0
0
mirror of https://github.com/zeromq/libzmq.git synced 2025-01-14 17:58:01 +08:00
libzmq/src/socket_base.cpp
Luca Boccassi 7781dd1bbd Problem: formatting errors with clang-format-11
Solution: apply update
2023-01-12 01:07:06 +00:00

2181 lines
68 KiB
C++

/*
Copyright (c) 2007-2016 Contributors as noted in the AUTHORS file
This file is part of libzmq, the ZeroMQ core engine in C++.
libzmq is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
As a special exception, the Contributors give you permission to link
this library with independent modules to produce an executable,
regardless of the license terms of these independent modules, and to
copy and distribute the resulting executable under terms of your choice,
provided that you also meet, for each linked independent module, the
terms and conditions of the license of that module. An independent
module is a module which is not derived from or based on this library.
If you modify this library, you must extend this exception to your
version of the library.
libzmq is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "precompiled.hpp"
#include <new>
#include <string>
#include <algorithm>
#include <limits>
#include "macros.hpp"
#if defined ZMQ_HAVE_WINDOWS
#if defined _MSC_VER
#if defined _WIN32_WCE
#include <cmnintrin.h>
#else
#include <intrin.h>
#endif
#endif
#else
#include <unistd.h>
#include <ctype.h>
#endif
#include "socket_base.hpp"
#include "tcp_listener.hpp"
#include "ws_listener.hpp"
#include "ipc_listener.hpp"
#include "tipc_listener.hpp"
#include "tcp_connecter.hpp"
#ifdef ZMQ_HAVE_WS
#include "ws_address.hpp"
#endif
#include "io_thread.hpp"
#include "session_base.hpp"
#include "config.hpp"
#include "pipe.hpp"
#include "err.hpp"
#include "ctx.hpp"
#include "likely.hpp"
#include "msg.hpp"
#include "address.hpp"
#include "ipc_address.hpp"
#include "tcp_address.hpp"
#include "udp_address.hpp"
#include "tipc_address.hpp"
#include "mailbox.hpp"
#include "mailbox_safe.hpp"
#ifdef ZMQ_HAVE_WSS
#include "wss_address.hpp"
#endif
#if defined ZMQ_HAVE_VMCI
#include "vmci_address.hpp"
#include "vmci_listener.hpp"
#endif
#ifdef ZMQ_HAVE_OPENPGM
#include "pgm_socket.hpp"
#endif
#include "pair.hpp"
#include "pub.hpp"
#include "sub.hpp"
#include "req.hpp"
#include "rep.hpp"
#include "pull.hpp"
#include "push.hpp"
#include "dealer.hpp"
#include "router.hpp"
#include "xpub.hpp"
#include "xsub.hpp"
#include "stream.hpp"
#include "server.hpp"
#include "client.hpp"
#include "radio.hpp"
#include "dish.hpp"
#include "gather.hpp"
#include "scatter.hpp"
#include "dgram.hpp"
#include "peer.hpp"
#include "channel.hpp"
void zmq::socket_base_t::inprocs_t::emplace (const char *endpoint_uri_,
pipe_t *pipe_)
{
_inprocs.ZMQ_MAP_INSERT_OR_EMPLACE (std::string (endpoint_uri_), pipe_);
}
int zmq::socket_base_t::inprocs_t::erase_pipes (
const std::string &endpoint_uri_str_)
{
const std::pair<map_t::iterator, map_t::iterator> range =
_inprocs.equal_range (endpoint_uri_str_);
if (range.first == range.second) {
errno = ENOENT;
return -1;
}
for (map_t::iterator it = range.first; it != range.second; ++it) {
it->second->send_disconnect_msg ();
it->second->terminate (true);
}
_inprocs.erase (range.first, range.second);
return 0;
}
void zmq::socket_base_t::inprocs_t::erase_pipe (const pipe_t *pipe_)
{
for (map_t::iterator it = _inprocs.begin (), end = _inprocs.end ();
it != end; ++it)
if (it->second == pipe_) {
_inprocs.erase (it);
break;
}
}
bool zmq::socket_base_t::check_tag () const
{
return _tag == 0xbaddecaf;
}
bool zmq::socket_base_t::is_thread_safe () const
{
return _thread_safe;
}
zmq::socket_base_t *zmq::socket_base_t::create (int type_,
class ctx_t *parent_,
uint32_t tid_,
int sid_)
{
socket_base_t *s = NULL;
switch (type_) {
case ZMQ_PAIR:
s = new (std::nothrow) pair_t (parent_, tid_, sid_);
break;
case ZMQ_PUB:
s = new (std::nothrow) pub_t (parent_, tid_, sid_);
break;
case ZMQ_SUB:
s = new (std::nothrow) sub_t (parent_, tid_, sid_);
break;
case ZMQ_REQ:
s = new (std::nothrow) req_t (parent_, tid_, sid_);
break;
case ZMQ_REP:
s = new (std::nothrow) rep_t (parent_, tid_, sid_);
break;
case ZMQ_DEALER:
