`malloc` allocates from this list)
uint32_t used; // number of blocks in use (including blocks in `local_free` and `thread_free`)
uint32_t xblock_size; // size available in each block (always `>0`)
mi_block_t* local_free; // list of deferred free blocks by this thread (migrates to `free`) mi_block_t* local_free; // list of deferred free blocks by this thread (migrates to `free`)
uint16_t used; // number of blocks in use (including blocks in `thread_free`)
uint8_t block_size_shift; // if not zero, then `(1 << block_size_shift) == block_size` (only used for fast path in `free.c:_mi_page_ptr_unalign`)
uint8_t block_offset_adj; // if not zero, then `(mi_page_start(_,page,_) - (uint8_t*)page - MI_MAX_ALIGN_SIZE*(block_offset_adj-1)) % block_size == 0)` (only used for fast path in `free.c:_mi_page_ptr_unalign`)
uint32_t xblock_size; // size available in each block (always `>0`)
#if (MI_ENCODE_FREELIST || MI_PADDING) #if (MI_ENCODE_FREELIST || MI_PADDING)
uintptr_t keys[2]; // two random keys to encode the free lists (see `_mi_block_next`) or padding canary uintptr_t keys[2]; // two random keys to encode the free lists (see `_mi_block_next`) or padding canary
@ -498,8 +500,6 @@ typedef struct mi_padding_s {
// A heap owns a set of pages. // A heap owns a set of pages.
struct mi_heap_s { struct mi_heap_s {
mi_tld_t* tld; mi_tld_t* tld;
mi_page_t* pages_free_direct[MI_PAGES_DIRECT]; // optimize: array where every entry points a page with possibly free blocks in the corresponding queue for that size.
mi_page_queue_t pages[MI_BIN_FULL + 1]; // queue of pages for each size class (or "bin")
_Atomic(mi_block_t*) thread_delayed_free; _Atomic(mi_block_t*) thread_delayed_free;
mi_threadid_t thread_id; // thread this heap belongs too mi_threadid_t thread_id; // thread this heap belongs too
mi_arena_id_t arena_id; // arena id if the heap belongs to a specific arena (or 0) mi_arena_id_t arena_id; // arena id if the heap belongs to a specific arena (or 0)
@ -511,6 +511,8 @@ struct mi_heap_s {
size_t page_retired_max; // largest retired index into the `pages` array. size_t page_retired_max; // largest retired index into the `pages` array.
mi_heap_t* next; // list of heaps per thread mi_heap_t* next; // list of heaps per thread
bool no_reclaim; // `true` if this heap should not reclaim abandoned pages bool no_reclaim; // `true` if this heap should not reclaim abandoned pages
mi_page_t* pages_free_direct[MI_PAGES_DIRECT]; // optimize: array where every entry points a page with possibly free blocks in the corresponding queue for that size.
mi_page_queue_t pages[MI_BIN_FULL + 1]; // queue of pages for each size class (or "bin")
}; };

View File

@ -18,6 +18,7 @@ terms of the MIT license. A copy of the license can be found in the file
#define MI_IN_ALLOC_C #define MI_IN_ALLOC_C
#include "alloc-override.c" #include "alloc-override.c"
#include "free.c"
#undef MI_IN_ALLOC_C #undef MI_IN_ALLOC_C
// ------------------------------------------------------ // ------------------------------------------------------
@ -26,7 +27,9 @@ terms of the MIT license. A copy of the license can be found in the file
// Fast allocation in a page: just pop from the free list. // Fast allocation in a page: just pop from the free list.
// Fall back to generic allocation only if the list is empty. // Fall back to generic allocation only if the list is empty.
extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept { // Note: in release mode the (inlined) routine is about 7 instructions with a single test.
extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept
{
mi_assert_internal(page->xblock_size==0||mi_page_block_size(page) >= size); mi_assert_internal(page->xblock_size==0||mi_page_block_size(page) >= size);
mi_block_t* const block = page->free; mi_block_t* const block = page->free;
if mi_unlikely(block == NULL) { if mi_unlikely(block == NULL) {
@ -34,8 +37,8 @@ extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t siz
} }
mi_assert_internal(block != NULL && _mi_ptr_page(block) == page); mi_assert_internal(block != NULL && _mi_ptr_page(block) == page);
// pop from the free list // pop from the free list
page->used++;
page->free = mi_block_next(page, block); page->free = mi_block_next(page, block);
page->used++;
mi_assert_internal(page->free == NULL || _mi_ptr_page(page->free) == page); mi_assert_internal(page->free == NULL || _mi_ptr_page(page->free) == page);
#if MI_DEBUG>3 #if MI_DEBUG>3
if (page->free_is_zero) { if (page->free_is_zero) {
@ -61,43 +64,43 @@ extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t siz
} }
} }
#if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN #if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN
if (!zero && !mi_page_is_huge(page)) { if (!zero && !mi_page_is_huge(page)) {
memset(block, MI_DEBUG_UNINIT, mi_page_usable_block_size(page)); memset(block, MI_DEBUG_UNINIT, mi_page_usable_block_size(page));
} }
#elif (MI_SECURE!=0) #elif (MI_SECURE!=0)
if (!zero) { block->next = 0; } // don't leak internal data if (!zero) { block->next = 0; } // don't leak internal data
#endif #endif
#if (MI_STAT>0) #if (MI_STAT>0)
const size_t bsize = mi_page_usable_block_size(page); const size_t bsize = mi_page_usable_block_size(page);
if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) { if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) {
mi_heap_stat_increase(heap, normal, bsize); mi_heap_stat_increase(heap, normal, bsize);
mi_heap_stat_counter_increase(heap, normal_count, 1); mi_heap_stat_counter_increase(heap, normal_count, 1);
#if (MI_STAT>1) #if (MI_STAT>1)
const size_t bin = _mi_bin(bsize); const size_t bin = _mi_bin(bsize);
mi_heap_stat_increase(heap, normal_bins[bin], 1); mi_heap_stat_increase(heap, normal_bins[bin], 1);
#endif #endif
} }
#endif #endif
#if MI_PADDING // && !MI_TRACK_ENABLED #if MI_PADDING // && !MI_TRACK_ENABLED
mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + mi_page_usable_block_size(page)); mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + mi_page_usable_block_size(page));
ptrdiff_t delta = ((uint8_t*)padding - (uint8_t*)block - (size - MI_PADDING_SIZE)); ptrdiff_t delta = ((uint8_t*)padding - (uint8_t*)block - (size - MI_PADDING_SIZE));
#if (MI_DEBUG>=2) #if (MI_DEBUG>=2)
mi_assert_internal(delta >= 0 && mi_page_usable_block_size(page) >= (size - MI_PADDING_SIZE + delta)); mi_assert_internal(delta >= 0 && mi_page_usable_block_size(page) >= (size - MI_PADDING_SIZE + delta));
#endif #endif
mi_track_mem_defined(padding,sizeof(mi_padding_t)); // note: re-enable since mi_page_usable_block_size may set noaccess mi_track_mem_defined(padding,sizeof(mi_padding_t)); // note: re-enable since mi_page_usable_block_size may set noaccess
padding->canary = (uint32_t)(mi_ptr_encode(page,block,page->keys)); padding->canary = (uint32_t)(mi_ptr_encode(page,block,page->keys));
padding->delta = (uint32_t)(delta); padding->delta = (uint32_t)(delta);
#if MI_PADDING_CHECK #if MI_PADDING_CHECK
if (!mi_page_is_huge(page)) { if (!mi_page_is_huge(page)) {
uint8_t* fill = (uint8_t*)padding - delta; uint8_t* fill = (uint8_t*)padding - delta;
const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // set at most N initial padding bytes const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // set at most N initial padding bytes
for (size_t i = 0; i < maxpad; i++) { fill[i] = MI_DEBUG_PADDING; } for (size_t i = 0; i < maxpad; i++) { fill[i] = MI_DEBUG_PADDING; }
} }
#endif
#endif #endif
#endif
return block; return block;
} }
@ -112,9 +115,11 @@ static inline mi_decl_restrict void* mi_heap_malloc_small_zero(mi_heap_t* heap,
#if (MI_PADDING) #if (MI_PADDING)
if (size == 0) { size = sizeof(void*); } if (size == 0) { size = sizeof(void*); }
#endif #endif
mi_page_t* page = _mi_heap_get_free_small_page(heap, size + MI_PADDING_SIZE); mi_page_t* page = _mi_heap_get_free_small_page(heap, size + MI_PADDING_SIZE);
void* const p = _mi_page_malloc(heap, page, size + MI_PADDING_SIZE, zero); void* const p = _mi_page_malloc(heap, page, size + MI_PADDING_SIZE, zero);
mi_track_malloc(p,size,zero); mi_track_malloc(p,size,zero);
#if MI_STAT>1 #if MI_STAT>1
if (p != NULL) { if (p != NULL) {
if (!mi_heap_is_initialized(heap)) { heap = mi_prim_get_default_heap(); } if (!mi_heap_is_initialized(heap)) { heap = mi_prim_get_default_heap(); }
@ -190,500 +195,6 @@ mi_decl_nodiscard mi_decl_restrict void* mi_zalloc(size_t size) mi_attr_noexcept
} }
// ------------------------------------------------------
// Check for double free in secure and debug mode
// This is somewhat expensive so only enabled for secure mode 4
// ------------------------------------------------------
#if (MI_ENCODE_FREELIST && (MI_SECURE>=4 || MI_DEBUG!=0))
// linear check if the free list contains a specific element
static bool mi_list_contains(const mi_page_t* page, const mi_block_t* list, const mi_block_t* elem) {
while (list != NULL) {
if (elem==list) return true;
list = mi_block_next(page, list);
}
return false;
}
static mi_decl_noinline bool mi_check_is_double_freex(const mi_page_t* page, const mi_block_t* block) {
// The decoded value is in the same page (or NULL).
