refactor segment cache and map in a separate source file

This commit is contained in:
daan 2020-09-08 13:27:34 -07:00
parent 161f9a7751
commit 037285ac09
16 changed files with 378 additions and 365 deletions

View File

@ -31,6 +31,7 @@ set(mi_sources
src/os.c
src/bitmap.c
src/arena.c
src/segment-cache.c
src/segment.c
src/page.c
src/alloc.c

View File

@ -246,6 +246,7 @@
</ClCompile>
<ClCompile Include="..\..\src\page.c" />
<ClCompile Include="..\..\src\random.c" />
<ClCompile Include="..\..\src\segment-cache.c" />
<ClCompile Include="..\..\src\segment.c" />
<ClCompile Include="..\..\src\stats.c" />
</ItemGroup>

View File

@ -79,5 +79,8 @@
<ClCompile Include="..\..\src\bitmap.c">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="..\..\src\segment-cache.c">
<Filter>Source Files</Filter>
</ClCompile>
</ItemGroup>
</Project>

View File

@ -242,6 +242,7 @@
</ClCompile>
<ClCompile Include="..\..\src\page.c" />
<ClCompile Include="..\..\src\random.c" />
<ClCompile Include="..\..\src\segment-cache.c" />
<ClCompile Include="..\..\src\segment.c" />
<ClCompile Include="..\..\src\os.c" />
<ClCompile Include="..\..\src\stats.c" />

View File

@ -62,6 +62,9 @@
<ClCompile Include="..\..\src\bitmap.c">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="..\..\src\segment-cache.c">
<Filter>Source Files</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ClInclude Include="$(ProjectDir)..\..\include\mimalloc.h">

View File

@ -246,6 +246,7 @@
</ClCompile>
<ClCompile Include="..\..\src\page.c" />
<ClCompile Include="..\..\src\random.c" />
<ClCompile Include="..\..\src\segment-cache.c" />
<ClCompile Include="..\..\src\segment.c" />
<ClCompile Include="..\..\src\stats.c" />
</ItemGroup>

View File

@ -46,6 +46,9 @@
<ClCompile Include="..\..\src\bitmap.c">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="..\..\src\segment-cache.c">
<Filter>Source Files</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ClInclude Include="$(ProjectDir)..\..\include\mimalloc.h">
@ -67,7 +70,7 @@
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="..\..\src\bitmap.h">
<Filter>Source Files</Filter>
<Filter>Header Files</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>

View File

@ -234,6 +234,7 @@
</ClCompile>
<ClCompile Include="..\..\src\page.c" />
<ClCompile Include="..\..\src\random.c" />
<ClCompile Include="..\..\src\segment-cache.c" />
<ClCompile Include="..\..\src\segment.c" />
<ClCompile Include="..\..\src\os.c" />
<ClCompile Include="..\..\src\stats.c" />

View File

@ -49,6 +49,9 @@
<ClCompile Include="..\..\src\bitmap.c">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="..\..\src\segment-cache.c">
<Filter>Source Files</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ClInclude Include="$(ProjectDir)..\..\include\mimalloc.h">

View File

@ -62,19 +62,24 @@ void _mi_os_init(void); // called fro
void* _mi_os_alloc(size_t size, mi_stats_t* stats); // to allocate thread local data
void _mi_os_free(void* p, size_t size, mi_stats_t* stats); // to free thread local data
bool _mi_os_protect(void* addr, size_t size);
bool _mi_os_unprotect(void* addr, size_t size);
bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* stats);
bool _mi_os_decommit(void* p, size_t size, mi_stats_t* stats);
bool _mi_os_reset(void* p, size_t size, mi_stats_t* stats);
bool _mi_os_unreset(void* p, size_t size, bool* is_zero, mi_stats_t* stats);
size_t _mi_os_good_alloc_size(size_t size);
bool _mi_os_protect(void* addr, size_t size);
bool _mi_os_unprotect(void* addr, size_t size);
bool _mi_os_commit(void* addr, size_t size, bool* is_zero, mi_stats_t* stats);
bool _mi_os_decommit(void* p, size_t size, mi_stats_t* stats);
bool _mi_os_reset(void* p, size_t size, mi_stats_t* stats);
bool _mi_os_unreset(void* p, size_t size, bool* is_zero, mi_stats_t* stats);
size_t _mi_os_good_alloc_size(size_t size);
// arena.c
void* _mi_arena_alloc_aligned(size_t size, size_t alignment, bool commit, mi_commit_mask_t* commit_mask, bool* large, bool* is_zero, size_t* memid, mi_os_tld_t* tld);
void* _mi_arena_alloc(size_t size, bool commit, mi_commit_mask_t* commit_mask, bool* large, bool* is_zero, size_t* memid, mi_os_tld_t* tld);
void _mi_arena_free(void* p, size_t size, size_t memid, mi_commit_mask_t commit_mask, bool is_large, mi_os_tld_t* tld);
void* _mi_arena_alloc_aligned(size_t size, size_t alignment, bool* commit, bool* large, bool* is_zero, size_t* memid, mi_os_tld_t* tld);
void* _mi_arena_alloc(size_t size, bool* commit, bool* large, bool* is_zero, size_t* memid, mi_os_tld_t* tld);
void _mi_arena_free(void* p, size_t size, size_t memid, bool is_committed, mi_os_tld_t* tld);
// "segment-cache.c"
void* _mi_segment_cache_pop(size_t size, mi_commit_mask_t* commit_mask, bool* large, bool* is_zero, size_t* memid, mi_os_tld_t* tld);
bool _mi_segment_cache_push(void* start, size_t size, size_t memid, mi_commit_mask_t commit_mask, bool is_large, mi_os_tld_t* tld);
void _mi_segment_map_allocated_at(const mi_segment_t* segment);
void _mi_segment_map_freed_at(const mi_segment_t* segment);
// "segment.c"
mi_page_t* _mi_segment_page_alloc(mi_heap_t* heap, size_t block_wsize, mi_segments_tld_t* tld, mi_os_tld_t* os_tld);
@ -463,6 +468,10 @@ static inline size_t mi_page_usable_block_size(const mi_page_t* page) {
return mi_page_block_size(page) - MI_PADDING_SIZE;
}
// size of a segment
static inline size_t mi_segment_size(mi_segment_t* segment) {
return segment->segment_slices * MI_SEGMENT_SLICE_SIZE;
}
// Thread free access
static inline mi_block_t* mi_page_thread_free(const mi_page_t* page) {