s = new (std::nothrow) dealer_t (parent_, tid_, sid_);
break;
case ZMQ_ROUTER:
s = new (std::nothrow) router_t (parent_, tid_, sid_);
break;
case ZMQ_PULL:
s = new (std::nothrow) pull_t (parent_, tid_, sid_);
break;
case ZMQ_PUSH:
s = new (std::nothrow) push_t (parent_, tid_, sid_);
break;
case ZMQ_XPUB:
s = new (std::nothrow) xpub_t (parent_, tid_, sid_);
break;
case ZMQ_XSUB:
s = new (std::nothrow) xsub_t (parent_, tid_, sid_);
break;
case ZMQ_STREAM:
s = new (std::nothrow) stream_t (parent_, tid_, sid_);
break;
case ZMQ_SERVER:
s = new (std::nothrow) server_t (parent_, tid_, sid_);
break;
case ZMQ_CLIENT:
s = new (std::nothrow) client_t (parent_, tid_, sid_);
break;
case ZMQ_RADIO:
s = new (std::nothrow) radio_t (parent_, tid_, sid_);
break;
case ZMQ_DISH:
s = new (std::nothrow) dish_t (parent_, tid_, sid_);
break;
case ZMQ_GATHER:
s = new (std::nothrow) gather_t (parent_, tid_, sid_);
break;
case ZMQ_SCATTER:
s = new (std::nothrow) scatter_t (parent_, tid_, sid_);
break;
case ZMQ_DGRAM:
s = new (std::nothrow) dgram_t (parent_, tid_, sid_);
break;
case ZMQ_PEER:
s = new (std::nothrow) peer_t (parent_, tid_, sid_);
break;
case ZMQ_CHANNEL:
s = new (std::nothrow) channel_t (parent_, tid_, sid_);
break;
default:
errno = EINVAL;
return NULL;
}
alloc_assert (s);
if (s->_mailbox == NULL) {
s->_destroyed = true;
LIBZMQ_DELETE (s);
return NULL;
}
return s;
}
zmq::socket_base_t::socket_base_t (ctx_t *parent_,
uint32_t tid_,
int sid_,
bool thread_safe_) :
own_t (parent_, tid_),
_sync (),
_tag (0xbaddecaf),
_ctx_terminated (false),
_destroyed (false),
_poller (NULL),
_handle (static_cast<poller_t::handle_t> (NULL)),
_last_tsc (0),
_ticks (0),
_rcvmore (false),
_monitor_socket (NULL),
_monitor_events (0),
_thread_safe (thread_safe_),
_reaper_signaler (NULL),
_monitor_sync ()
{
options.socket_id = sid_;
options.ipv6 = (parent_->get (ZMQ_IPV6) != 0);
options.linger.store (parent_->get (ZMQ_BLOCKY) ? -1 : 0);
options.zero_copy = parent_->get (ZMQ_ZERO_COPY_RECV) != 0;
if (_thread_safe) {
_mailbox = new (std::nothrow) mailbox_safe_t (&_sync);
zmq_assert (_mailbox);
} else {
mailbox_t *m = new (std::nothrow) mailbox_t ();
zmq_assert (m);
if (m->get_fd () != retired_fd)
_mailbox = m;
else {
LIBZMQ_DELETE (m);
_mailbox = NULL;
}
}
}
int zmq::socket_base_t::get_peer_state (const void *routing_id_,
size_t routing_id_size_) const
{
LIBZMQ_UNUSED (routing_id_);
LIBZMQ_UNUSED (routing_id_size_);
// Only ROUTER sockets support this
errno = ENOTSUP;
return -1;
}
zmq::socket_base_t::~socket_base_t ()
{
if (_mailbox)
LIBZMQ_DELETE (_mailbox);
if (_reaper_signaler)
LIBZMQ_DELETE (_reaper_signaler);
scoped_lock_t lock (_monitor_sync);
stop_monitor ();
zmq_assert (_destroyed);
}
zmq::i_mailbox *zmq::socket_base_t::get_mailbox () const
{
return _mailbox;
}
void zmq::socket_base_t::stop ()
{
// Called by ctx when it is terminated (zmq_ctx_term).
// 'stop' command is sent from the threads that called zmq_ctx_term to
// the thread owning the socket. This way, blocking call in the
// owner thread can be interrupted.
send_stop ();
}
// TODO consider renaming protocol_ to scheme_ in conformance with RFC 3986
// terminology, but this requires extensive changes to be consistent
int zmq::socket_base_t::parse_uri (const char *uri_,
std::string &protocol_,
std::string &path_)
{
zmq_assert (uri_ != NULL);
const std::string uri (uri_);
const std::string::size_type pos = uri.find ("://");
if (pos == std::string::npos) {
errno = EINVAL;
return -1;
}
protocol_ = uri.substr (0, pos);
path_ = uri.substr (pos + 3);
if (protocol_.empty () || path_.empty ()) {
errno = EINVAL;
return -1;
}
return 0;
}
int zmq::socket_base_t::check_protocol (const std::string &protocol_) const
{
// First check out whether the protocol is something we are aware of.
if (protocol_ != protocol_name::inproc
#if defined ZMQ_HAVE_IPC
&& protocol_ != protocol_name::ipc
#endif
&& protocol_ != protocol_name::tcp
#ifdef ZMQ_HAVE_WS
&& protocol_ != protocol_name::ws
#endif
#ifdef ZMQ_HAVE_WSS
&& protocol_ != protocol_name::wss
#endif
#if defined ZMQ_HAVE_OPENPGM
// pgm/epgm transports only available if 0MQ is compiled with OpenPGM.