// Walk the free lists to verify positively if it is already freed
if (mi_list_contains(page, page->free, block) ||
mi_list_contains(page, page->local_free, block) ||
mi_list_contains(page, mi_page_thread_free(page), block))
{
_mi_error_message(EAGAIN, "double free detected of block %p with size %zu\n", block, mi_page_block_size(page));
return true;
}
return false;
}
#define mi_track_page(page,access) { size_t psize; void* pstart = _mi_page_start(_mi_page_segment(page),page,&psize); mi_track_mem_##access( pstart, psize); }
static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
bool is_double_free = false;
mi_block_t* n = mi_block_nextx(page, block, page->keys); // pretend it is freed, and get the decoded first field
if (((uintptr_t)n & (MI_INTPTR_SIZE-1))==0 && // quick check: aligned pointer?
(n==NULL || mi_is_in_same_page(block, n))) // quick check: in same page or NULL?
{
// Suspicous: decoded value a in block is in the same page (or NULL) -- maybe a double free?
// (continue in separate function to improve code generation)
is_double_free = mi_check_is_double_freex(page, block);
}
return is_double_free;
}
#else
static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
MI_UNUSED(page);
MI_UNUSED(block);
return false;
}
#endif
// ---------------------------------------------------------------------------
// Check for heap block overflow by setting up padding at the end of the block
// ---------------------------------------------------------------------------
#if MI_PADDING // && !MI_TRACK_ENABLED
static bool mi_page_decode_padding(const mi_page_t* page, const mi_block_t* block, size_t* delta, size_t* bsize) {
*bsize = mi_page_usable_block_size(page);
const mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + *bsize);
mi_track_mem_defined(padding,sizeof(mi_padding_t));
*delta = padding->delta;
uint32_t canary = padding->canary;
uintptr_t keys[2];
keys[0] = page->keys[0];
keys[1] = page->keys[1];
bool ok = ((uint32_t)mi_ptr_encode(page,block,keys) == canary && *delta <= *bsize);
mi_track_mem_noaccess(padding,sizeof(mi_padding_t));
return ok;
}
// Return the exact usable size of a block.
static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
size_t bsize;
size_t delta;
bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
mi_assert_internal(ok); mi_assert_internal(delta <= bsize);
return (ok ? bsize - delta : 0);
}
// When a non-thread-local block is freed, it becomes part of the thread delayed free
// list that is freed later by the owning heap. If the exact usable size is too small to
// contain the pointer for the delayed list, then shrink the padding (by decreasing delta)
// so it will later not trigger an overflow error in `mi_free_block`.
void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
size_t bsize;
size_t delta;
bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
mi_assert_internal(ok);
if (!ok || (bsize - delta) >= min_size) return; // usually already enough space
mi_assert_internal(bsize >= min_size);
if (bsize < min_size) return; // should never happen
size_t new_delta = (bsize - min_size);
mi_assert_internal(new_delta < bsize);
mi_padding_t* padding = (mi_padding_t*)((uint8_t*)block + bsize);
mi_track_mem_defined(padding,sizeof(mi_padding_t));
padding->delta = (uint32_t)new_delta;
mi_track_mem_noaccess(padding,sizeof(mi_padding_t));
}
#else
static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
MI_UNUSED(block);
return mi_page_usable_block_size(page);
}
void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
MI_UNUSED(page);
MI_UNUSED(block);
MI_UNUSED(min_size);
}
#endif
#if MI_PADDING && MI_PADDING_CHECK
static bool mi_verify_padding(const mi_page_t* page, const mi_block_t* block, size_t* size, size_t* wrong) {
size_t bsize;
size_t delta;
bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
*size = *wrong = bsize;
if (!ok) return false;
mi_assert_internal(bsize >= delta);
*size = bsize - delta;
if (!mi_page_is_huge(page)) {
uint8_t* fill = (uint8_t*)block + bsize - delta;
const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // check at most the first N padding bytes
mi_track_mem_defined(fill, maxpad);
for (size_t i = 0; i < maxpad; i++) {
if (fill[i] != MI_DEBUG_PADDING) {
*wrong = bsize - delta + i;
ok = false;
break;
}
}
mi_track_mem_noaccess(fill, maxpad);
}
return ok;
}
static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
size_t size;
size_t wrong;
if (!mi_verify_padding(page,block,&size,&wrong)) {
_mi_error_message(EFAULT, "buffer overflow in heap block %p of size %zu: write after %zu bytes\n", block, size, wrong );
}
}
#else
static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
MI_UNUSED(page);
MI_UNUSED(block);
}
#endif
// only maintain stats for smaller objects if requested
#if (MI_STAT>0)
static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
#if (MI_STAT < 2)
MI_UNUSED(block);
#endif
mi_heap_t* const heap = mi_heap_get_default();
const size_t bsize = mi_page_usable_block_size(page);
#if (MI_STAT>1)
const size_t usize = mi_page_usable_size_of(page, block);
mi_heap_stat_decrease(heap, malloc, usize);
#endif
if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) {
mi_heap_stat_decrease(heap, normal, bsize);
#if (MI_STAT > 1)
mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], 1);
#endif
}
else if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
mi_heap_stat_decrease(heap, large, bsize);
}
else {
mi_heap_stat_decrease(heap, huge, bsize);
}
}
#else
static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
MI_UNUSED(page); MI_UNUSED(block);
}
#endif
#if MI_HUGE_PAGE_ABANDON
#if (MI_STAT>0)
// maintain stats for huge objects
static void mi_stat_huge_free(const mi_page_t* page) {
mi_heap_t* const heap = mi_heap_get_default();
const size_t bsize = mi_page_block_size(page); // to match stats in `page.c:mi_page_huge_alloc`
if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
mi_heap_stat_decrease(heap, large, bsize);
}
else {
mi_heap_stat_decrease(heap, huge, bsize);
}
}
#else
static void mi_stat_huge_free(const mi_page_t* page) {
MI_UNUSED(page);
}
#endif
#endif
// ------------------------------------------------------
// Free
// ------------------------------------------------------
// multi-threaded free (or free in huge block if compiled with MI_HUGE_PAGE_ABANDON)
static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* block)
{
// first see if the segment was abandoned and we can reclaim it
mi_segment_t* const segment = _mi_page_segment(page);
if (mi_option_is_enabled(mi_option_abandoned_reclaim_on_free) &&
#if MI_HUGE_PAGE_ABANDON
segment->page_kind != MI_PAGE_HUGE &&
#endif
mi_atomic_load_relaxed(&segment->thread_id) == 0)
{
// the segment is abandoned, try to reclaim it into our heap
mi_heap_t* heap = mi_heap_get_default();
if (heap->tld != NULL && _mi_segment_attempt_reclaim(heap, segment)) {
mi_assert_internal(_mi_prim_thread_id() == mi_atomic_load_relaxed(&segment->thread_id));
mi_free(block); // recursively free as now it will be a local free in our heap
return;
}
}
// The padding check may access the non-thread-owned page for the key values.