View File

@ -114,6 +114,7 @@ terms of the MIT license. A copy of the license can be found in the file
// Derived constants
#define MI_SEGMENT_SIZE (1ULL<<MI_SEGMENT_SHIFT)
#define MI_SEGMENT_ALIGN MI_SEGMENT_SIZE
#define MI_SEGMENT_MASK (MI_SEGMENT_SIZE - 1)
#define MI_SEGMENT_SLICE_SIZE (1ULL<< MI_SEGMENT_SLICE_SHIFT)
#define MI_SLICES_PER_SEGMENT (MI_SEGMENT_SIZE / MI_SEGMENT_SLICE_SIZE) // 1024

View File

@ -1,6 +1,5 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2019, Microsoft Research, Daan Leijen
Copyright (c) 2019, 2020, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
@ -49,7 +48,6 @@ bool _mi_os_commit(void* p, size_t size, bool* is_zero, mi_stats_t* stats);
// Block info: bit 0 contains the `in_use` bit, the upper bits the
// size in count of arena blocks.
typedef uintptr_t mi_block_info_t;
#define MI_SEGMENT_ALIGN MI_SEGMENT_SIZE
#define MI_ARENA_BLOCK_SIZE MI_SEGMENT_SIZE // 8MiB
#define MI_ARENA_MIN_OBJ_SIZE (MI_ARENA_BLOCK_SIZE/2) // 4MiB
#define MI_MAX_ARENAS (64) // not more than 256 (since we use 8 bits in the memid)
@ -113,190 +111,6 @@ static bool mi_arena_alloc(mi_arena_t* arena, size_t blocks, mi_bitmap_index_t*
}
/* -----------------------------------------------------------
Arena cache
----------------------------------------------------------- */
#define MI_CACHE_FIELDS (16)
#define MI_CACHE_MAX (MI_BITMAP_FIELD_BITS*MI_CACHE_FIELDS) // 1024 on 64-bit
#define MI_CACHE_BITS_SET MI_INIT16(BITS_SET)
typedef struct mi_cache_slot_s {
void* p;
size_t memid;
mi_commit_mask_t commit_mask;
_Atomic(mi_msecs_t) expire;
} mi_cache_slot_t;
static mi_cache_slot_t cache[MI_CACHE_MAX]; // = 0
#define BITS_SET() ATOMIC_VAR_INIT(UINTPTR_MAX)
static mi_bitmap_field_t cache_available[MI_CACHE_FIELDS] = { MI_CACHE_BITS_SET }; // zero bit = available!
static mi_bitmap_field_t cache_available_large[MI_CACHE_FIELDS] = { MI_CACHE_BITS_SET };
static mi_bitmap_field_t cache_inuse[MI_CACHE_FIELDS]; // zero bit = free
static mi_decl_noinline void* mi_cache_pop(int numa_node, size_t size, size_t alignment, bool commit, mi_commit_mask_t* commit_mask, bool* large, bool* is_zero, size_t* memid, mi_os_tld_t* tld) {
UNUSED(tld);
UNUSED(commit);
// only segment blocks
if (size != MI_SEGMENT_SIZE || alignment > MI_SEGMENT_ALIGN) return NULL;
// numa node determines start field
size_t start_field = 0;
if (numa_node > 0) {
start_field = (MI_CACHE_FIELDS / _mi_os_numa_node_count())*numa_node;
if (start_field >= MI_CACHE_FIELDS) start_field = 0;
}
// find an available slot
mi_bitmap_index_t bitidx = 0;
bool claimed = false;
if (*large) { // large allowed?
claimed = _mi_bitmap_try_find_from_claim(cache_available_large, MI_CACHE_FIELDS, start_field, 1, &bitidx);
if (claimed) *large = true;
}
if (!claimed) {
claimed = _mi_bitmap_try_find_from_claim(cache_available, MI_CACHE_FIELDS, start_field, 1, &bitidx);
if (claimed) *large = false;
}
if (!claimed) return NULL;
// found a slot
mi_cache_slot_t* slot = &cache[mi_bitmap_index_bit(bitidx)];
void* p = slot->p;
*memid = slot->memid;
*is_zero = false;
mi_commit_mask_t cmask = slot->commit_mask; // copy
slot->p = NULL;
mi_atomic_storei64_release(&slot->expire,(mi_msecs_t)0);
// ignore commit request
/*
if (commit && !mi_commit_mask_is_full(cmask)) {
bool commit_zero;
bool ok = _mi_os_commit(p, MI_SEGMENT_SIZE, &commit_zero, tld->stats); // todo: only commit needed parts?
if (!ok) {
*commit_mask = cmask;
}
else {
*commit_mask = mi_commit_mask_full();
}
}
else {
*/
*commit_mask = cmask;
// mark the slot as free again
mi_assert_internal(_mi_bitmap_is_claimed(cache_inuse, MI_CACHE_FIELDS, 1, bitidx));
_mi_bitmap_unclaim(cache_inuse, MI_CACHE_FIELDS, 1, bitidx);
return p;
}
static mi_decl_noinline void mi_commit_mask_decommit(mi_commit_mask_t* cmask, void* p, size_t total, mi_stats_t* stats) {
if (mi_commit_mask_is_empty(*cmask)) {
// nothing
}
else if (mi_commit_mask_is_full(*cmask)) {
_mi_os_decommit(p, total, stats);
}
else {
// todo: one call to decommit the whole at once?
mi_assert_internal((total%MI_COMMIT_MASK_BITS)==0);
size_t part = total/MI_COMMIT_MASK_BITS;
uintptr_t idx;
uintptr_t count;
mi_commit_mask_t mask = *cmask;
mi_commit_mask_foreach(mask, idx, count) {
void* start = (uint8_t*)p + (idx*part);
size_t size = count*part;