&& protocol_ != protocol_name::pgm
&& protocol_ != protocol_name::epgm
#endif
#if defined ZMQ_HAVE_TIPC
// TIPC transport is only available on Linux.
&& protocol_ != protocol_name::tipc
#endif
#if defined ZMQ_HAVE_NORM
&& protocol_ != protocol_name::norm
#endif
#if defined ZMQ_HAVE_VMCI
&& protocol_ != protocol_name::vmci
#endif
&& protocol_ != protocol_name::udp) {
errno = EPROTONOSUPPORT;
return -1;
}
// Check whether socket type and transport protocol match.
// Specifically, multicast protocols can't be combined with
// bi-directional messaging patterns (socket types).
#if defined ZMQ_HAVE_OPENPGM || defined ZMQ_HAVE_NORM
#if defined ZMQ_HAVE_OPENPGM && defined ZMQ_HAVE_NORM
if ((protocol_ == protocol_name::pgm || protocol_ == protocol_name::epgm
|| protocol_ == protocol_name::norm)
#elif defined ZMQ_HAVE_OPENPGM
if ((protocol_ == protocol_name::pgm || protocol_ == protocol_name::epgm)
#else // defined ZMQ_HAVE_NORM
if (protocol_ == protocol_name::norm
#endif
&& options.type != ZMQ_PUB && options.type != ZMQ_SUB
&& options.type != ZMQ_XPUB && options.type != ZMQ_XSUB) {
errno = ENOCOMPATPROTO;
return -1;
}
#endif
if (protocol_ == protocol_name::udp
&& (options.type != ZMQ_DISH && options.type != ZMQ_RADIO
&& options.type != ZMQ_DGRAM)) {
errno = ENOCOMPATPROTO;
return -1;
}
// Protocol is available.
return 0;
}
void zmq::socket_base_t::attach_pipe (pipe_t *pipe_,
bool subscribe_to_all_,
bool locally_initiated_)
{
// First, register the pipe so that we can terminate it later on.
pipe_->set_event_sink (this);
_pipes.push_back (pipe_);
// Let the derived socket type know about new pipe.
xattach_pipe (pipe_, subscribe_to_all_, locally_initiated_);
// If the socket is already being closed, ask any new pipes to terminate
// straight away.
if (is_terminating ()) {
register_term_acks (1);
pipe_->terminate (false);
}
}
int zmq::socket_base_t::setsockopt (int option_,
const void *optval_,
size_t optvallen_)
{
scoped_optional_lock_t sync_lock (_thread_safe ? &_sync : NULL);
if (unlikely (_ctx_terminated)) {
errno = ETERM;
return -1;
}
// First, check whether specific socket type overloads the option.
int rc = xsetsockopt (option_, optval_, optvallen_);
if (rc == 0 || errno != EINVAL) {
return rc;
}
// If the socket type doesn't support the option, pass it to
// the generic option parser.
rc = options.setsockopt (option_, optval_, optvallen_);
update_pipe_options (option_);
return rc;
}
int zmq::socket_base_t::getsockopt (int option_,
void *optval_,
size_t *optvallen_)
{
scoped_optional_lock_t sync_lock (_thread_safe ? &_sync : NULL);
if (unlikely (_ctx_terminated)) {
errno = ETERM;
return -1;
}
// First, check whether specific socket type overloads the option.
int rc = xgetsockopt (option_, optval_, optvallen_);
if (rc == 0 || errno != EINVAL) {
return rc;
}
if (option_ == ZMQ_RCVMORE) {
return do_getsockopt<int> (optval_, optvallen_, _rcvmore ? 1 : 0);
}
if (option_ == ZMQ_FD) {
if (_thread_safe) {
// thread safe socket doesn't provide file descriptor
errno = EINVAL;
return -1;
}
return do_getsockopt<fd_t> (
optval_, optvallen_,
(static_cast<mailbox_t *> (_mailbox))->get_fd ());
}
if (option_ == ZMQ_EVENTS) {
const int rc = process_commands (0, false);
if (rc != 0 && (errno == EINTR || errno == ETERM)) {
return -1;
}
errno_assert (rc == 0);
return do_getsockopt<int> (optval_, optvallen_,
(has_out () ? ZMQ_POLLOUT : 0)
| (has_in () ? ZMQ_POLLIN : 0));
}
if (option_ == ZMQ_LAST_ENDPOINT) {
return do_getsockopt (optval_, optvallen_, _last_endpoint);
}
if (option_ == ZMQ_THREAD_SAFE) {
return do_getsockopt<int> (optval_, optvallen_, _thread_safe ? 1 : 0);
}
return options.getsockopt (option_, optval_, optvallen_);
}
int zmq::socket_base_t::join (const char *group_)
{
scoped_optional_lock_t sync_lock (_thread_safe ? &_sync : NULL);
return xjoin (group_);
}
int zmq::socket_base_t::leave (const char *group_)
{
scoped_optional_lock_t sync_lock (_thread_safe ? &_sync : NULL);
return xleave (group_);
}
void zmq::socket_base_t::add_signaler (signaler_t *s_)
{
zmq_assert (_thread_safe);
scoped_lock_t sync_lock (_sync);
(static_cast<mailbox_safe_t *> (_mailbox))->add_signaler (s_);
}
void zmq::socket_base_t::remove_signaler (signaler_t *s_)
{
zmq_assert (_thread_safe);
scoped_lock_t sync_lock (_sync);
(static_cast<mailbox_safe_t *> (_mailbox))->remove_signaler (s_);
}
int zmq::socket_base_t::bind (const char *endpoint_uri_)
{
scoped_optional_lock_t sync_lock (_thread_safe ? &_sync : NULL);
if (unlikely (_ctx_terminated)) {
errno = ETERM;
return -1;
}
// Process pending commands, if any.