// that is safe as these are constant and the page won't be freed (as the block is not freed yet).
mi_check_padding(page, block);
_mi_padding_shrink(page, block, sizeof(mi_block_t)); // for small size, ensure we can fit the delayed thread pointers without triggering overflow detection
// huge page segments are always abandoned and can be freed immediately
if (segment->kind == MI_SEGMENT_HUGE) {
#if MI_HUGE_PAGE_ABANDON
// huge page segments are always abandoned and can be freed immediately
mi_stat_huge_free(page);
_mi_segment_huge_page_free(segment, page, block);
return;
#else
// huge pages are special as they occupy the entire segment
// as these are large we reset the memory occupied by the page so it is available to other threads
// (as the owning thread needs to actually free the memory later).
_mi_segment_huge_page_reset(segment, page, block);
#endif
}
#if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN // note: when tracking, cannot use mi_usable_size with multi-threading
if (segment->kind != MI_SEGMENT_HUGE) { // not for huge segments as we just reset the content
memset(block, MI_DEBUG_FREED, mi_usable_size(block));
}
#endif
// Try to put the block on either the page-local thread free list, or the heap delayed free list.
mi_thread_free_t tfreex;
bool use_delayed;
mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free);
do {
use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE);
if mi_unlikely(use_delayed) {
// unlikely: this only happens on the first concurrent free in a page that is in the full list
tfreex = mi_tf_set_delayed(tfree,MI_DELAYED_FREEING);
}
else {
// usual: directly add to page thread_free list
mi_block_set_next(page, block, mi_tf_block(tfree));
tfreex = mi_tf_set_block(tfree,block);
}
} while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
if mi_unlikely(use_delayed) {
// racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`)
mi_heap_t* const heap = (mi_heap_t*)(mi_atomic_load_acquire(&page->xheap)); //mi_page_heap(page);
mi_assert_internal(heap != NULL);
if (heap != NULL) {
// add to the delayed free list of this heap. (do this atomically as the lock only protects heap memory validity)
mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free);
do {
mi_block_set_nextx(heap,block,dfree, heap->keys);
} while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block));
}
// and reset the MI_DELAYED_FREEING flag
tfree = mi_atomic_load_relaxed(&page->xthread_free);
do {
tfreex = tfree;
mi_assert_internal(mi_tf_delayed(tfree) == MI_DELAYED_FREEING);
tfreex = mi_tf_set_delayed(tfree,MI_NO_DELAYED_FREE);
} while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
}
}
// regular free
static inline void _mi_free_block(mi_page_t* page, bool local, mi_block_t* block)
{
// and push it on the free list
//const size_t bsize = mi_page_block_size(page);
if mi_likely(local) {
// owning thread can free a block directly
if mi_unlikely(mi_check_is_double_free(page, block)) return;
mi_check_padding(page, block);
#if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN
if (!mi_page_is_huge(page)) { // huge page content may be already decommitted
memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
}
#endif
mi_block_set_next(page, block, page->local_free);
page->local_free = block;
page->used--;
if mi_unlikely(mi_page_all_free(page)) {
_mi_page_retire(page);
}
else if mi_unlikely(mi_page_is_in_full(page)) {
_mi_page_unfull(page);
}
}
else {
_mi_free_block_mt(page,block);
}
}
// Adjust a block that was allocated aligned, to the actual start of the block in the page.
mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p) {
mi_assert_internal(page!=NULL && p!=NULL);
const size_t diff = (uint8_t*)p - _mi_page_start(segment, page, NULL);
const size_t adjust = (diff % mi_page_block_size(page));
return (mi_block_t*)((uintptr_t)p - adjust);
}
void mi_decl_noinline _mi_free_generic(const mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept {
mi_block_t* const block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(segment, page, p) : (mi_block_t*)p);
mi_stat_free(page, block); // stat_free may access the padding
mi_track_free_size(block, mi_page_usable_size_of(page,block));
_mi_free_block(page, is_local, block);
}
// Get the segment data belonging to a pointer
// This is just a single `and` in assembly but does further checks in debug mode
// (and secure mode) if this was a valid pointer.
static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* msg)
{
MI_UNUSED(msg);
mi_assert(p != NULL);
#if (MI_DEBUG>0)
if mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0) {
_mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p);
return NULL;
}
#endif
mi_segment_t* const segment = _mi_ptr_segment(p);
mi_assert_internal(segment != NULL);
#if (MI_DEBUG>0)
if mi_unlikely(!mi_is_in_heap_region(p)) {
#if (MI_INTPTR_SIZE == 8 && defined(__linux__))
if (((uintptr_t)p >> 40) != 0x7F) { // linux tends to align large blocks above 0x7F000000000 (issue #640)
#else
{
#endif
_mi_warning_message("%s: pointer might not point to a valid heap region: %p\n"
"(this may still be a valid very large allocation (over 64MiB))\n", msg, p);
if mi_likely(_mi_ptr_cookie(segment) == segment->cookie) {
_mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p);
}
}
}
#endif
#if (MI_DEBUG>0 || MI_SECURE>=4)
if mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie) {
_mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", msg, p);
return NULL;
}
#endif
return segment;
}
// Free a block
// fast path written carefully to prevent spilling on the stack
void mi_free(void* p) mi_attr_noexcept
{
if mi_unlikely(p == NULL) return;
mi_segment_t* const segment = mi_checked_ptr_segment(p,"mi_free");
const bool is_local= (_mi_prim_thread_id() == mi_atomic_load_relaxed(&segment->thread_id));
mi_page_t* const page = _mi_segment_page_of(segment, p);
if mi_likely(is_local) { // thread-local free?
if mi_likely(page->flags.full_aligned == 0) // and it is not a full page (full pages need to move from the full bin), nor has aligned blocks (aligned blocks need to be unaligned)
{
mi_block_t* const block = (mi_block_t*)p;
if mi_unlikely(mi_check_is_double_free(page, block)) return;
mi_check_padding(page, block);
mi_stat_free(page, block);
#if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN
memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
#endif
mi_track_free_size(p, mi_page_usable_size_of(page,block)); // faster then mi_usable_size as we already know the page and that p is unaligned
mi_block_set_next(page, block, page->local_free);
page->local_free = block;
if mi_unlikely(--page->used == 0) { // using this expression generates better code than: page->used--; if (mi_page_all_free(page))
_mi_page_retire(page);
}
}
else {
// page is full or contains (inner) aligned blocks; use generic path
_mi_free_generic(segment, page, true, p);
}
}
else {
// not thread-local; use generic path
_mi_free_generic(segment, page, false, p);
}
}
// return true if successful
bool _mi_free_delayed_block(mi_block_t* block) {
// get segment and page
const mi_segment_t* const segment = _mi_ptr_segment(block);
mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie);
mi_assert_internal(_mi_thread_id() == segment->thread_id);
mi_page_t* const page = _mi_segment_page_of(segment, block);
// Clear the no-delayed flag so delayed freeing is used again for this page.
// This must be done before collecting the free lists on this page -- otherwise
// some blocks may end up in the page `thread_free` list with no blocks in the
// heap `thread_delayed_free` list which may cause the page to be never freed!