_mi_os_decommit(start, size, stats);
}
mi_commit_mask_foreach_end()
}
*cmask = mi_commit_mask_empty();
}
static mi_decl_noinline void mi_cache_purge(mi_os_tld_t* tld) {
UNUSED(tld);
mi_msecs_t now = _mi_clock_now();
size_t idx = (_mi_random_shuffle((uintptr_t)now) % MI_CACHE_MAX); // random start
size_t purged = 0;
for (size_t visited = 0; visited < MI_CACHE_FIELDS; visited++,idx++) { // probe just N slots
if (idx >= MI_CACHE_MAX) idx = 0; // wrap
mi_cache_slot_t* slot = &cache[idx];
mi_msecs_t expire = mi_atomic_loadi64_relaxed(&slot->expire);
if (expire != 0 && now >= expire) { // racy read
// seems expired, first claim it from available
purged++;
mi_bitmap_index_t bitidx = mi_bitmap_index_create_from_bit(idx);
if (_mi_bitmap_claim(cache_available, MI_CACHE_FIELDS, 1, bitidx, NULL)) {
// was available, we claimed it
expire = mi_atomic_loadi64_acquire(&slot->expire);
if (expire != 0 && now >= expire) { // safe read
// still expired, decommit it
mi_atomic_storei64_relaxed(&slot->expire,(mi_msecs_t)0);
mi_assert_internal(!mi_commit_mask_is_empty(slot->commit_mask) && _mi_bitmap_is_claimed(cache_available_large, MI_CACHE_FIELDS, 1, bitidx));
_mi_abandoned_await_readers(); // wait until safe to decommit
// decommit committed parts
mi_commit_mask_decommit(&slot->commit_mask, slot->p, MI_SEGMENT_SIZE, tld->stats);
//_mi_os_decommit(slot->p, MI_SEGMENT_SIZE, tld->stats);
}
_mi_bitmap_unclaim(cache_available, MI_CACHE_FIELDS, 1, bitidx); // make it available again for a pop
}
if (purged > 4) break; // bound to no more than 4 purge tries per push
}
}
}
static mi_decl_noinline bool mi_cache_push(void* start, size_t size, size_t memid, mi_commit_mask_t commit_mask, bool is_large, mi_os_tld_t* tld)
{
// only for segment blocks
if (size != MI_SEGMENT_SIZE || ((uintptr_t)start % MI_SEGMENT_ALIGN) != 0) return false;
// numa node determines start field
int numa_node = _mi_os_numa_node(NULL);
size_t start_field = 0;
if (numa_node > 0) {
start_field = (MI_CACHE_FIELDS / _mi_os_numa_node_count())*numa_node;
if (start_field >= MI_CACHE_FIELDS) start_field = 0;
}
// purge expired entries
mi_cache_purge(tld);
// find an available slot
mi_bitmap_index_t bitidx;
bool claimed = _mi_bitmap_try_find_from_claim(cache_inuse, MI_CACHE_FIELDS, start_field, 1, &bitidx);
if (!claimed) return false;
mi_assert_internal(_mi_bitmap_is_claimed(cache_available, MI_CACHE_FIELDS, 1, bitidx));
mi_assert_internal(_mi_bitmap_is_claimed(cache_available_large, MI_CACHE_FIELDS, 1, bitidx));
// set the slot
mi_cache_slot_t* slot = &cache[mi_bitmap_index_bit(bitidx)];
slot->p = start;
slot->memid = memid;
mi_atomic_storei64_relaxed(&slot->expire,(mi_msecs_t)0);
slot->commit_mask = commit_mask;
if (!mi_commit_mask_is_empty(commit_mask) && !is_large) {
long delay = mi_option_get(mi_option_arena_reset_delay);
if (delay == 0) {
_mi_abandoned_await_readers(); // wait until safe to decommit
mi_commit_mask_decommit(&slot->commit_mask, start, MI_SEGMENT_SIZE, tld->stats);
}
else {
mi_atomic_storei64_release(&slot->expire, _mi_clock_now() + delay);
}
}
// make it available
_mi_bitmap_unclaim((is_large ? cache_available_large : cache_available), MI_CACHE_FIELDS, 1, bitidx);
return true;
}
/* -----------------------------------------------------------
Arena Allocation
----------------------------------------------------------- */
@ -333,7 +147,7 @@ static mi_decl_noinline void* mi_arena_alloc_from(mi_arena_t* arena, size_t aren
return p;
}
static mi_decl_noinline void* mi_arena_allocate(int numa_node, size_t size, size_t alignment, bool commit, mi_commit_mask_t* commit_mask, bool* large, bool* is_zero, size_t* memid, mi_os_tld_t* tld)
static mi_decl_noinline void* mi_arena_allocate(int numa_node, size_t size, size_t alignment, bool* commit, bool* large, bool* is_zero, size_t* memid, mi_os_tld_t* tld)
{
UNUSED_RELEASE(alignment);
mi_assert_internal(alignment <= MI_SEGMENT_ALIGN);
@ -349,11 +163,9 @@ static mi_decl_noinline void* mi_arena_allocate(int numa_node, size_t size, size
if ((arena->numa_node<0 || arena->numa_node==numa_node) && // numa local?
(*large || !arena->is_large)) // large OS pages allowed, or arena is not large OS pages
{
bool acommit = commit;
