update stress test to be more deterministic

This commit is contained in:
daan 2019-07-19 08:55:02 -07:00
parent fd6fd23470
commit 2f63964e5c

View File

@ -1,42 +1,71 @@
/* ---------------------------------------------------------------------------- /* ----------------------------------------------------------------------------
Copyright (c) 2018,2019 Microsoft Research, Daan Leijen Copyright (c) 2018,2019 Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file terms of the MIT license.
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/ -----------------------------------------------------------------------------*/
/* This is a stress test for the allocator, using multiple threads and /* This is a stress test for the allocator, using multiple threads and
transferring objects between threads. This is not a typical workload transferring objects between threads. This is not a typical workload
but uses a random size distribution. Do not use this test as a benchmark! but uses a random linear size distribution. Do not use this test as a benchmark!
Note: pthreads uses mimalloc to allocate stacks and thus not all
memory is freed at the end. (usually the 320 byte chunks).
*/ */
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h> #include <string.h>
#include "mimalloc.h" #include <mimalloc.h>
#include "mimalloc-internal.h"
#include "mimalloc-atomic.h" // argument defaults
static int THREADS = 32; // more repeatable if THREADS <= #processors
static int N = 10; // scaling factor
// static int THREADS = 8; // more repeatable if THREADS <= #processors
// static int N = 100; // scaling factor
#define N (10) // scaling factor
#define THREADS (32)
#define TRANSFERS (1000) #define TRANSFERS (1000)
static volatile void* transfer[TRANSFERS]; static volatile void* transfer[TRANSFERS];
#if (MI_INTPTR_SIZE==8) #if (INTPTR_MAX != UINT32_MAX)
const uintptr_t cookie = 0xbf58476d1ce4e5b9UL; const uintptr_t cookie = 0xbf58476d1ce4e5b9UL;
#else #else
const uintptr_t cookie = 0x1ce4e5b9UL; const uintptr_t cookie = 0x1ce4e5b9UL;
#endif #endif
static void* atomic_exchange_ptr(volatile void** p, void* newval);
static void* alloc_items(size_t items) { typedef uintptr_t* random_t;
if ((rand()%100) == 0) items *= 100; // 1% huge objects;
static uintptr_t pick(random_t r) {
uintptr_t x = *r;
#if (INTPTR_MAX > UINT32_MAX)
// by Sebastiano Vigna, see: <http://xoshiro.di.unimi.it/splitmix64.c>
x ^= x >> 30;
x *= 0xbf58476d1ce4e5b9UL;
x ^= x >> 27;
x *= 0x94d049bb133111ebUL;
x ^= x >> 31;
#else
// by Chris Wellons, see: <https://nullprogram.com/blog/2018/07/31/>
x ^= x >> 16;
x *= 0x7feb352dUL;
x ^= x >> 15;
x *= 0x846ca68bUL;
x ^= x >> 16;
#endif
*r = x;
return x;
}
static bool chance(size_t perc, random_t r) {
return (pick(r) % 100 <= perc);
}
static void* alloc_items(size_t items, random_t r) {
if (chance(1, r)) items *= 100; // 1% huge objects;
if (items==40) items++; // pthreads uses that size for stack increases if (items==40) items++; // pthreads uses that size for stack increases
uintptr_t* p = mi_mallocn_tp(uintptr_t,items); uintptr_t* p = (uintptr_t*)mi_malloc(items*sizeof(uintptr_t));
if(p == NULL) return NULL;
for (uintptr_t i = 0; i < items; i++) p[i] = (items - i) ^ cookie; for (uintptr_t i = 0; i < items; i++) p[i] = (items - i) ^ cookie;
return p; return p;
} }
@ -47,7 +76,7 @@ static void free_items(void* p) {
uintptr_t items = (q[0] ^ cookie); uintptr_t items = (q[0] ^ cookie);
for (uintptr_t i = 0; i < items; i++) { for (uintptr_t i = 0; i < items; i++) {
if ((q[i]^cookie) != items - i) { if ((q[i]^cookie) != items - i) {
fprintf(stderr,"memory corruption at block %p at %zu\n", p, i); fprintf(stderr, "memory corruption at block %p at %zu\n", p, i);
abort(); abort();
} }
} }
@ -57,43 +86,45 @@ static void free_items(void* p) {
static void stress(intptr_t tid) { static void stress(intptr_t tid) {
//bench_start_thread();
uintptr_t r = tid ^ 42;
const size_t max_item = 128; // in words const size_t max_item = 128; // in words
const size_t max_item_retained = 10*max_item; const size_t max_item_retained = 10*max_item;
size_t allocs = 80*N*(tid%8 + 1); // some threads do more size_t allocs = 25*N*(tid%8 + 1); // some threads do more
size_t retain = allocs/2; size_t retain = allocs/2;
void** data = NULL; void** data = NULL;
size_t data_size = 0; size_t data_size = 0;
size_t data_top = 0; size_t data_top = 0;
void** retained = mi_mallocn_tp(void*,retain); void** retained = (void**)mi_malloc(retain*sizeof(void*));
size_t retain_top = 0; size_t retain_top = 0;
while (allocs>0 || retain>0) { while (allocs>0 || retain>0) {
if (retain == 0 || ((rand()%4 == 0) && allocs > 0)) { if (retain == 0 || (chance(50, &r) && allocs > 0)) {