// (it would only be freed if we happen to scan it in `mi_page_queue_find_free_ex`)
if (!_mi_page_try_use_delayed_free(page, MI_USE_DELAYED_FREE, false /* dont overwrite never delayed */)) {
return false;
}
// collect all other non-local frees to ensure up-to-date `used` count
_mi_page_free_collect(page, false);
// and free the block (possibly freeing the page as well since used is updated)
_mi_free_block(page, true, block);
return true;
}
// Bytes available in a block
mi_decl_noinline static size_t mi_page_usable_aligned_size_of(const mi_segment_t* segment, const mi_page_t* page, const void* p) mi_attr_noexcept {
const mi_block_t* block = _mi_page_ptr_unalign(segment, page, p);
const size_t size = mi_page_usable_size_of(page, block);
const ptrdiff_t adjust = (uint8_t*)p - (uint8_t*)block;
mi_assert_internal(adjust >= 0 && (size_t)adjust <= size);
return (size - adjust);
}
static inline size_t _mi_usable_size(const void* p, const char* msg) mi_attr_noexcept {
if (p == NULL) return 0;
const mi_segment_t* const segment = mi_checked_ptr_segment(p, msg);
const mi_page_t* const page = _mi_segment_page_of(segment, p);
if mi_likely(!mi_page_has_aligned(page)) {
const mi_block_t* block = (const mi_block_t*)p;
return mi_page_usable_size_of(page, block);
}
else {
// split out to separate routine for improved code generation
return mi_page_usable_aligned_size_of(segment, page, p);
}
}
mi_decl_nodiscard size_t mi_usable_size(const void* p) mi_attr_noexcept {
return _mi_usable_size(p, "mi_usable_size");
}
// ------------------------------------------------------
// Allocation extensions
// ------------------------------------------------------
void mi_free_size(void* p, size_t size) mi_attr_noexcept {
MI_UNUSED_RELEASE(size);
mi_assert(p == NULL || size <= _mi_usable_size(p,"mi_free_size"));
mi_free(p);
}
void mi_free_size_aligned(void* p, size_t size, size_t alignment) mi_attr_noexcept {
MI_UNUSED_RELEASE(alignment);
mi_assert(((uintptr_t)p % alignment) == 0);
mi_free_size(p,size);
}
void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept {
MI_UNUSED_RELEASE(alignment);
mi_assert(((uintptr_t)p % alignment) == 0);
mi_free(p);
}
mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept { mi_decl_nodiscard extern inline mi_decl_restrict void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept {
size_t total; size_t total;
if (mi_count_size_overflow(count,size,&total)) return NULL; if (mi_count_size_overflow(count,size,&total)) return NULL;

557
src/free.c Normal file
View File

@ -0,0 +1,557 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2024, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
#if !defined(MI_IN_ALLOC_C)
#error "this file should be included from 'alloc.c' (so aliases can work from alloc-override)"
// add includes help an IDE
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
#include "mimalloc/prim.h" // _mi_prim_thread_id()
#endif
// forward declarations
static void mi_check_padding(const mi_page_t* page, const mi_block_t* block);
static bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block);
static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block);
static void mi_stat_free(const mi_page_t* page, const mi_block_t* block);
// ------------------------------------------------------
// Free
// ------------------------------------------------------
// forward declaration of multi-threaded free (`_mt`) (or free in huge block if compiled with MI_HUGE_PAGE_ABANDON)
static mi_decl_noinline void mi_free_block_mt(mi_segment_t* segment, mi_page_t* page, mi_block_t* block);
// regular free of a (thread local) block pointer
// fast path written carefully to prevent spilling on the stack
static inline void mi_free_block_local(mi_page_t* page, mi_block_t* block, bool check_full)
{
// checks
if mi_unlikely(mi_check_is_double_free(page, block)) return;
mi_check_padding(page, block);
mi_stat_free(page, block);
#if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN
if (!mi_page_is_huge(page)) { // huge page content may be already decommitted
memset(block, MI_DEBUG_FREED, mi_page_block_size(page));
}
#endif
mi_track_free_size(p, mi_page_usable_size_of(page,block)); // faster then mi_usable_size as we already know the page and that p is unaligned
// actual free: push on the local free list
mi_block_set_next(page, block, page->local_free);
page->local_free = block;
if mi_unlikely(--page->used == 0) {
_mi_page_retire(page);
}
else if mi_unlikely(check_full && mi_page_is_in_full(page)) {
_mi_page_unfull(page);
}
}
// Adjust a block that was allocated aligned, to the actual start of the block in the page.
mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p) {
mi_assert_internal(page!=NULL && p!=NULL);
size_t diff;
if mi_likely(page->block_offset_adj != 0) {
diff = (uint8_t*)p - (uint8_t*)page - (MI_MAX_ALIGN_SIZE*(page->block_offset_adj - 1));
}
else {
diff = (uint8_t*)p - _mi_page_start(segment, page, NULL);
}
size_t adjust;
if mi_likely(page->block_size_shift != 0) {
adjust = diff & (((size_t)1 << page->block_size_shift) - 1);
}
else {
adjust = diff % mi_page_block_size(page);
}
return (mi_block_t*)((uintptr_t)p - adjust);
}
// free a local pointer (page parameter comes first for better codegen)
static void mi_decl_noinline mi_free_generic_local(mi_page_t* page, mi_segment_t* segment, void* p) mi_attr_noexcept {
mi_block_t* const block = (mi_page_has_aligned(page) ? _mi_page_ptr_unalign(segment, page, p) : (mi_block_t*)p);
mi_free_block_local(page, block, true);
}
// free a pointer owned by another thread (page parameter comes first for better codegen)
static void mi_decl_noinline mi_free_generic_mt(mi_page_t* page, mi_segment_t* segment, void* p) mi_attr_noexcept {
mi_block_t* const block = _mi_page_ptr_unalign(segment, page, p); // don't check `has_aligned` flag to avoid a race (issue #865)
mi_free_block_mt(segment, page, block);
}
// generic free (for runtime integration)
void mi_decl_noinline _mi_free_generic(mi_segment_t* segment, mi_page_t* page, bool is_local, void* p) mi_attr_noexcept {
if (is_local) mi_free_generic_local(page,segment,p);
else mi_free_generic_mt(page,segment,p);
}
// Get the segment data belonging to a pointer
// This is just a single `and` in release mode but does further checks in debug mode
// (and secure mode) to see if this was a valid pointer.
static inline mi_segment_t* mi_checked_ptr_segment(const void* p, const char* msg)
{
MI_UNUSED(msg);
mi_assert(p != NULL);
#if (MI_DEBUG>0)
if mi_unlikely(((uintptr_t)p & (MI_INTPTR_SIZE - 1)) != 0) {
_mi_error_message(EINVAL, "%s: invalid (unaligned) pointer: %p\n", msg, p);
return NULL;
}
#endif
mi_segment_t* const segment = _mi_ptr_segment(p);
mi_assert_internal(segment != NULL);
#if (MI_DEBUG>0)
if mi_unlikely(!mi_is_in_heap_region(p)) {
#if (MI_INTPTR_SIZE == 8 && defined(__linux__))
if (((uintptr_t)p >> 40) != 0x7F) { // linux tends to align large blocks above 0x7F000000000 (issue #640)
#else
{
#endif
_mi_warning_message("%s: pointer might not point to a valid heap region: %p\n"
"(this may still be a valid very large allocation (over 64MiB))\n", msg, p);
if mi_likely(_mi_ptr_cookie(segment) == segment->cookie) {
_mi_warning_message("(yes, the previous pointer %p was valid after all)\n", p);
}
}
}
#endif
#if (MI_DEBUG>0 || MI_SECURE>=4)
if mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie) {
_mi_error_message(EINVAL, "%s: pointer does not point to a valid heap space: %p\n", msg, p);
return NULL;
}
#endif
return segment;
}
// Free a block
// Fast path written carefully to prevent register spilling on the stack
void mi_free(void* p) mi_attr_noexcept
{
if mi_unlikely(p == NULL) return;
mi_segment_t* const segment = mi_checked_ptr_segment(p,"mi_free");
const bool is_local= (_mi_prim_thread_id() == mi_atomic_load_relaxed(&segment->thread_id));
mi_page_t* const page = _mi_segment_page_of(segment, p);
if mi_likely(is_local) { // thread-local free?
if mi_likely(page->flags.full_aligned == 0) { // and it is not a full page (full pages need to move from the full bin), nor has aligned blocks (aligned blocks need to be unaligned)
// thread-local, aligned, and not a full page
mi_block_t* const block = (mi_block_t*)p;
mi_free_block_local(page, block, false /* no need to check if the page is full */);
}
else {
// page is full or contains (inner) aligned blocks; use generic path
mi_free_generic_local(page, segment, p);
}
}
else {
// not thread-local; use generic path
mi_free_generic_mt(page, segment, p);
}
}
// return true if successful
bool _mi_free_delayed_block(mi_block_t* block) {
// get segment and page
const mi_segment_t* const segment = _mi_ptr_segment(block);
mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie);
mi_assert_internal(_mi_thread_id() == segment->thread_id);
mi_page_t* const page = _mi_segment_page_of(segment, block);
// Clear the no-delayed flag so delayed freeing is used again for this page.