void* p = mi_arena_alloc_from(arena, i, bcount, &acommit, large, is_zero, memid, tld);
void* p = mi_arena_alloc_from(arena, i, bcount, commit, large, is_zero, memid, tld);
mi_assert_internal((uintptr_t)p % alignment == 0);
if (p != NULL) {
*commit_mask = (acommit ? mi_commit_mask_full() : mi_commit_mask_empty());
return p;
}
}
@ -366,11 +178,9 @@ static mi_decl_noinline void* mi_arena_allocate(int numa_node, size_t size, size
if ((arena->numa_node>=0 && arena->numa_node!=numa_node) && // not numa local!
(*large || !arena->is_large)) // large OS pages allowed, or arena is not large OS pages
{
bool acommit = commit;
void* p = mi_arena_alloc_from(arena, i, bcount, &acommit, large, is_zero, memid, tld);
void* p = mi_arena_alloc_from(arena, i, bcount, commit, large, is_zero, memid, tld);
mi_assert_internal((uintptr_t)p % alignment == 0);
if (p != NULL) {
*commit_mask = (acommit ? mi_commit_mask_full() : mi_commit_mask_empty());
return p;
}
}
@ -379,11 +189,10 @@ static mi_decl_noinline void* mi_arena_allocate(int numa_node, size_t size, size
}
void* _mi_arena_alloc_aligned(size_t size, size_t alignment,
bool commit, mi_commit_mask_t* commit_mask, bool* large, bool* is_zero,
void* _mi_arena_alloc_aligned(size_t size, size_t alignment, bool* commit, bool* large, bool* is_zero,
size_t* memid, mi_os_tld_t* tld)
{
mi_assert_internal(commit_mask != NULL && large != NULL && is_zero != NULL && memid != NULL && tld != NULL);
mi_assert_internal(commit != NULL && large != NULL && is_zero != NULL && memid != NULL && tld != NULL);
mi_assert_internal(size > 0);
*memid = MI_MEMID_OS;
*is_zero = false;
@ -392,49 +201,35 @@ void* _mi_arena_alloc_aligned(size_t size, size_t alignment,
if (large==NULL) large = &default_large; // ensure `large != NULL`
const int numa_node = _mi_os_numa_node(tld); // current numa node
// try to get from the cache
if (size == MI_SEGMENT_SIZE && alignment <= MI_SEGMENT_ALIGN) {
void* p = mi_cache_pop(numa_node, size, alignment, commit, commit_mask, large, is_zero, memid, tld);
if (p != NULL) return p;
}
// try to allocate in an arena if the alignment is small enough and the object is not too small (as for heap meta data)
if (size >= MI_ARENA_MIN_OBJ_SIZE && alignment <= MI_SEGMENT_ALIGN) {
void* p = mi_arena_allocate(numa_node, size, alignment, commit, commit_mask, large, is_zero, memid, tld);
void* p = mi_arena_allocate(numa_node, size, alignment, commit, large, is_zero, memid, tld);
if (p != NULL) return p;
}
// finally, fall back to the OS
*is_zero = true;
*memid = MI_MEMID_OS;
void* p = _mi_os_alloc_aligned(size, alignment, commit, large, tld->stats);
*commit_mask = ((p!=NULL && commit) ? mi_commit_mask_full() : mi_commit_mask_empty());
return p;
return _mi_os_alloc_aligned(size, alignment, *commit, large, tld->stats);
}
void* _mi_arena_alloc(size_t size, bool commit, mi_commit_mask_t* commit_mask, bool* large, bool* is_zero, size_t* memid, mi_os_tld_t* tld)
void* _mi_arena_alloc(size_t size, bool* commit, bool* large, bool* is_zero, size_t* memid, mi_os_tld_t* tld)
{
return _mi_arena_alloc_aligned(size, MI_ARENA_BLOCK_SIZE, commit, commit_mask, large, is_zero, memid, tld);
return _mi_arena_alloc_aligned(size, MI_ARENA_BLOCK_SIZE, commit, large, is_zero, memid, tld);
}
/* -----------------------------------------------------------
Arena free
----------------------------------------------------------- */
void _mi_arena_free(void* p, size_t size, size_t memid, mi_commit_mask_t commit_mask, bool is_large, mi_os_tld_t* tld) {
void _mi_arena_free(void* p, size_t size, size_t memid, bool is_committed, mi_os_tld_t* tld) {
mi_assert_internal(size > 0 && tld->stats != NULL);
if (p==NULL) return;
if (size==0) return;
if (memid == MI_MEMID_OS) {
// was a direct OS allocation, pass through
if (!mi_cache_push(p, size, memid, commit_mask, is_large, tld)) {
_mi_abandoned_await_readers(); // wait until safe to free
// TODO: is it safe on all platforms to free even it contains decommitted parts? (eg. macOS)
const size_t csize = mi_commit_mask_committed_size(commit_mask, size);
_mi_stat_decrease(&_mi_stats_main.committed, csize);
_mi_os_free_ex(p, size, false /*pretend decommitted to not double count stats*/, tld->stats);
}
_mi_os_free_ex(p, size, is_committed, tld->stats);
}
else {
// allocated in an arena