// 75% alloc // 50%+ alloc
allocs--; allocs--;
if (data_top >= data_size) { if (data_top >= data_size) {
data_size += 100000; data_size += 100000;
data = mi_reallocn_tp(data, void*, data_size); data = (void**)mi_realloc(data, data_size*sizeof(void*));
} }
data[data_top++] = alloc_items((rand() % max_item) + 1); data[data_top++] = alloc_items((pick(&r) % max_item) + 1, &r);
} }
else { else {
// 25% retain // 25% retain
retained[retain_top++] = alloc_items( 10*((rand() % max_item_retained) + 1) ); retained[retain_top++] = alloc_items(10*((pick(&r) % max_item_retained) + 1), &r);
retain--; retain--;
} }
if ((rand()%3)!=0 && data_top > 0) { if (chance(66, &r) && data_top > 0) {
// 66% free previous alloc // 66% free previous alloc
size_t idx = rand() % data_top; size_t idx = pick(&r) % data_top;
free_items(data[idx]); free_items(data[idx]);
data[idx]=NULL; data[idx] = NULL;
} }
if ((tid%2)==0 && (rand()%4)==0 && data_top > 0) { if (chance(25, &r) && data_top > 0) {
// 25% transfer-swap of half the threads // 25% transfer-swap
size_t data_idx = rand() % data_top; size_t data_idx = pick(&r) % data_top;
size_t transfer_idx = rand() % TRANSFERS; size_t transfer_idx = pick(&r) % TRANSFERS;
void* p = data[data_idx]; void* p = data[data_idx];
void* q = mi_atomic_exchange_ptr(&transfer[transfer_idx],p); void* q = atomic_exchange_ptr(&transfer[transfer_idx], p);
data[data_idx] = q; data[data_idx] = q;
} }
} }
@ -106,20 +137,33 @@ static void stress(intptr_t tid) {
} }
mi_free(retained); mi_free(retained);
mi_free(data); mi_free(data);
//bench_end_thread();
} }
static void run_os_threads(); static void run_os_threads(size_t nthreads);
int main() { int main(int argc, char** argv) {
srand(42); if (argc>=2) {
memset((void*)transfer,0,TRANSFERS*sizeof(void*)); char* end;
run_os_threads(); long n = strtol(argv[1], &end, 10);
if (n > 0) THREADS = n;
}
if (argc>=3) {
char* end;
long n = (strtol(argv[2], &end, 10));
if (n > 0) N = n;
}
printf("start with %i threads with a %i%% load-per-thread\n", THREADS, N);
//bench_start_program();
memset((void*)transfer, 0, TRANSFERS*sizeof(void*));
run_os_threads(THREADS);
for (int i = 0; i < TRANSFERS; i++) { for (int i = 0; i < TRANSFERS; i++) {
free_items((void*)transfer[i]); free_items((void*)transfer[i]);
} }
mi_collect(false); // ensures abandoned segments are reclaimed mi_collect(false);
mi_collect(true); // frees everything mi_collect(true);
mi_stats_print(NULL); mi_stats_print(NULL);
//bench_end_program();
return 0; return 0;
} }
@ -133,36 +177,48 @@ static DWORD WINAPI thread_entry(LPVOID param) {
return 0; return 0;
} }
static void run_os_threads() { static void run_os_threads(size_t nthreads) {
DWORD tids[THREADS]; DWORD* tids = (DWORD*)malloc(nthreads * sizeof(DWORD));
HANDLE thandles[THREADS]; HANDLE* thandles = (HANDLE*)malloc(nthreads * sizeof(HANDLE));
for(intptr_t i = 0; i < THREADS; i++) { for (intptr_t i = 0; i < nthreads; i++) {
thandles[i] = CreateThread(0,4096,&thread_entry,(void*)(i),0,&tids[i]); thandles[i] = CreateThread(0, 4096, &thread_entry, (void*)(i), 0, &tids[i]);
} }
for (int i = 0; i < THREADS; i++) { for (int i = 0; i < nthreads; i++) {
WaitForSingleObject(thandles[i], INFINITE); WaitForSingleObject(thandles[i], INFINITE);
} }
} }
static void* atomic_exchange_ptr(volatile void** p, void* newval) {
#if (INTPTR_MAX == UINT32_MAX)
return (void*)InterlockedExchange((volatile LONG*)p, (LONG)newval);
#else
return (void*)InterlockedExchange64((volatile LONG64*)p, (LONG64)newval);
#endif
}
#else #else
#include <pthread.h> #include <pthread.h>
#include <stdatomic.h>
static void* thread_entry( void* param ) { static void* thread_entry(void* param) {
stress((uintptr_t)param); stress((uintptr_t)param);
return NULL; return NULL;
} }
static void run_os_threads() { static void run_os_threads(size_t nthreads) {
pthread_t threads[THREADS]; pthread_t* threads = (pthread_t*)mi_malloc(nthreads*sizeof(pthread_t));
memset(threads,0,sizeof(pthread_t)*THREADS); memset(threads, 0, sizeof(pthread_t)*nthreads);
//pthread_setconcurrency(THREADS); //pthread_setconcurrency(nthreads);
for(uintptr_t i = 0; i < THREADS; i++) { for (uintptr_t i = 0; i < nthreads; i++) {
pthread_create(&threads[i], NULL, &thread_entry, (void*)i); pthread_create(&threads[i], NULL, &thread_entry, (void*)i);
} }
for (size_t i = 0; i < THREADS; i++) { for (size_t i = 0; i < nthreads; i++) {
pthread_join(threads[i], NULL); pthread_join(threads[i], NULL);
} }
} }
static void* atomic_exchange_ptr(volatile void** p, void* newval) {
return atomic_exchange_explicit((volatile _Atomic(void*)*)p, newval, memory_order_acquire);
}
#endif #endif