// This must be done before collecting the free lists on this page -- otherwise
// some blocks may end up in the page `thread_free` list with no blocks in the
// heap `thread_delayed_free` list which may cause the page to be never freed!
// (it would only be freed if we happen to scan it in `mi_page_queue_find_free_ex`)
if (!_mi_page_try_use_delayed_free(page, MI_USE_DELAYED_FREE, false /* dont overwrite never delayed */)) {
return false;
}
// collect all other non-local frees to ensure up-to-date `used` count
_mi_page_free_collect(page, false);
// and free the block (possibly freeing the page as well since used is updated)
mi_free_block_local(page, block, true);
return true;
}
// ------------------------------------------------------
// Multi-threaded Free (`_mt`)
// ------------------------------------------------------
// Push a block that is owned by another thread on its page-local thread free
// list or it's heap delayed free list. Such blocks are later collected by
// the owning thread in `_mi_free_delayed_block`.
static void mi_decl_noinline mi_free_block_delayed_mt( mi_page_t* page, mi_block_t* block )
{
// Try to put the block on either the page-local thread free list,
// or the heap delayed free list (if this is the first non-local free in that page)
mi_thread_free_t tfreex;
bool use_delayed;
mi_thread_free_t tfree = mi_atomic_load_relaxed(&page->xthread_free);
do {
use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE);
if mi_unlikely(use_delayed) {
// unlikely: this only happens on the first concurrent free in a page that is in the full list
tfreex = mi_tf_set_delayed(tfree,MI_DELAYED_FREEING);
}
else {
// usual: directly add to page thread_free list
mi_block_set_next(page, block, mi_tf_block(tfree));
tfreex = mi_tf_set_block(tfree,block);
}
} while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
// If this was the first non-local free, we need to push it on the heap delayed free list instead
if mi_unlikely(use_delayed) {
// racy read on `heap`, but ok because MI_DELAYED_FREEING is set (see `mi_heap_delete` and `mi_heap_collect_abandon`)
mi_heap_t* const heap = (mi_heap_t*)(mi_atomic_load_acquire(&page->xheap)); //mi_page_heap(page);
mi_assert_internal(heap != NULL);
if (heap != NULL) {
// add to the delayed free list of this heap. (do this atomically as the lock only protects heap memory validity)
mi_block_t* dfree = mi_atomic_load_ptr_relaxed(mi_block_t, &heap->thread_delayed_free);
do {
mi_block_set_nextx(heap,block,dfree, heap->keys);
} while (!mi_atomic_cas_ptr_weak_release(mi_block_t,&heap->thread_delayed_free, &dfree, block));
}
// and reset the MI_DELAYED_FREEING flag
tfree = mi_atomic_load_relaxed(&page->xthread_free);
do {
tfreex = tfree;
mi_assert_internal(mi_tf_delayed(tfree) == MI_DELAYED_FREEING);
tfreex = mi_tf_set_delayed(tfree,MI_NO_DELAYED_FREE);
} while (!mi_atomic_cas_weak_release(&page->xthread_free, &tfree, tfreex));
}
}
#if MI_HUGE_PAGE_ABANDON
static void mi_stat_huge_free(const mi_page_t* page);
#endif
// Multi-threaded free (`_mt`) (or free in huge block if compiled with MI_HUGE_PAGE_ABANDON)
static void mi_decl_noinline mi_free_block_mt(mi_segment_t* segment, mi_page_t* page, mi_block_t* block)
{
// first see if the segment was abandoned and if we can reclaim it into our thread
if (mi_option_is_enabled(mi_option_abandoned_reclaim_on_free) &&
#if MI_HUGE_PAGE_ABANDON
segment->page_kind != MI_PAGE_HUGE &&
#endif
mi_atomic_load_relaxed(&segment->thread_id) == 0)
{
// the segment is abandoned, try to reclaim it into our heap
if (_mi_segment_attempt_reclaim(mi_heap_get_default(), segment)) {
mi_assert_internal(_mi_prim_thread_id() == mi_atomic_load_relaxed(&segment->thread_id));
mi_free(block); // recursively free as now it will be a local free in our heap
return;
}
}
// The padding check may access the non-thread-owned page for the key values.
// that is safe as these are constant and the page won't be freed (as the block is not freed yet).
mi_check_padding(page, block);
// adjust stats (after padding check and potential recursive `mi_free` above)
mi_stat_free(page, block); // stat_free may access the padding
mi_track_free_size(block, mi_page_usable_size_of(page,block));
// for small size, ensure we can fit the delayed thread pointers without triggering overflow detection
_mi_padding_shrink(page, block, sizeof(mi_block_t));
if (segment->kind == MI_SEGMENT_HUGE) {
#if MI_HUGE_PAGE_ABANDON
// huge page segments are always abandoned and can be freed immediately
mi_stat_huge_free(page);
_mi_segment_huge_page_free(segment, page, block);
return;
#else
// huge pages are special as they occupy the entire segment
// as these are large we reset the memory occupied by the page so it is available to other threads
// (as the owning thread needs to actually free the memory later).
_mi_segment_huge_page_reset(segment, page, block);
#endif
}
else {
#if (MI_DEBUG>0) && !MI_TRACK_ENABLED && !MI_TSAN // note: when tracking, cannot use mi_usable_size with multi-threading
memset(block, MI_DEBUG_FREED, mi_usable_size(block));
#endif
}
// and finally free the actual block by pushing it on the owning heap
// thread_delayed free list (or heap delayed free list)
mi_free_block_delayed_mt(page,block);
}
// ------------------------------------------------------
// Usable size
// ------------------------------------------------------
// Bytes available in a block
static size_t mi_decl_noinline mi_page_usable_aligned_size_of(const mi_segment_t* segment, const mi_page_t* page, const void* p) mi_attr_noexcept {
const mi_block_t* block = _mi_page_ptr_unalign(segment, page, p);
const size_t size = mi_page_usable_size_of(page, block);
const ptrdiff_t adjust = (uint8_t*)p - (uint8_t*)block;
mi_assert_internal(adjust >= 0 && (size_t)adjust <= size);
return (size - adjust);
}
static inline size_t _mi_usable_size(const void* p, const char* msg) mi_attr_noexcept {
if (p == NULL) return 0;
const mi_segment_t* const segment = mi_checked_ptr_segment(p, msg);
const mi_page_t* const page = _mi_segment_page_of(segment, p);
if mi_likely(!mi_page_has_aligned(page)) {
const mi_block_t* block = (const mi_block_t*)p;
return mi_page_usable_size_of(page, block);
}
else {
// split out to separate routine for improved code generation
return mi_page_usable_aligned_size_of(segment, page, p);
}
}
mi_decl_nodiscard size_t mi_usable_size(const void* p) mi_attr_noexcept {
return _mi_usable_size(p, "mi_usable_size");
}
// ------------------------------------------------------
// Free variants
// ------------------------------------------------------
void mi_free_size(void* p, size_t size) mi_attr_noexcept {
MI_UNUSED_RELEASE(size);
mi_assert(p == NULL || size <= _mi_usable_size(p,"mi_free_size"));
mi_free(p);
}
void mi_free_size_aligned(void* p, size_t size, size_t alignment) mi_attr_noexcept {
MI_UNUSED_RELEASE(alignment);
mi_assert(((uintptr_t)p % alignment) == 0);
mi_free_size(p,size);
}
void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept {
MI_UNUSED_RELEASE(alignment);
mi_assert(((uintptr_t)p % alignment) == 0);
mi_free(p);
}
// ------------------------------------------------------
// Check for double free in secure and debug mode
// This is somewhat expensive so only enabled for secure mode 4
// ------------------------------------------------------
#if (MI_ENCODE_FREELIST && (MI_SECURE>=4 || MI_DEBUG!=0))
// linear check if the free list contains a specific element
static bool mi_list_contains(const mi_page_t* page, const mi_block_t* list, const mi_block_t* elem) {
while (list != NULL) {
if (elem==list) return true;
list = mi_block_next(page, list);
}
return false;
}
static mi_decl_noinline bool mi_check_is_double_freex(const mi_page_t* page, const mi_block_t* block) {
// The decoded value is in the same page (or NULL).