View File

@ -40,7 +40,7 @@ static inline uintptr_t mi_bitmap_mask_(size_t count, size_t bitidx) {
// Try to atomically claim a sequence of `count` bits in a single
// field at `idx` in `bitmap`. Returns `true` on success.
bool _mi_bitmap_try_find_claim_field(mi_bitmap_t bitmap, size_t idx, const size_t count, mi_bitmap_index_t* bitmap_idx)
inline bool _mi_bitmap_try_find_claim_field(mi_bitmap_t bitmap, size_t idx, const size_t count, mi_bitmap_index_t* bitmap_idx)
{
mi_assert_internal(bitmap_idx != NULL);
mi_assert_internal(count <= MI_BITMAP_FIELD_BITS);

310
src/segment-cache.c Normal file
View File

@ -0,0 +1,310 @@
/* ----------------------------------------------------------------------------
Copyright (c) 2020, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
/* ----------------------------------------------------------------------------
Implements a cache of segments to avoid expensive OS calls
and also the full memory map of all segments.
-----------------------------------------------------------------------------*/
#include "mimalloc.h"
#include "mimalloc-internal.h"
#include "mimalloc-atomic.h"
#include "bitmap.h" // atomic bitmap
#define MI_CACHE_FIELDS (16)
#define MI_CACHE_MAX (MI_BITMAP_FIELD_BITS*MI_CACHE_FIELDS) // 1024 on 64-bit
#define BITS_SET() ATOMIC_VAR_INIT(UINTPTR_MAX)
#define MI_CACHE_BITS_SET MI_INIT16(BITS_SET)
typedef struct mi_cache_slot_s {
void* p;
size_t memid;
mi_commit_mask_t commit_mask;
_Atomic(mi_msecs_t) expire;
} mi_cache_slot_t;
static mi_decl_cache_align mi_cache_slot_t cache[MI_CACHE_MAX]; // = 0
static mi_decl_cache_align mi_bitmap_field_t cache_available[MI_CACHE_FIELDS] = { MI_CACHE_BITS_SET }; // zero bit = available!
static mi_decl_cache_align mi_bitmap_field_t cache_available_large[MI_CACHE_FIELDS] = { MI_CACHE_BITS_SET };
static mi_decl_cache_align mi_bitmap_field_t cache_inuse[MI_CACHE_FIELDS]; // zero bit = free
mi_decl_noinline void* _mi_segment_cache_pop(size_t size, mi_commit_mask_t* commit_mask, bool* large, bool* is_zero, size_t* memid, mi_os_tld_t* tld)
{
// only segment blocks
if (size != MI_SEGMENT_SIZE) return NULL;
// numa node determines start field
const int numa_node = _mi_os_numa_node(tld);
size_t start_field = 0;
if (numa_node > 0) {
start_field = (MI_CACHE_FIELDS / _mi_os_numa_node_count())*numa_node;
if (start_field >= MI_CACHE_FIELDS) start_field = 0;
}
// find an available slot
mi_bitmap_index_t bitidx = 0;
bool claimed = false;
if (*large) { // large allowed?
claimed = _mi_bitmap_try_find_from_claim(cache_available_large, MI_CACHE_FIELDS, start_field, 1, &bitidx);
if (claimed) *large = true;
}
if (!claimed) {
claimed = _mi_bitmap_try_find_from_claim(cache_available, MI_CACHE_FIELDS, start_field, 1, &bitidx);
if (claimed) *large = false;
}
if (!claimed) return NULL;
// found a slot
mi_cache_slot_t* slot = &cache[mi_bitmap_index_bit(bitidx)];
void* p = slot->p;
*memid = slot->memid;
*is_zero = false;
mi_commit_mask_t cmask = slot->commit_mask; // copy
slot->p = NULL;
mi_atomic_storei64_release(&slot->expire,(mi_msecs_t)0);
*commit_mask = cmask;
// mark the slot as free again
mi_assert_internal(_mi_bitmap_is_claimed(cache_inuse, MI_CACHE_FIELDS, 1, bitidx));
_mi_bitmap_unclaim(cache_inuse, MI_CACHE_FIELDS, 1, bitidx);
return p;
}
static mi_decl_noinline void mi_commit_mask_decommit(mi_commit_mask_t* cmask, void* p, size_t total, mi_stats_t* stats)
{
if (mi_commit_mask_is_empty(*cmask)) {
// nothing
}
else if (mi_commit_mask_is_full(*cmask)) {
_mi_os_decommit(p, total, stats);
}
else {
// todo: one call to decommit the whole at once?
mi_assert_internal((total%MI_COMMIT_MASK_BITS)==0);
size_t part = total/MI_COMMIT_MASK_BITS;
uintptr_t idx;
uintptr_t count;
mi_commit_mask_t mask = *cmask;
mi_commit_mask_foreach(mask, idx, count) {
void* start = (uint8_t*)p + (idx*part);
size_t size = count*part;
_mi_os_decommit(start, size, stats);
}
mi_commit_mask_foreach_end()
}
*cmask = mi_commit_mask_empty();
}
#define MI_MAX_PURGE_PER_PUSH (4)
static mi_decl_noinline void mi_segment_cache_purge(mi_os_tld_t* tld)
{
UNUSED(tld);
mi_msecs_t now = _mi_clock_now();
size_t idx = (_mi_random_shuffle((uintptr_t)now) % MI_CACHE_MAX); // random start
size_t purged = 0;
for (size_t visited = 0; visited < MI_CACHE_FIELDS; visited++,idx++) { // probe just N slots
if (idx >= MI_CACHE_MAX) idx = 0; // wrap
mi_cache_slot_t* slot = &cache[idx];
mi_msecs_t expire = mi_atomic_loadi64_relaxed(&slot->expire);
if (expire != 0 && now >= expire) { // racy read
// seems expired, first claim it from available
purged++;
mi_bitmap_index_t bitidx = mi_bitmap_index_create_from_bit(idx);
if (_mi_bitmap_claim(cache_available, MI_CACHE_FIELDS, 1, bitidx, NULL)) {
// was available, we claimed it
expire = mi_atomic_loadi64_acquire(&slot->expire);
if (expire != 0 && now >= expire) { // safe read
// still expired, decommit it
mi_atomic_storei64_relaxed(&slot->expire,(mi_msecs_t)0);
mi_assert_internal(!mi_commit_mask_is_empty(slot->commit_mask) && _mi_bitmap_is_claimed(cache_available_large, MI_CACHE_FIELDS, 1, bitidx));
_mi_abandoned_await_readers(); // wait until safe to decommit
// decommit committed parts
// TODO: instead of decommit, we could also free to the OS?
mi_commit_mask_decommit(&slot->commit_mask, slot->p, MI_SEGMENT_SIZE, tld->stats);
}
_mi_bitmap_unclaim(cache_available, MI_CACHE_FIELDS, 1, bitidx); // make it available again for a pop
}
if (purged > MI_MAX_PURGE_PER_PUSH) break; // bound to no more than N purge tries per push
}
}
}
mi_decl_noinline bool _mi_segment_cache_push(void* start, size_t size, size_t memid, mi_commit_mask_t commit_mask, bool is_large, mi_os_tld_t* tld)
{
// only for normal segment blocks
if (size != MI_SEGMENT_SIZE || ((uintptr_t)start % MI_SEGMENT_ALIGN) != 0) return false;
// numa node determines start field
int numa_node = _mi_os_numa_node(NULL);
size_t start_field = 0;
if (numa_node > 0) {
start_field = (MI_CACHE_FIELDS / _mi_os_numa_node_count())*numa_node;