int rc = process_commands (0, false);
if (unlikely (rc != 0)) {
return -1;
}
// Parse endpoint_uri_ string.
std::string protocol;
std::string address;
if (parse_uri (endpoint_uri_, protocol, address)
|| check_protocol (protocol)) {
return -1;
}
if (protocol == protocol_name::inproc) {
const endpoint_t endpoint = {this, options};
rc = register_endpoint (endpoint_uri_, endpoint);
if (rc == 0) {
connect_pending (endpoint_uri_, this);
_last_endpoint.assign (endpoint_uri_);
options.connected = true;
}
return rc;
}
#if defined ZMQ_HAVE_OPENPGM || defined ZMQ_HAVE_NORM
#if defined ZMQ_HAVE_OPENPGM && defined ZMQ_HAVE_NORM
if (protocol == protocol_name::pgm || protocol == protocol_name::epgm
|| protocol == protocol_name::norm) {
#elif defined ZMQ_HAVE_OPENPGM
if (protocol == protocol_name::pgm || protocol == protocol_name::epgm) {
#else // defined ZMQ_HAVE_NORM
if (protocol == protocol_name::norm) {
#endif
// For convenience's sake, bind can be used interchangeable with
// connect for PGM, EPGM, NORM transports.
rc = connect (endpoint_uri_);
if (rc != -1)
options.connected = true;
return rc;
}
#endif
if (protocol == protocol_name::udp) {
if (!(options.type == ZMQ_DGRAM || options.type == ZMQ_DISH)) {
errno = ENOCOMPATPROTO;
return -1;
}
// Choose the I/O thread to run the session in.
io_thread_t *io_thread = choose_io_thread (options.affinity);
if (!io_thread) {
errno = EMTHREAD;
return -1;
}
address_t *paddr =
new (std::nothrow) address_t (protocol, address, this->get_ctx ());
alloc_assert (paddr);
paddr->resolved.udp_addr = new (std::nothrow) udp_address_t ();
alloc_assert (paddr->resolved.udp_addr);
rc = paddr->resolved.udp_addr->resolve (address.c_str (), true,
options.ipv6);
if (rc != 0) {
LIBZMQ_DELETE (paddr);
return -1;
}
session_base_t *session =
session_base_t::create (io_thread, true, this, options, paddr);
errno_assert (session);
// Create a bi-directional pipe.
object_t *parents[2] = {this, session};
pipe_t *new_pipes[2] = {NULL, NULL};
int hwms[2] = {options.sndhwm, options.rcvhwm};
bool conflates[2] = {false, false};
rc = pipepair (parents, new_pipes, hwms, conflates);
errno_assert (rc == 0);
// Attach local end of the pipe to the socket object.
attach_pipe (new_pipes[0], true, true);
pipe_t *const newpipe = new_pipes[0];
// Attach remote end of the pipe to the session object later on.
session->attach_pipe (new_pipes[1]);
// Save last endpoint URI
paddr->to_string (_last_endpoint);
// TODO shouldn't this use _last_endpoint instead of endpoint_uri_? as in the other cases
add_endpoint (endpoint_uri_pair_t (endpoint_uri_, std::string (),
endpoint_type_none),
static_cast<own_t *> (session), newpipe);
return 0;
}
// Remaining transports require to be run in an I/O thread, so at this
// point we'll choose one.
