2019-07-10 21:52:28 -07:00
|
|
|
/* ----------------------------------------------------------------------------
|
|
|
|
Copyright (c) 2018,2019 Microsoft Research, Daan Leijen
|
|
|
|
This is free software; you can redistribute it and/or modify it under the
|
|
|
|
terms of the MIT license. A copy of the license can be found in the file
|
|
|
|
"LICENSE" at the root of this distribution.
|
|
|
|
-----------------------------------------------------------------------------*/
|
|
|
|
|
|
|
|
/* This is a stress test for the allocator, using multiple threads and
|
|
|
|
transferring objects between threads. This is not a typical workload
|
|
|
|
but uses a random size distribution. Do not use this test as a benchmark!
|
|
|
|
Note: pthreads uses mimalloc to allocate stacks and thus not all
|
|
|
|
memory is freed at the end. (usually the 320 byte chunks).
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include "mimalloc.h"
|
|
|
|
#include "mimalloc-internal.h"
|
|
|
|
#include "mimalloc-atomic.h"
|
|
|
|
|
2019-07-10 21:59:44 -07:00
|
|
|
#define N (10) // scaling factor
|
|
|
|
#define THREADS (32)
|
|
|
|
#define TRANSFERS (1000)
|
2019-07-10 21:52:28 -07:00
|
|
|
|
2019-07-10 21:59:44 -07:00
|
|
|
static volatile void* transfer[TRANSFERS];
|
2019-07-10 21:52:28 -07:00
|
|
|
|
|
|
|
#if (MI_INTPTR_SIZE==8)
|
|
|
|
const uintptr_t cookie = 0xbf58476d1ce4e5b9UL;
|
|
|
|
#else
|
|
|
|
const uintptr_t cookie = 0x1ce4e5b9UL;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
static void* alloc_items(size_t items) {
|
|
|
|
if ((rand()%100) == 0) items *= 100; // 1% huge objects;
|
|
|
|
if (items==40) items++; // pthreads uses that size for stack increases
|
|
|
|
uintptr_t* p = mi_mallocn_tp(uintptr_t,items);
|
2019-07-15 14:53:03 -07:00
|
|
|
if(p == NULL) return NULL;
|
2019-07-10 21:52:28 -07:00
|
|
|
for (uintptr_t i = 0; i < items; i++) p[i] = (items - i) ^ cookie;
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void free_items(void* p) {
|
|
|
|
if (p != NULL) {
|
|
|
|
uintptr_t* q = (uintptr_t*)p;
|
|
|
|
uintptr_t items = (q[0] ^ cookie);
|
|
|
|
for (uintptr_t i = 0; i < items; i++) {
|
|
|
|
if ((q[i]^cookie) != items - i) {
|
|
|
|
fprintf(stderr,"memory corruption at block %p at %zu\n", p, i);
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
mi_free(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void stress(intptr_t tid) {
|
|
|
|
const size_t max_item = 128; // in words
|
|
|
|
const size_t max_item_retained = 10*max_item;
|
|
|
|
size_t allocs = 80*N*(tid%8 + 1); // some threads do more
|
|
|
|
size_t retain = allocs/2;
|
|
|
|
void** data = NULL;
|
|
|
|
size_t data_size = 0;
|
|
|
|
size_t data_top = 0;
|
|
|
|
void** retained = mi_mallocn_tp(void*,retain);
|
|
|
|
size_t retain_top = 0;
|
|
|
|
|
|
|
|
while (allocs>0 || retain>0) {
|
|
|
|
if (retain == 0 || ((rand()%4 == 0) && allocs > 0)) {
|
|
|
|
// 75% alloc
|
|
|
|
allocs--;
|
|
|
|
if (data_top >= data_size) {
|
|
|
|
data_size += 100000;
|
|
|
|