if (start_field >= MI_CACHE_FIELDS) start_field = 0;
}
// purge expired entries
mi_segment_cache_purge(tld);
// find an available slot
mi_bitmap_index_t bitidx;
bool claimed = _mi_bitmap_try_find_from_claim(cache_inuse, MI_CACHE_FIELDS, start_field, 1, &bitidx);
if (!claimed) return false;
mi_assert_internal(_mi_bitmap_is_claimed(cache_available, MI_CACHE_FIELDS, 1, bitidx));
mi_assert_internal(_mi_bitmap_is_claimed(cache_available_large, MI_CACHE_FIELDS, 1, bitidx));
// set the slot
mi_cache_slot_t* slot = &cache[mi_bitmap_index_bit(bitidx)];
slot->p = start;
slot->memid = memid;
mi_atomic_storei64_relaxed(&slot->expire,(mi_msecs_t)0);
slot->commit_mask = commit_mask;
if (!mi_commit_mask_is_empty(commit_mask) && !is_large) {
long delay = mi_option_get(mi_option_arena_reset_delay);
if (delay == 0) {
_mi_abandoned_await_readers(); // wait until safe to decommit
mi_commit_mask_decommit(&slot->commit_mask, start, MI_SEGMENT_SIZE, tld->stats);
}
else {
mi_atomic_storei64_release(&slot->expire, _mi_clock_now() + delay);
}
}
// make it available
_mi_bitmap_unclaim((is_large ? cache_available_large : cache_available), MI_CACHE_FIELDS, 1, bitidx);
return true;
}
/* -----------------------------------------------------------
The following functions are to reliably find the segment or
block that encompasses any pointer p (or NULL if it is not
in any of our segments).
We maintain a bitmap of all memory with 1 bit per MI_SEGMENT_SIZE (64MiB)
set to 1 if it contains the segment meta data.
----------------------------------------------------------- */
#if (MI_INTPTR_SIZE==8)
#define MI_MAX_ADDRESS ((size_t)20 << 40) // 20TB
#else
#define MI_MAX_ADDRESS ((size_t)2 << 30) // 2Gb
#endif
#define MI_SEGMENT_MAP_BITS (MI_MAX_ADDRESS / MI_SEGMENT_SIZE)
#define MI_SEGMENT_MAP_SIZE (MI_SEGMENT_MAP_BITS / 8)
#define MI_SEGMENT_MAP_WSIZE (MI_SEGMENT_MAP_SIZE / MI_INTPTR_SIZE)
static _Atomic(uintptr_t)mi_segment_map[MI_SEGMENT_MAP_WSIZE]; // 2KiB per TB with 64MiB segments
static size_t mi_segment_map_index_of(const mi_segment_t* segment, size_t* bitidx) {
mi_assert_internal(_mi_ptr_segment(segment) == segment); // is it aligned on MI_SEGMENT_SIZE?
uintptr_t segindex = ((uintptr_t)segment % MI_MAX_ADDRESS) / MI_SEGMENT_SIZE;
*bitidx = segindex % (8*MI_INTPTR_SIZE);
return (segindex / (8*MI_INTPTR_SIZE));
}
void _mi_segment_map_allocated_at(const mi_segment_t* segment) {
size_t bitidx;
size_t index = mi_segment_map_index_of(segment, &bitidx);
mi_assert_internal(index < MI_SEGMENT_MAP_WSIZE);
if (index==0) return;
uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]);
uintptr_t newmask;
do {
newmask = (mask | ((uintptr_t)1 << bitidx));
} while (!mi_atomic_cas_weak_release(&mi_segment_map[index], &mask, newmask));
}
void _mi_segment_map_freed_at(const mi_segment_t* segment) {
size_t bitidx;
size_t index = mi_segment_map_index_of(segment, &bitidx);
mi_assert_internal(index < MI_SEGMENT_MAP_WSIZE);
if (index == 0) return;
uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]);
uintptr_t newmask;
do {
newmask = (mask & ~((uintptr_t)1 << bitidx));
} while (!mi_atomic_cas_weak_release(&mi_segment_map[index], &mask, newmask));
}
// Determine the segment belonging to a pointer or NULL if it is not in a valid segment.
static mi_segment_t* _mi_segment_of(const void* p) {
mi_segment_t* segment = _mi_ptr_segment(p);
size_t bitidx;
size_t index = mi_segment_map_index_of(segment, &bitidx);
// fast path: for any pointer to valid small/medium/large object or first MI_SEGMENT_SIZE in huge
const uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]);
if (mi_likely((mask & ((uintptr_t)1 << bitidx)) != 0)) {
return segment; // yes, allocated by us
}
if (index==0) return NULL;
// search downwards for the first segment in case it is an interior pointer
// could be slow but searches in MI_INTPTR_SIZE * MI_SEGMENT_SIZE (512MiB) steps trough
// valid huge objects
// note: we could maintain a lowest index to speed up the path for invalid pointers?
size_t lobitidx;
size_t loindex;
uintptr_t lobits = mask & (((uintptr_t)1 << bitidx) - 1);
if (lobits != 0) {
loindex = index;
lobitidx = mi_bsr(lobits); // lobits != 0
}
else {
uintptr_t lomask = mask;
loindex = index - 1;
while (loindex > 0 && (lomask = mi_atomic_load_relaxed(&mi_segment_map[loindex])) == 0) loindex--;
if (loindex==0) return NULL;
lobitidx = mi_bsr(lomask); // lomask != 0
}
// take difference as the addresses could be larger than the MAX_ADDRESS space.
size_t diff = (((index - loindex) * (8*MI_INTPTR_SIZE)) + bitidx - lobitidx) * MI_SEGMENT_SIZE;
segment = (mi_segment_t*)((uint8_t*)segment - diff);
if (segment == NULL) return NULL;
mi_assert_internal((void*)segment < p);
bool cookie_ok = (_mi_ptr_cookie(segment) == segment->cookie);
mi_assert_internal(cookie_ok);
if (mi_unlikely(!cookie_ok)) return NULL;
if (((uint8_t*)segment + mi_segment_size(segment)) <= (uint8_t*)p) return NULL; // outside the range
mi_assert_internal(p >= (void*)segment && (uint8_t*)p < (uint8_t*)segment + mi_segment_size(segment));
return segment;
}
// Is this a valid pointer in our heap?
static bool mi_is_valid_pointer(const void* p) {
return (_mi_segment_of(p) != NULL);
}
mi_decl_nodiscard mi_decl_export bool mi_is_in_heap_region(const void* p) mi_attr_noexcept {
return mi_is_valid_pointer(p);
}
/*
// Return the full segment range belonging to a pointer
static void* mi_segment_range_of(const void* p, size_t* size) {
mi_segment_t* segment = _mi_segment_of(p);
if (segment == NULL) {
if (size != NULL) *size = 0;
return NULL;
}
else {
if (size != NULL) *size = segment->segment_size;
return segment;
}
mi_assert_expensive(page == NULL || mi_segment_is_valid(_mi_page_segment(page),tld));
mi_assert_internal(page == NULL || (mi_segment_page_size(_mi_page_segment(page)) - (MI_SECURE == 0 ? 0 : _mi_os_page_size())) >= block_size);
mi_reset_delayed(tld);
mi_assert_internal(page == NULL || mi_page_not_in_queue(page, tld));
return page;
}
*/