io_thread_t *io_thread = choose_io_thread (options.affinity);
if (!io_thread) {
errno = EMTHREAD;
return -1;
}
if (protocol == protocol_name::tcp) {
tcp_listener_t *listener =
new (std::nothrow) tcp_listener_t (io_thread, this, options);
alloc_assert (listener);
rc = listener->set_local_address (address.c_str ());
if (rc != 0) {
LIBZMQ_DELETE (listener);
event_bind_failed (make_unconnected_bind_endpoint_pair (address),
zmq_errno ());
return -1;
}
// Save last endpoint URI
listener->get_local_address (_last_endpoint);
add_endpoint (make_unconnected_bind_endpoint_pair (_last_endpoint),
static_cast<own_t *> (listener), NULL);
options.connected = true;
return 0;
}
#ifdef ZMQ_HAVE_WS
#ifdef ZMQ_HAVE_WSS
if (protocol == protocol_name::ws || protocol == protocol_name::wss) {
ws_listener_t *listener = new (std::nothrow) ws_listener_t (
io_thread, this, options, protocol == protocol_name::wss);
#else
if (protocol == protocol_name::ws) {
ws_listener_t *listener =
new (std::nothrow) ws_listener_t (io_thread, this, options, false);
#endif
alloc_assert (listener);
rc = listener->set_local_address (address.c_str ());
if (rc != 0) {
LIBZMQ_DELETE (listener);
event_bind_failed (make_unconnected_bind_endpoint_pair (address),
zmq_errno ());
return -1;
}
// Save last endpoint URI
listener->get_local_address (_last_endpoint);
add_endpoint (make_unconnected_bind_endpoint_pair (_last_endpoint),
static_cast<own_t *> (listener), NULL);
options.connected = true;
return 0;
}
#endif
#if defined ZMQ_HAVE_IPC
if (protocol == protocol_name::ipc) {
ipc_listener_t *listener =
new (std::nothrow) ipc_listener_t (io_thread, this, options);
alloc_assert (listener);
int rc = listener->set_local_address (address.c_str ());
if (rc != 0) {
LIBZMQ_DELETE (listener);
event_bind_failed (make_unconnected_bind_endpoint_pair (address),
zmq_errno ());
return -1;
}
// Save last endpoint URI
listener->get_local_address (_last_endpoint);
add_endpoint (make_unconnected_bind_endpoint_pair (_last_endpoint),
static_cast<own_t *> (listener), NULL);
options.connected = true;
return 0;
}
#endif
#if defined ZMQ_HAVE_TIPC
if (protocol == protocol_name::tipc) {
tipc_listener_t *listener =
new (std::nothrow) tipc_listener_t (io_thread, this, options);
alloc_assert (listener);
int rc = listener->set_local_address (address.c_str ());
if (rc != 0) {
LIBZMQ_DELETE (listener);
event_bind_failed (make_unconnected_bind_endpoint_pair (address),
zmq_errno ());
return -1;
}
// Save last endpoint URI
listener->get_local_address (_last_endpoint);
// TODO shouldn't this use _last_endpoint as in the other cases?
add_endpoint (make_unconnected_bind_endpoint_pair (endpoint_uri_),
static_cast<own_t *> (listener), NULL);
options.connected = true;
return 0;
}
#endif
#if defined ZMQ_HAVE_VMCI
if (protocol == protocol_name::vmci) {
vmci_listener_t *listener =
new (std::nothrow) vmci_listener_t (io_thread, this, options);
alloc_assert (listener);
int rc = listener->set_local_address (address.c_str ());
if (rc != 0) {
LIBZMQ_DELETE (listener);
event_bind_failed (make_unconnected_bind_endpoint_pair (address),
zmq_errno ());
return -1;
}
listener->get_local_address (_last_endpoint);
add_endpoint (make_unconnected_bind_endpoint_pair (_last_endpoint),
static_cast<own_t *> (listener), NULL);
options.connected = true;
return 0;
}
#endif
zmq_assert (false);
return -1;
}
int zmq::socket_base_t::connect (const char *endpoint_uri_)
{
scoped_optional_lock_t sync_lock (_thread_safe ? &_sync : NULL);
return connect_internal (endpoint_uri_);
}
int zmq::socket_base_t::connect_internal (const char *endpoint_uri_)
{
if (unlikely (_ctx_terminated)) {
errno = ETERM;
return -1;
}
// Process pending commands, if any.
int rc = process_commands (0, false);
if (unlikely (rc != 0)) {
return -1;
}
// Parse endpoint_uri_ string.
std::string protocol;
std::string address;
if (parse_uri (endpoint_uri_, protocol, address)
|| check_protocol (protocol)) {
return -1;
}
if (protocol == protocol_name::inproc) {
// TODO: inproc connect is specific with respect to creating pipes
// as there's no 'reconnect' functionality implemented. Once that
// is in place we should follow generic pipe creation algorithm.
// Find the peer endpoint.
const endpoint_t peer = find_endpoint (endpoint_uri_);
// The total HWM for an inproc connection should be the sum of
// the binder's HWM and the connector's HWM.
const int sndhwm = peer.socket == NULL ? options.sndhwm
: options.sndhwm != 0 && peer.options.rcvhwm != 0
? options.sndhwm + peer.options.rcvhwm
: 0;
const int rcvhwm = peer.socket == NULL ? options.rcvhwm
: options.rcvhwm != 0 && peer.options.sndhwm != 0
? options.rcvhwm + peer.options.sndhwm
: 0;
// Create a bi-directional pipe to connect the peers.
object_t *parents[2] = {this, peer.socket == NULL ? this : peer.socket};
pipe_t *new_pipes[2] = {NULL, NULL};
const bool conflate = get_effective_conflate_option (options);
int hwms[2] = {conflate ? -1 : sndhwm, conflate ? -1 : rcvhwm};
bool conflates[2] = {conflate, conflate};
rc = pipepair (parents, new_pipes, hwms, conflates);
if (!conflate) {
new_pipes[0]->set_hwms_boost (peer.options.sndhwm,
peer.options.rcvhwm);
new_pipes[1]->set_hwms_boost (options.sndhwm, options.rcvhwm);
}
errno_assert (rc == 0);
if (!peer.socket) {
// The peer doesn't exist yet so we don't know whether
// to send the routing id message or not. To resolve this,
// we always send our routing id and drop it later if
// the peer doesn't expect it.
send_routing_id (new_pipes[0], options);
#ifdef ZMQ_BUILD_DRAFT_API
// If set, send the hello msg of the local socket to the peer.