// Walk the free lists to verify positively if it is already freed
if (mi_list_contains(page, page->free, block) ||
mi_list_contains(page, page->local_free, block) ||
mi_list_contains(page, mi_page_thread_free(page), block))
{
_mi_error_message(EAGAIN, "double free detected of block %p with size %zu\n", block, mi_page_block_size(page));
return true;
}
return false;
}
#define mi_track_page(page,access) { size_t psize; void* pstart = _mi_page_start(_mi_page_segment(page),page,&psize); mi_track_mem_##access( pstart, psize); }
static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
bool is_double_free = false;
mi_block_t* n = mi_block_nextx(page, block, page->keys); // pretend it is freed, and get the decoded first field
if (((uintptr_t)n & (MI_INTPTR_SIZE-1))==0 && // quick check: aligned pointer?
(n==NULL || mi_is_in_same_page(block, n))) // quick check: in same page or NULL?
{
// Suspicous: decoded value a in block is in the same page (or NULL) -- maybe a double free?
// (continue in separate function to improve code generation)
is_double_free = mi_check_is_double_freex(page, block);
}
return is_double_free;
}
#else
static inline bool mi_check_is_double_free(const mi_page_t* page, const mi_block_t* block) {
MI_UNUSED(page);
MI_UNUSED(block);
return false;
}
#endif
// ---------------------------------------------------------------------------
// Check for heap block overflow by setting up padding at the end of the block
// ---------------------------------------------------------------------------
#if MI_PADDING // && !MI_TRACK_ENABLED
static bool mi_page_decode_padding(const mi_page_t* page, const mi_block_t* block, size_t* delta, size_t* bsize) {
*bsize = mi_page_usable_block_size(page);
const mi_padding_t* const padding = (mi_padding_t*)((uint8_t*)block + *bsize);
mi_track_mem_defined(padding,sizeof(mi_padding_t));
*delta = padding->delta;
uint32_t canary = padding->canary;
uintptr_t keys[2];
keys[0] = page->keys[0];
keys[1] = page->keys[1];
bool ok = ((uint32_t)mi_ptr_encode(page,block,keys) == canary && *delta <= *bsize);
mi_track_mem_noaccess(padding,sizeof(mi_padding_t));
return ok;
}
// Return the exact usable size of a block.
static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
size_t bsize;
size_t delta;
bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
mi_assert_internal(ok); mi_assert_internal(delta <= bsize);
return (ok ? bsize - delta : 0);
}
// When a non-thread-local block is freed, it becomes part of the thread delayed free
// list that is freed later by the owning heap. If the exact usable size is too small to
// contain the pointer for the delayed list, then shrink the padding (by decreasing delta)
// so it will later not trigger an overflow error in `mi_free_block`.
void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
size_t bsize;
size_t delta;
bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
mi_assert_internal(ok);
if (!ok || (bsize - delta) >= min_size) return; // usually already enough space
mi_assert_internal(bsize >= min_size);
if (bsize < min_size) return; // should never happen
size_t new_delta = (bsize - min_size);
mi_assert_internal(new_delta < bsize);
mi_padding_t* padding = (mi_padding_t*)((uint8_t*)block + bsize);
mi_track_mem_defined(padding,sizeof(mi_padding_t));
padding->delta = (uint32_t)new_delta;
mi_track_mem_noaccess(padding,sizeof(mi_padding_t));
}
#else
static size_t mi_page_usable_size_of(const mi_page_t* page, const mi_block_t* block) {
MI_UNUSED(block);
return mi_page_usable_block_size(page);
}
void _mi_padding_shrink(const mi_page_t* page, const mi_block_t* block, const size_t min_size) {
MI_UNUSED(page);
MI_UNUSED(block);
MI_UNUSED(min_size);
}
#endif
#if MI_PADDING && MI_PADDING_CHECK
static bool mi_verify_padding(const mi_page_t* page, const mi_block_t* block, size_t* size, size_t* wrong) {
size_t bsize;
size_t delta;
bool ok = mi_page_decode_padding(page, block, &delta, &bsize);
*size = *wrong = bsize;
if (!ok) return false;
mi_assert_internal(bsize >= delta);
*size = bsize - delta;
if (!mi_page_is_huge(page)) {
uint8_t* fill = (uint8_t*)block + bsize - delta;
const size_t maxpad = (delta > MI_MAX_ALIGN_SIZE ? MI_MAX_ALIGN_SIZE : delta); // check at most the first N padding bytes
mi_track_mem_defined(fill, maxpad);
for (size_t i = 0; i < maxpad; i++) {
if (fill[i] != MI_DEBUG_PADDING) {
*wrong = bsize - delta + i;
ok = false;
break;
}
}
mi_track_mem_noaccess(fill, maxpad);
}
return ok;
}
static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
size_t size;
size_t wrong;
if (!mi_verify_padding(page,block,&size,&wrong)) {
_mi_error_message(EFAULT, "buffer overflow in heap block %p of size %zu: write after %zu bytes\n", block, size, wrong );
}
}
#else
static void mi_check_padding(const mi_page_t* page, const mi_block_t* block) {
MI_UNUSED(page);
MI_UNUSED(block);
}
#endif
// only maintain stats for smaller objects if requested
#if (MI_STAT>0)
static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
#if (MI_STAT < 2)
MI_UNUSED(block);
#endif
mi_heap_t* const heap = mi_heap_get_default();
const size_t bsize = mi_page_usable_block_size(page);
#if (MI_STAT>1)
const size_t usize = mi_page_usable_size_of(page, block);
mi_heap_stat_decrease(heap, malloc, usize);
#endif
if (bsize <= MI_MEDIUM_OBJ_SIZE_MAX) {
mi_heap_stat_decrease(heap, normal, bsize);
#if (MI_STAT > 1)
mi_heap_stat_decrease(heap, normal_bins[_mi_bin(bsize)], 1);
#endif
}
else if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
mi_heap_stat_decrease(heap, large, bsize);
}
else {
mi_heap_stat_decrease(heap, huge, bsize);
}
}
#else
static void mi_stat_free(const mi_page_t* page, const mi_block_t* block) {
MI_UNUSED(page); MI_UNUSED(block);
}
#endif
#if MI_HUGE_PAGE_ABANDON
#if (MI_STAT>0)
// maintain stats for huge objects
static void mi_stat_huge_free(const mi_page_t* page) {
mi_heap_t* const heap = mi_heap_get_default();
const size_t bsize = mi_page_block_size(page); // to match stats in `page.c:mi_page_huge_alloc`
if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
mi_heap_stat_decrease(heap, large, bsize);
}
else {
mi_heap_stat_decrease(heap, huge, bsize);
}
}
#else
static void mi_stat_huge_free(const mi_page_t* page) {
MI_UNUSED(page);
}
#endif
#endif

View File

@ -21,9 +21,11 @@ const mi_page_t _mi_page_empty = {
false, // is_zero false, // is_zero
0, // retire_expire 0, // retire_expire
NULL, // free NULL, // free
0, // used
0, // xblock_size
NULL, // local_free NULL, // local_free
0, // used
0, // block size shift
0, // block offset adj
0, // xblock_size
#if (MI_PADDING || MI_ENCODE_FREELIST) #if (MI_PADDING || MI_ENCODE_FREELIST)
{ 0, 0 }, { 0, 0 },
#endif #endif
@ -111,8 +113,6 @@ const mi_page_t _mi_page_empty = {
mi_decl_cache_align const mi_heap_t _mi_heap_empty = { mi_decl_cache_align const mi_heap_t _mi_heap_empty = {
NULL, NULL,
MI_SMALL_PAGES_EMPTY,
MI_PAGE_QUEUES_EMPTY,
MI_ATOMIC_VAR_INIT(NULL), MI_ATOMIC_VAR_INIT(NULL),
0, // tid 0, // tid
0, // cookie 0, // cookie
@ -122,7 +122,9 @@ mi_decl_cache_align const mi_heap_t _mi_heap_empty = {
0, // page count 0, // page count
MI_BIN_FULL, 0, // page retired min/max MI_BIN_FULL, 0, // page retired min/max
NULL, // next NULL, // next
false false,
MI_SMALL_PAGES_EMPTY,
MI_PAGE_QUEUES_EMPTY
}; };
#define tld_empty_stats ((mi_stats_t*)((uint8_t*)&tld_empty + offsetof(mi_tld_t,stats))) #define tld_empty_stats ((mi_stats_t*)((uint8_t*)&tld_empty + offsetof(mi_tld_t,stats)))
@ -156,8 +158,6 @@ static mi_tld_t tld_main = {
mi_heap_t _mi_heap_main = { mi_heap_t _mi_heap_main = {
&tld_main, &tld_main,
MI_SMALL_PAGES_EMPTY,
MI_PAGE_QUEUES_EMPTY,
MI_ATOMIC_VAR_INIT(NULL), MI_ATOMIC_VAR_INIT(NULL),
0, // thread id 0, // thread id
0, // initial cookie 0, // initial cookie
@ -167,7 +167,9 @@ mi_heap_t _mi_heap_main = {
0, // page count 0, // page count
MI_BIN_FULL, 0, // page retired min/max MI_BIN_FULL, 0, // page retired min/max
NULL, // next heap NULL, // next heap
false // can reclaim false, // can reclaim
MI_SMALL_PAGES_EMPTY,
MI_PAGE_QUEUES_EMPTY
}; };
bool _mi_process_is_initialized = false; // set to `true` in `mi_process_init`. bool _mi_process_is_initialized = false; // set to `true` in `mi_process_init`.