View File

@ -13,8 +13,6 @@ terms of the MIT license. A copy of the license can be found in the file
#define MI_PAGE_HUGE_ALIGN (256*1024)
static void mi_segment_map_allocated_at(const mi_segment_t* segment);
static void mi_segment_map_freed_at(const mi_segment_t* segment);
static void mi_segment_delayed_decommit(mi_segment_t* segment, bool force, mi_stats_t* stats);
/* --------------------------------------------------------------------------------
@ -183,11 +181,6 @@ static bool mi_segment_is_valid(mi_segment_t* segment, mi_segments_tld_t* tld) {
Segment size calculations
----------------------------------------------------------- */
static size_t mi_segment_size(mi_segment_t* segment) {
return segment->segment_slices * MI_SEGMENT_SLICE_SIZE;
}
static size_t mi_segment_info_size(mi_segment_t* segment) {
return segment->segment_info_slices * MI_SEGMENT_SLICE_SIZE;
}
@ -249,7 +242,7 @@ static void mi_segments_track_size(long segment_size, mi_segments_tld_t* tld) {
static void mi_segment_os_free(mi_segment_t* segment, mi_segments_tld_t* tld) {
segment->thread_id = 0;
mi_segment_map_freed_at(segment);
_mi_segment_map_freed_at(segment);
mi_segments_track_size(-((long)mi_segment_size(segment)),tld);
if (MI_SECURE>0) {
// _mi_os_unprotect(segment, mi_segment_size(segment)); // ensure no more guard pages are set
@ -264,7 +257,13 @@ static void mi_segment_os_free(mi_segment_t* segment, mi_segments_tld_t* tld) {
// mi_segment_delayed_decommit(segment,true,tld->stats);
// _mi_os_free(segment, mi_segment_size(segment), /*segment->memid,*/ tld->stats);
_mi_arena_free(segment, mi_segment_size(segment), segment->memid, segment->commit_mask, segment->mem_is_fixed, tld->os);
const size_t size = mi_segment_size(segment);
if (size != MI_SEGMENT_SIZE || !_mi_segment_cache_push(segment, size, segment->memid, segment->commit_mask, segment->mem_is_fixed, tld->os)) {
const size_t csize = mi_commit_mask_committed_size(segment->commit_mask, size);
if (csize > 0 && !segment->mem_is_fixed) _mi_stat_decrease(&_mi_stats_main.committed, csize);
_mi_abandoned_await_readers(); // wait until safe to free
_mi_arena_free(segment, mi_segment_size(segment), segment->memid, segment->mem_is_fixed /* pretend not committed to not double count decommits */, tld->os);
}
}
@ -647,7 +646,7 @@ static mi_segment_t* mi_segment_init(mi_segment_t* segment, size_t required, mi_
// Commit eagerly only if not the first N lazy segments (to reduce impact of many threads that allocate just a little)
const bool eager_delay = (tld->count < (size_t)mi_option_get(mi_option_eager_commit_delay));
const bool eager = !eager_delay && mi_option_is_enabled(mi_option_eager_commit);
const bool commit = eager || (required > 0);
bool commit = eager || (required > 0);
// Try to get from our cache first
bool is_zero = false;
@ -657,8 +656,12 @@ static mi_segment_t* mi_segment_init(mi_segment_t* segment, size_t required, mi_
// Allocate the segment from the OS
bool mem_large = (!eager_delay && (MI_SECURE==0)); // only allow large OS pages once we are no longer lazy
size_t memid = 0;
segment = (mi_segment_t*)_mi_arena_alloc_aligned(segment_size, MI_SEGMENT_SIZE, commit, &commit_mask, &mem_large, &is_zero, &memid, os_tld);
if (segment == NULL) return NULL; // failed to allocate
segment = (mi_segment_t*)_mi_segment_cache_pop(segment_size, &commit_mask, &mem_large, &is_zero, &memid, os_tld);
if (segment==NULL) {
segment = (mi_segment_t*)_mi_arena_alloc_aligned(segment_size, MI_SEGMENT_SIZE, &commit, &mem_large, &is_zero, &memid, os_tld);
if (segment == NULL) return NULL; // failed to allocate
commit_mask = (commit ? mi_commit_mask_full() : mi_commit_mask_empty());
}
mi_assert_internal(segment != NULL && (uintptr_t)segment % MI_SEGMENT_SIZE == 0);
const size_t commit_needed = _mi_divide_up(info_slices*MI_SEGMENT_SLICE_SIZE, MI_COMMIT_SIZE);
@ -674,7 +677,7 @@ static mi_segment_t* mi_segment_init(mi_segment_t* segment, size_t required, mi_
segment->mem_is_fixed = mem_large;
segment->mem_is_committed = mi_commit_mask_is_full(commit_mask);
mi_segments_track_size((long)(segment_size), tld);
mi_segment_map_allocated_at(segment);
_mi_segment_map_allocated_at(segment);
}
// zero the segment info? -- not always needed as it is zero initialized from the OS
@ -1368,126 +1371,3 @@ mi_page_t* _mi_segment_page_alloc(mi_heap_t* heap, size_t block_size, mi_segment
}
/* -----------------------------------------------------------
The following functions are to reliably find the segment or
block that encompasses any pointer p (or NULL if it is not
in any of our segments).
We maintain a bitmap of all memory with 1 bit per MI_SEGMENT_SIZE (64MiB)
set to 1 if it contains the segment meta data.