if (options.can_send_hello_msg && options.hello_msg.size () > 0) {
send_hello_msg (new_pipes[0], options);
}
#endif
const endpoint_t endpoint = {this, options};
pend_connection (std::string (endpoint_uri_), endpoint, new_pipes);
} else {
// If required, send the routing id of the local socket to the peer.
if (peer.options.recv_routing_id) {
send_routing_id (new_pipes[0], options);
}
// If required, send the routing id of the peer to the local socket.
if (options.recv_routing_id) {
send_routing_id (new_pipes[1], peer.options);
}
#ifdef ZMQ_BUILD_DRAFT_API
// If set, send the hello msg of the local socket to the peer.
if (options.can_send_hello_msg && options.hello_msg.size () > 0) {
send_hello_msg (new_pipes[0], options);
}
// If set, send the hello msg of the peer to the local socket.
if (peer.options.can_send_hello_msg
&& peer.options.hello_msg.size () > 0) {
send_hello_msg (new_pipes[1], peer.options);
}
if (peer.options.can_recv_disconnect_msg
&& peer.options.disconnect_msg.size () > 0)
new_pipes[0]->set_disconnect_msg (peer.options.disconnect_msg);
#endif
// Attach remote end of the pipe to the peer socket. Note that peer's
// seqnum was incremented in find_endpoint function. We don't need it
// increased here.
send_bind (peer.socket, new_pipes[1], false);
}
// Attach local end of the pipe to this socket object.
attach_pipe (new_pipes[0], false, true);
// Save last endpoint URI
_last_endpoint.assign (endpoint_uri_);
// remember inproc connections for disconnect
_inprocs.emplace (endpoint_uri_, new_pipes[0]);
options.connected = true;
return 0;
}
const bool is_single_connect =
(options.type == ZMQ_DEALER || options.type == ZMQ_SUB
|| options.type == ZMQ_PUB || options.type == ZMQ_REQ);
if (unlikely (is_single_connect)) {
if (0 != _endpoints.count (endpoint_uri_)) {
// There is no valid use for multiple connects for SUB-PUB nor
// DEALER-ROUTER nor REQ-REP. Multiple connects produces
// nonsensical results.
return 0;
}
}
// Choose the I/O thread to run the session in.
io_thread_t *io_thread = choose_io_thread (options.affinity);
if (!io_thread) {
errno = EMTHREAD;
return -1;
}
address_t *paddr =
new (std::nothrow) address_t (protocol, address, this->get_ctx ());
alloc_assert (paddr);
// Resolve address (if needed by the protocol)
if (protocol == protocol_name::tcp) {
// Do some basic sanity checks on tcp:// address syntax
// - hostname starts with digit or letter, with embedded '-' or '.'
// - IPv6 address may contain hex chars and colons.
// - IPv6 link local address may contain % followed by interface name / zone_id
// (Reference: https://tools.ietf.org/html/rfc4007)
// - IPv4 address may contain decimal digits and dots.
// - Address must end in ":port" where port is *, or numeric
// - Address may contain two parts separated by ':'
// Following code is quick and dirty check to catch obvious errors,
// without trying to be fully accurate.
const char *check = address.c_str ();
if (isalnum (*check) || isxdigit (*check) || *check == '['
|| *check == ':') {
check++;
while (isalnum (*check) || isxdigit (*check) || *check == '.'
|| *check == '-' || *check == ':' || *check == '%'
|| *check == ';' || *check == '[' || *check == ']'
|| *check == '_' || *check == '*') {
check++;
}
}
// Assume the worst, now look for success
rc = -1;
// Did we reach the end of the address safely?
if (*check == 0) {
// Do we have a valid port string? (cannot be '*' in connect
check = strrchr (address.c_str (), ':');
if (check) {
check++;
if (*check && (isdigit (*check)))
rc = 0; // Valid
}
}
if (rc == -1) {
errno = EINVAL;
LIBZMQ_DELETE (paddr);
return -1;
}
// Defer resolution until a socket is opened
paddr->resolved.tcp_addr = NULL;
}
#ifdef ZMQ_HAVE_WS
#ifdef ZMQ_HAVE_WSS
else if (protocol == protocol_name::ws || protocol == protocol_name::wss) {
if (protocol == protocol_name::wss) {
paddr->resolved.wss_addr = new (std::nothrow) wss_address_t ();
alloc_assert (paddr->resolved.wss_addr);
rc = paddr->resolved.wss_addr->resolve (address.c_str (), false,
options.ipv6);
} else
#else
else if (protocol == protocol_name::ws) {
#endif
{
paddr->resolved.ws_addr = new (std::nothrow) ws_address_t ();
alloc_assert (paddr->resolved.ws_addr);
rc = paddr->resolved.ws_addr->resolve (address.c_str (), false,
options.ipv6);
}
if (rc != 0) {
LIBZMQ_DELETE (paddr);
return -1;
}
}
#endif
#if defined ZMQ_HAVE_IPC
else if (protocol == protocol_name::ipc) {
paddr->resolved.ipc_addr = new (std::nothrow) ipc_address_t ();
alloc_assert (paddr->resolved.ipc_addr);
int rc = paddr->resolved.ipc_addr->resolve (address.c_str ());
if (rc != 0) {
LIBZMQ_DELETE (paddr);
return -1;
}
}
#endif
if (protocol == protocol_name::udp) {
if (options.type != ZMQ_RADIO) {
errno = ENOCOMPATPROTO;
LIBZMQ_DELETE (paddr);
return -1;
}
paddr->resolved.udp_addr = new (std::nothrow) udp_address_t ();
alloc_assert (paddr->resolved.udp_addr);
rc = paddr->resolved.udp_addr->resolve (address.c_str (), false,
options.ipv6);
if (rc != 0) {
LIBZMQ_DELETE (paddr);
return -1;
}
}
// TBD - Should we check address for ZMQ_HAVE_NORM???