View File

@ -125,9 +125,9 @@ bool _mi_page_is_valid(mi_page_t* page) {
mi_assert_internal(!_mi_process_is_initialized || segment->thread_id==0 || segment->thread_id == mi_page_heap(page)->thread_id); mi_assert_internal(!_mi_process_is_initialized || segment->thread_id==0 || segment->thread_id == mi_page_heap(page)->thread_id);
#if MI_HUGE_PAGE_ABANDON #if MI_HUGE_PAGE_ABANDON
if (segment->kind != MI_SEGMENT_HUGE) if (segment->kind != MI_SEGMENT_HUGE)
#endif #endif
{ {
mi_page_queue_t* pq = mi_page_queue_of(page); mi_page_queue_t* pq = mi_page_queue_of(page);
mi_assert_internal(mi_page_queue_contains(pq, page)); mi_assert_internal(mi_page_queue_contains(pq, page));
mi_assert_internal(pq->block_size==mi_page_block_size(page) || mi_page_block_size(page) > MI_MEDIUM_OBJ_SIZE_MAX || mi_page_is_in_full(page)); mi_assert_internal(pq->block_size==mi_page_block_size(page) || mi_page_block_size(page) > MI_MEDIUM_OBJ_SIZE_MAX || mi_page_is_in_full(page));
@ -193,8 +193,8 @@ static void _mi_page_thread_free_collect(mi_page_t* page)
if (head == NULL) return; if (head == NULL) return;
// find the tail -- also to get a proper count (without data races) // find the tail -- also to get a proper count (without data races)
uint32_t max_count = page->capacity; // cannot collect more than capacity size_t max_count = page->capacity; // cannot collect more than capacity
uint32_t count = 1; size_t count = 1;
mi_block_t* tail = head; mi_block_t* tail = head;
mi_block_t* next; mi_block_t* next;
while ((next = mi_block_next(page,tail)) != NULL && count <= max_count) { while ((next = mi_block_next(page,tail)) != NULL && count <= max_count) {
@ -212,7 +212,7 @@ static void _mi_page_thread_free_collect(mi_page_t* page)
page->local_free = head; page->local_free = head;
// update counts now // update counts now
page->used -= count; page->used -= (uint16_t)count;
} }
void _mi_page_free_collect(mi_page_t* page, bool force) { void _mi_page_free_collect(mi_page_t* page, bool force) {
@ -263,7 +263,7 @@ void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page) {
#if MI_HUGE_PAGE_ABANDON #if MI_HUGE_PAGE_ABANDON
mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE); mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE);
#endif #endif
// TODO: push on full queue immediately if it is full? // TODO: push on full queue immediately if it is full?
mi_page_queue_t* pq = mi_page_queue(heap, mi_page_block_size(page)); mi_page_queue_t* pq = mi_page_queue(heap, mi_page_block_size(page));
mi_page_queue_push(heap, pq, page); mi_page_queue_push(heap, pq, page);
@ -441,7 +441,7 @@ void _mi_page_retire(mi_page_t* page) mi_attr_noexcept {
mi_assert_internal(page != NULL); mi_assert_internal(page != NULL);
mi_assert_expensive(_mi_page_is_valid(page)); mi_assert_expensive(_mi_page_is_valid(page));
mi_assert_internal(mi_page_all_free(page)); mi_assert_internal(mi_page_all_free(page));
mi_page_set_has_aligned(page, false); mi_page_set_has_aligned(page, false);
// don't retire too often.. // don't retire too often..
@ -454,7 +454,7 @@ void _mi_page_retire(mi_page_t* page) mi_attr_noexcept {
if mi_likely(page->xblock_size <= MI_MAX_RETIRE_SIZE && !mi_page_queue_is_special(pq)) { // not too large && not full or huge queue? if mi_likely(page->xblock_size <= MI_MAX_RETIRE_SIZE && !mi_page_queue_is_special(pq)) { // not too large && not full or huge queue?
if (pq->last==page && pq->first==page) { // the only page in the queue? if (pq->last==page && pq->first==page) { // the only page in the queue?
mi_stat_counter_increase(_mi_stats_main.page_no_retire,1); mi_stat_counter_increase(_mi_stats_main.page_no_retire,1);
page->retire_expire = 1 + (page->xblock_size <= MI_SMALL_OBJ_SIZE_MAX ? MI_RETIRE_CYCLES : MI_RETIRE_CYCLES/4); page->retire_expire = 1 + (page->xblock_size <= MI_SMALL_OBJ_SIZE_MAX ? MI_RETIRE_CYCLES : MI_RETIRE_CYCLES/4);
mi_heap_t* heap = mi_page_heap(page); mi_heap_t* heap = mi_page_heap(page);
mi_assert_internal(pq >= heap->pages); mi_assert_internal(pq >= heap->pages);
const size_t index = pq - heap->pages; const size_t index = pq - heap->pages;
@ -608,7 +608,7 @@ static mi_decl_noinline void mi_page_free_list_extend( mi_page_t* const page, co
// allocations but this did not speed up any benchmark (due to an // allocations but this did not speed up any benchmark (due to an
// extra test in malloc? or cache effects?) // extra test in malloc? or cache effects?)