data = mi_reallocn_tp(data, void*, data_size);
|
|
|
|
}
|
|
|
|
data[data_top++] = alloc_items((rand() % max_item) + 1);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
// 25% retain
|
|
|
|
retained[retain_top++] = alloc_items( 10*((rand() % max_item_retained) + 1) );
|
|
|
|
retain--;
|
|
|
|
}
|
|
|
|
if ((rand()%3)!=0 && data_top > 0) {
|
|
|
|
// 66% free previous alloc
|
|
|
|
size_t idx = rand() % data_top;
|
|
|
|
free_items(data[idx]);
|
|
|
|
data[idx]=NULL;
|
|
|
|
}
|
|
|
|
if ((tid%2)==0 && (rand()%4)==0 && data_top > 0) {
|
|
|
|
// 25% transfer-swap of half the threads
|
|
|
|
size_t data_idx = rand() % data_top;
|
2019-07-10 21:59:44 -07:00
|
|
|
size_t transfer_idx = rand() % TRANSFERS;
|
2019-07-10 21:52:28 -07:00
|
|
|
void* p = data[data_idx];
|
|
|
|
void* q = mi_atomic_exchange_ptr(&transfer[transfer_idx],p);
|
|
|
|
data[data_idx] = q;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// free everything that is left
|
|
|
|
for (size_t i = 0; i < retain_top; i++) {
|
|
|
|
free_items(retained[i]);
|
|
|
|
}
|
|
|
|
for (size_t i = 0; i < data_top; i++) {
|
|
|
|
free_items(data[i]);
|
|
|
|
}
|
|
|
|
mi_free(retained);
|
|
|
|
mi_free(data);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void run_os_threads();
|
|
|
|
|
|
|
|
int main() {
|
|
|
|
srand(42);
|
2019-07-10 21:59:44 -07:00
|
|
|
memset((void*)transfer,0,TRANSFERS*sizeof(void*));
|
2019-07-10 21:52:28 -07:00
|
|
|
run_os_threads();
|
2019-07-10 21:59:44 -07:00
|
|
|
for (int i = 0; i < TRANSFERS; i++) {
|
2019-07-10 21:52:28 -07:00
|
|
|
free_items((void*)transfer[i]);
|
|
|
|
}
|
2019-07-14 12:52:58 -07:00
|
|
|
mi_collect(false); // ensures abandoned segments are reclaimed
|
|
|
|
mi_collect(true); // frees everything
|
2019-07-10 21:52:28 -07:00
|
|
|
mi_stats_print(NULL);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef _WIN32
|
|
|
|
|
|
|
|
#include <windows.h>
|
|
|
|
|
|
|
|
static DWORD WINAPI thread_entry(LPVOID param) {
|
|
|
|
stress((intptr_t)param);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void run_os_threads() {
|
|
|
|
DWORD tids[THREADS];
|
|
|
|
HANDLE thandles[THREADS];
|
|
|
|
for(intptr_t i = 0; i < THREADS; i++) {
|
|
|
|
thandles[i] = CreateThread(0,4096,&thread_entry,(void*)(i),0,&tids[i]);
|
|
|
|
}
|
|
|
|
for (int i = 0; i < THREADS; i++) {
|
|
|
|
WaitForSingleObject(thandles[i], INFINITE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
#include <pthread.h>
|
|
|
|
|
|
|
|
static void* thread_entry( void* param ) {
|
|
|
|
stress((uintptr_t)param);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void run_os_threads() {
|
|
|
|
pthread_t threads[THREADS];
|
|
|
|
memset(threads,0,sizeof(pthread_t)*THREADS);
|
|
|
|
//pthread_setconcurrency(THREADS);
|
|
|
|
for(uintptr_t i = 0; i < THREADS; i++) {
|
|
|
|
pthread_create(&threads[i], NULL, &thread_entry, (void*)i);
|
|
|
|
}
|
|
|
|
for (size_t i = 0; i < THREADS; i++) {
|
|
|
|
pthread_join(threads[i], NULL);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|