#ifdef ZMQ_HAVE_OPENPGM
if (protocol == protocol_name::pgm || protocol == protocol_name::epgm) {
struct pgm_addrinfo_t *res = NULL;
uint16_t port_number = 0;
int rc =
pgm_socket_t::init_address (address.c_str (), &res, &port_number);
if (res != NULL)
pgm_freeaddrinfo (res);
if (rc != 0 || port_number == 0) {
return -1;
}
}
#endif
#if defined ZMQ_HAVE_TIPC
else if (protocol == protocol_name::tipc) {
paddr->resolved.tipc_addr = new (std::nothrow) tipc_address_t ();
alloc_assert (paddr->resolved.tipc_addr);
int rc = paddr->resolved.tipc_addr->resolve (address.c_str ());
if (rc != 0) {
LIBZMQ_DELETE (paddr);
return -1;
}
const sockaddr_tipc *const saddr =
reinterpret_cast<const sockaddr_tipc *> (
paddr->resolved.tipc_addr->addr ());
// Cannot connect to random Port Identity
if (saddr->addrtype == TIPC_ADDR_ID
&& paddr->resolved.tipc_addr->is_random ()) {
LIBZMQ_DELETE (paddr);
errno = EINVAL;
return -1;
}
}
#endif
#if defined ZMQ_HAVE_VMCI
else if (protocol == protocol_name::vmci) {
paddr->resolved.vmci_addr =
new (std::nothrow) vmci_address_t (this->get_ctx ());
alloc_assert (paddr->resolved.vmci_addr);
int rc = paddr->resolved.vmci_addr->resolve (address.c_str ());
if (rc != 0) {
LIBZMQ_DELETE (paddr);
return -1;
}
}
#endif
// Create session.
session_base_t *session =
session_base_t::create (io_thread, true, this, options, paddr);
errno_assert (session);
// PGM does not support subscription forwarding; ask for all data to be
// sent to this pipe. (same for NORM, currently?)
#if defined ZMQ_HAVE_OPENPGM && defined ZMQ_HAVE_NORM
const bool subscribe_to_all =
protocol == protocol_name::pgm || protocol == protocol_name::epgm
|| protocol == protocol_name::norm || protocol == protocol_name::udp;
#elif defined ZMQ_HAVE_OPENPGM
const bool subscribe_to_all = protocol == protocol_name::pgm
|| protocol == protocol_name::epgm
|| protocol == protocol_name::udp;
#elif defined ZMQ_HAVE_NORM
const bool subscribe_to_all =
protocol == protocol_name::norm || protocol == protocol_name::udp;
#else
const bool subscribe_to_all = protocol == protocol_name::udp;
#endif
pipe_t *newpipe = NULL;
if (options.immediate != 1 || subscribe_to_all) {
// Create a bi-directional pipe.
object_t *parents[2] = {this, session};
pipe_t *new_pipes[2] = {NULL, NULL};
const bool conflate = get_effective_conflate_option (options);
int hwms[2] = {conflate ? -1 : options.sndhwm,
conflate ? -1 : options.rcvhwm};
bool conflates[2] = {conflate, conflate};
rc = pipepair (parents, new_pipes, hwms, conflates);
errno_assert (rc == 0);
// Attach local end of the pipe to the socket object.
attach_pipe (new_pipes[0], subscribe_to_all, true);
newpipe = new_pipes[0];
// Attach remote end of the pipe to the session object later on.
session->attach_pipe (new_pipes[1]);
}
// Save last endpoint URI
paddr->to_string (_last_endpoint);
add_endpoint (make_unconnected_connect_endpoint_pair (endpoint_uri_),
static_cast<own_t *> (session), newpipe);
return 0;
}
std::string
zmq::socket_base_t::resolve_tcp_addr (std::string endpoint_uri_pair_,
const char *tcp_address_)
{
// The resolved last_endpoint is used as a key in the endpoints map.