static void mi_page_extend_free(mi_heap_t* heap, mi_page_t* page, mi_tld_t* tld) { static void mi_page_extend_free(mi_heap_t* heap, mi_page_t* page, mi_tld_t* tld) {
MI_UNUSED(tld); MI_UNUSED(tld);
mi_assert_expensive(mi_page_is_valid_init(page)); mi_assert_expensive(mi_page_is_valid_init(page));
#if (MI_SECURE<=2) #if (MI_SECURE<=2)
mi_assert(page->free == NULL); mi_assert(page->free == NULL);
@ -663,7 +663,6 @@ static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi
page->xblock_size = (block_size < MI_HUGE_BLOCK_SIZE ? (uint32_t)block_size : MI_HUGE_BLOCK_SIZE); // initialize before _mi_segment_page_start page->xblock_size = (block_size < MI_HUGE_BLOCK_SIZE ? (uint32_t)block_size : MI_HUGE_BLOCK_SIZE); // initialize before _mi_segment_page_start
size_t page_size; size_t page_size;
const void* page_start = _mi_segment_page_start(segment, page, &page_size); const void* page_start = _mi_segment_page_start(segment, page, &page_size);
MI_UNUSED(page_start);
mi_track_mem_noaccess(page_start,page_size); mi_track_mem_noaccess(page_start,page_size);
mi_assert_internal(mi_page_block_size(page) <= page_size); mi_assert_internal(mi_page_block_size(page) <= page_size);
mi_assert_internal(page_size <= page->slice_count*MI_SEGMENT_SLICE_SIZE); mi_assert_internal(page_size <= page->slice_count*MI_SEGMENT_SLICE_SIZE);
@ -681,8 +680,20 @@ static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi
mi_assert_expensive(mi_mem_is_zero(page_start, page_size)); mi_assert_expensive(mi_mem_is_zero(page_start, page_size));
} }
#endif #endif
mi_assert_internal(page->is_committed); mi_assert_internal(page->is_committed);
if (block_size > 0 && _mi_is_power_of_two(block_size)) {
page->block_size_shift = (uint8_t)(mi_ctz((uintptr_t)block_size));
}
if (block_size > 0) {
const ptrdiff_t start_offset = (uint8_t*)page_start - (uint8_t*)page;
const ptrdiff_t start_adjust = start_offset % block_size;
if (start_offset >= 0 && (start_adjust % MI_MAX_ALIGN_SIZE) == 0 && (start_adjust / MI_MAX_ALIGN_SIZE) < 255) {
const ptrdiff_t adjust = (start_adjust / MI_MAX_ALIGN_SIZE);
mi_assert_internal(adjust + 1 == (uint8_t)(adjust + 1));
page->block_offset_adj = (uint8_t)(adjust + 1);
}
}
mi_assert_internal(page->capacity == 0); mi_assert_internal(page->capacity == 0);
mi_assert_internal(page->free == NULL); mi_assert_internal(page->free == NULL);
mi_assert_internal(page->used == 0); mi_assert_internal(page->used == 0);
@ -695,6 +706,8 @@ static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi
mi_assert_internal(page->keys[0] != 0); mi_assert_internal(page->keys[0] != 0);
mi_assert_internal(page->keys[1] != 0); mi_assert_internal(page->keys[1] != 0);
#endif #endif
mi_assert_internal(page->block_size_shift == 0 || (block_size == (1UL << page->block_size_shift)));
mi_assert_internal(page->block_offset_adj == 0 || (((uint8_t*)page_start - (uint8_t*)page - MI_MAX_ALIGN_SIZE*(page->block_offset_adj-1))) % block_size == 0);
mi_assert_expensive(mi_page_is_valid_init(page)); mi_assert_expensive(mi_page_is_valid_init(page));
// initialize an initial free list // initialize an initial free list
@ -718,7 +731,7 @@ static mi_page_t* mi_page_queue_find_free_ex(mi_heap_t* heap, mi_page_queue_t* p
while (page != NULL) while (page != NULL)
{ {
mi_page_t* next = page->next; // remember next mi_page_t* next = page->next; // remember next
#if MI_STAT #if MI_STAT
count++; count++;
#endif #endif
@ -838,19 +851,19 @@ static mi_page_t* mi_large_huge_page_alloc(mi_heap_t* heap, size_t size, size_t
mi_page_t* page = mi_page_fresh_alloc(heap, pq, block_size, page_alignment); mi_page_t* page = mi_page_fresh_alloc(heap, pq, block_size, page_alignment);
if (page != NULL) { if (page != NULL) {
mi_assert_internal(mi_page_immediate_available(page)); mi_assert_internal(mi_page_immediate_available(page));
if (is_huge) { if (is_huge) {
mi_assert_internal(_mi_page_segment(page)->kind == MI_SEGMENT_HUGE); mi_assert_internal(_mi_page_segment(page)->kind == MI_SEGMENT_HUGE);
mi_assert_internal(_mi_page_segment(page)->used==1); mi_assert_internal(_mi_page_segment(page)->used==1);
#if MI_HUGE_PAGE_ABANDON #if MI_HUGE_PAGE_ABANDON
mi_assert_internal(_mi_page_segment(page)->thread_id==0); // abandoned, not in the huge queue mi_assert_internal(_mi_page_segment(page)->thread_id==0); // abandoned, not in the huge queue
mi_page_set_heap(page, NULL); mi_page_set_heap(page, NULL);
#endif #endif
} }
else { else {
mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE); mi_assert_internal(_mi_page_segment(page)->kind != MI_SEGMENT_HUGE);
} }
const size_t bsize = mi_page_usable_block_size(page); // note: not `mi_page_block_size` to account for padding const size_t bsize = mi_page_usable_block_size(page); // note: not `mi_page_block_size` to account for padding
if (bsize <= MI_LARGE_OBJ_SIZE_MAX) { if (bsize <= MI_LARGE_OBJ_SIZE_MAX) {
mi_heap_stat_increase(heap, large, bsize); mi_heap_stat_increase(heap, large, bsize);
@ -869,7 +882,7 @@ static mi_page_t* mi_large_huge_page_alloc(mi_heap_t* heap, size_t size, size_t
// Note: in debug mode the size includes MI_PADDING_SIZE and might have overflowed. // Note: in debug mode the size includes MI_PADDING_SIZE and might have overflowed.
static mi_page_t* mi_find_page(mi_heap_t* heap, size_t size, size_t huge_alignment) mi_attr_noexcept { static mi_page_t* mi_find_page(mi_heap_t* heap, size_t size, size_t huge_alignment) mi_attr_noexcept {
// huge allocation? // huge allocation?
const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size` const size_t req_size = size - MI_PADDING_SIZE; // correct for padding_size in case of an overflow on `size`
if mi_unlikely(req_size > (MI_MEDIUM_OBJ_SIZE_MAX - MI_PADDING_SIZE) || huge_alignment > 0) { if mi_unlikely(req_size > (MI_MEDIUM_OBJ_SIZE_MAX - MI_PADDING_SIZE) || huge_alignment > 0) {
if mi_unlikely(req_size > PTRDIFF_MAX) { // we don't allocate more than PTRDIFF_MAX (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>) if mi_unlikely(req_size > PTRDIFF_MAX) { // we don't allocate more than PTRDIFF_MAX (see <https://sourceware.org/ml/libc-announce/2019/msg00001.html>)
_mi_error_message(EOVERFLOW, "allocation request is too large (%zu bytes)\n", req_size); _mi_error_message(EOVERFLOW, "allocation request is too large (%zu bytes)\n", req_size);
@ -882,7 +895,7 @@ static mi_page_t* mi_find_page(mi_heap_t* heap, size_t size, size_t huge_alignme
else { else {
// otherwise find a page with free blocks in our size segregated queues // otherwise find a page with free blocks in our size segregated queues
#if MI_PADDING #if MI_PADDING
mi_assert_internal(size >= MI_PADDING_SIZE); mi_assert_internal(size >= MI_PADDING_SIZE);
#endif #endif
return mi_find_free_page(heap, size); return mi_find_free_page(heap, size);
} }
@ -898,7 +911,7 @@ void* _mi_malloc_generic(mi_heap_t* heap, size_t size, bool zero, size_t huge_al
// initialize if necessary // initialize if necessary
if mi_unlikely(!mi_heap_is_initialized(heap)) { if mi_unlikely(!mi_heap_is_initialized(heap)) {
heap = mi_heap_get_default(); // calls mi_thread_init heap = mi_heap_get_default(); // calls mi_thread_init
if mi_unlikely(!mi_heap_is_initialized(heap)) { return NULL; } if mi_unlikely(!mi_heap_is_initialized(heap)) { return NULL; }
} }
mi_assert_internal(mi_heap_is_initialized(heap)); mi_assert_internal(mi_heap_is_initialized(heap));

View File

@ -1048,6 +1048,11 @@ reuse their pages and/or free them eventually. The
When a block is freed in an abandoned segment, the segment When a block is freed in an abandoned segment, the segment
is reclaimed into that thread. is reclaimed into that thread.
Moreover, if threads are looking for a fresh segment, they
will first consider abondoned segments -- these can be found
by scanning the arena memory
(segments outside arena memoryare only reclaimed by a free).
----------------------------------------------------------- */ ----------------------------------------------------------- */
// legacy: Wait until there are no more pending reads on segments that used to be in the abandoned list // legacy: Wait until there are no more pending reads on segments that used to be in the abandoned list