----------------------------------------------------------- */
#if (MI_INTPTR_SIZE==8)
#define MI_MAX_ADDRESS ((size_t)20 << 40) // 20TB
#else
#define MI_MAX_ADDRESS ((size_t)2 << 30) // 2Gb
#endif
#define MI_SEGMENT_MAP_BITS (MI_MAX_ADDRESS / MI_SEGMENT_SIZE)
#define MI_SEGMENT_MAP_SIZE (MI_SEGMENT_MAP_BITS / 8)
#define MI_SEGMENT_MAP_WSIZE (MI_SEGMENT_MAP_SIZE / MI_INTPTR_SIZE)
static _Atomic(uintptr_t) mi_segment_map[MI_SEGMENT_MAP_WSIZE]; // 2KiB per TB with 64MiB segments
static size_t mi_segment_map_index_of(const mi_segment_t* segment, size_t* bitidx) {
mi_assert_internal(_mi_ptr_segment(segment) == segment); // is it aligned on MI_SEGMENT_SIZE?
uintptr_t segindex = ((uintptr_t)segment % MI_MAX_ADDRESS) / MI_SEGMENT_SIZE;
*bitidx = segindex % (8*MI_INTPTR_SIZE);
return (segindex / (8*MI_INTPTR_SIZE));
}
static void mi_segment_map_allocated_at(const mi_segment_t* segment) {
size_t bitidx;
size_t index = mi_segment_map_index_of(segment, &bitidx);
mi_assert_internal(index < MI_SEGMENT_MAP_WSIZE);
if (index==0) return;
uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]);
uintptr_t newmask;
do {
newmask = (mask | ((uintptr_t)1 << bitidx));
} while (!mi_atomic_cas_weak_release(&mi_segment_map[index], &mask, newmask));
}
static void mi_segment_map_freed_at(const mi_segment_t* segment) {
size_t bitidx;
size_t index = mi_segment_map_index_of(segment, &bitidx);
mi_assert_internal(index < MI_SEGMENT_MAP_WSIZE);
if (index == 0) return;
uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]);
uintptr_t newmask;
do {
newmask = (mask & ~((uintptr_t)1 << bitidx));
} while (!mi_atomic_cas_weak_release(&mi_segment_map[index], &mask, newmask));
}
// Determine the segment belonging to a pointer or NULL if it is not in a valid segment.
static mi_segment_t* _mi_segment_of(const void* p) {
mi_segment_t* segment = _mi_ptr_segment(p);
size_t bitidx;
size_t index = mi_segment_map_index_of(segment, &bitidx);
// fast path: for any pointer to valid small/medium/large object or first MI_SEGMENT_SIZE in huge
const uintptr_t mask = mi_atomic_load_relaxed(&mi_segment_map[index]);
if (mi_likely((mask & ((uintptr_t)1 << bitidx)) != 0)) {
return segment; // yes, allocated by us
}
if (index==0) return NULL;
// search downwards for the first segment in case it is an interior pointer
// could be slow but searches in MI_INTPTR_SIZE * MI_SEGMENT_SIZE (512MiB) steps trough
// valid huge objects
// note: we could maintain a lowest index to speed up the path for invalid pointers?
size_t lobitidx;
size_t loindex;
uintptr_t lobits = mask & (((uintptr_t)1 << bitidx) - 1);
if (lobits != 0) {
loindex = index;
lobitidx = mi_bsr(lobits); // lobits != 0
}
else {
uintptr_t lomask = mask;
loindex = index - 1;
while (loindex > 0 && (lomask = mi_atomic_load_relaxed(&mi_segment_map[loindex])) == 0) loindex--;
if (loindex==0) return NULL;
lobitidx = mi_bsr(lomask); // lomask != 0
}
// take difference as the addresses could be larger than the MAX_ADDRESS space.
size_t diff = (((index - loindex) * (8*MI_INTPTR_SIZE)) + bitidx - lobitidx) * MI_SEGMENT_SIZE;
segment = (mi_segment_t*)((uint8_t*)segment - diff);
if (segment == NULL) return NULL;
mi_assert_internal((void*)segment < p);
bool cookie_ok = (_mi_ptr_cookie(segment) == segment->cookie);
mi_assert_internal(cookie_ok);
if (mi_unlikely(!cookie_ok)) return NULL;
if (((uint8_t*)segment + mi_segment_size(segment)) <= (uint8_t*)p) return NULL; // outside the range
mi_assert_internal(p >= (void*)segment && (uint8_t*)p < (uint8_t*)segment + mi_segment_size(segment));
return segment;
}
// Is this a valid pointer in our heap?
static bool mi_is_valid_pointer(const void* p) {
return (_mi_segment_of(p) != NULL);
}
bool mi_is_in_heap_region(const void* p) mi_attr_noexcept {
return mi_is_valid_pointer(p);
}
/*
// Return the full segment range belonging to a pointer
static void* mi_segment_range_of(const void* p, size_t* size) {
mi_segment_t* segment = _mi_segment_of(p);
if (segment == NULL) {
if (size != NULL) *size = 0;
return NULL;
}
else {
if (size != NULL) *size = segment->segment_size;
return segment;
}
mi_assert_expensive(page == NULL || mi_segment_is_valid(_mi_page_segment(page),tld));
mi_assert_internal(page == NULL || (mi_segment_page_size(_mi_page_segment(page)) - (MI_SECURE == 0 ? 0 : _mi_os_page_size())) >= block_size);
mi_reset_delayed(tld);
mi_assert_internal(page == NULL || mi_page_not_in_queue(page, tld));
return page;
}
*/

View File

@ -25,6 +25,7 @@ terms of the MIT license. A copy of the license can be found in the file
#include "os.c"
#include "bitmap.c"
#include "arena.c"
#include "segment-cache.c"
#include "segment.c"
#include "page.c"
#include "heap.c"