// The address passed by the user might not match in the TCP case due to
// IPv4-in-IPv6 mapping (EG: tcp://[::ffff:127.0.0.1]:9999), so try to
// resolve before giving up. Given at this stage we don't know whether a
// socket is connected or bound, try with both.
if (_endpoints.find (endpoint_uri_pair_) == _endpoints.end ()) {
tcp_address_t *tcp_addr = new (std::nothrow) tcp_address_t ();
alloc_assert (tcp_addr);
int rc = tcp_addr->resolve (tcp_address_, false, options.ipv6);
if (rc == 0) {
tcp_addr->to_string (endpoint_uri_pair_);
if (_endpoints.find (endpoint_uri_pair_) == _endpoints.end ()) {
rc = tcp_addr->resolve (tcp_address_, true, options.ipv6);
if (rc == 0) {
tcp_addr->to_string (endpoint_uri_pair_);
}
}
}
LIBZMQ_DELETE (tcp_addr);
}
return endpoint_uri_pair_;
}
void zmq::socket_base_t::add_endpoint (
const endpoint_uri_pair_t &endpoint_pair_, own_t *endpoint_, pipe_t *pipe_)
{
// Activate the session. Make it a child of this socket.
launch_child (endpoint_);
_endpoints.ZMQ_MAP_INSERT_OR_EMPLACE (endpoint_pair_.identifier (),
endpoint_pipe_t (endpoint_, pipe_));
if (pipe_ != NULL)
pipe_->set_endpoint_pair (endpoint_pair_);
}
int zmq::socket_base_t::term_endpoint (const char *endpoint_uri_)
{
scoped_optional_lock_t sync_lock (_thread_safe ? &_sync : NULL);
// Check whether the context hasn't been shut down yet.
if (unlikely (_ctx_terminated)) {
errno = ETERM;
return -1;
}
// Check whether endpoint address passed to the function is valid.
if (unlikely (!endpoint_uri_)) {
errno = EINVAL;
return -1;
}
// Process pending commands, if any, since there could be pending unprocessed process_own()'s
// (from launch_child() for example) we're asked to terminate now.
const int rc = process_commands (0, false);
if (unlikely (rc != 0)) {
return -1;
}
// Parse endpoint_uri_ string.
std::string uri_protocol;
std::string uri_path;
if (parse_uri (endpoint_uri_, uri_protocol, uri_path)
|| check_protocol (uri_protocol)) {
return -1;
}
const std::string endpoint_uri_str = std::string (endpoint_uri_);
// Disconnect an inproc socket
if (uri_protocol == protocol_name::inproc) {
return unregister_endpoint (endpoint_uri_str, this) == 0
? 0
: _inprocs.erase_pipes (endpoint_uri_str);
}
const std::string resolved_endpoint_uri =
uri_protocol == protocol_name::tcp
? resolve_tcp_addr (endpoint_uri_str, uri_path.c_str ())
: endpoint_uri_str;
// Find the endpoints range (if any) corresponding to the endpoint_uri_pair_ string.
const std::pair<endpoints_t::iterator, endpoints_t::iterator> range =
_endpoints.equal_range (resolved_endpoint_uri);
if (range.first == range.second) {
errno = ENOENT;
return -1;
}
for (endpoints_t::iterator it = range.first; it != range.second; ++it) {
// If we have an associated pipe, terminate it.
if (it->second.second != NULL)
it->second.second->terminate (false);
term_child (it->second.first);
}
_endpoints.erase (range.first, range.second);
if (options.reconnect_stop & ZMQ_RECONNECT_STOP_AFTER_DISCONNECT) {
_disconnected = true;
}
return 0;
}
int zmq::socket_base_t::send (msg_t *msg_, int flags_)
{
scoped_optional_lock_t sync_lock (_thread_safe ? &_sync : NULL);
// Check whether the context hasn't been shut down yet.
if (unlikely (_ctx_terminated)) {
errno = ETERM;
return -1;
}
// Check whether message passed to the function is valid.
if (unlikely (!msg_ || !msg_->check ())) {
errno = EFAULT;
return -1;
}
// Process pending commands, if any.
int rc = process_commands (0, true);
if (unlikely (rc != 0)) {
return -1;
}
// Clear any user-visible flags that are set on the message.
msg_->reset_flags (msg_t::more);
// At this point we impose the flags on the message.
if (flags_ & ZMQ_SNDMORE)
msg_->set_flags (msg_t::more);
msg_->reset_metadata ();
// Try to send the message using method in each socket class
rc = xsend (msg_);
if (rc == 0) {
return 0;
}
// Special case for ZMQ_PUSH: -2 means pipe is dead while a
// multi-part send is in progress and can't be recovered, so drop
// silently when in blocking mode to keep backward compatibility.
if (unlikely (rc == -2)) {
if (!((flags_ & ZMQ_DONTWAIT) || options.sndtimeo == 0)) {
rc = msg_->close ();
errno_assert (rc == 0);
rc = msg_->init ();
errno_assert (rc == 0);
return 0;
}
}
if (unlikely (errno != EAGAIN)) {
return -1;
}
// In case of non-blocking send we'll simply propagate
// the error - including EAGAIN - up the stack.
if ((flags_ & ZMQ_DONTWAIT) || options.sndtimeo == 0) {
return -1;
}
// Compute the time when the timeout should occur.
// If the timeout is infinite, don't care.
int timeout = options.sndtimeo;
const uint64_t end = timeout < 0 ? 0 : (_clock.now_ms () + timeout);
// Oops, we couldn't send the message. Wait for the next
// command, process it and try to send the message again.
// If timeout is reached in the meantime, return EAGAIN.
while (true) {
if (unlikely (process_commands (timeout, false) != 0)) {
return -1;
}
rc = xsend (msg_);
if (rc == 0)
break;
if (unlikely (errno != EAGAIN)) {
return -1;
}
if (timeout > 0) {
timeout = static_cast<int> (end - _clock.now_ms ());
if (timeout <= 0) {
errno = EAGAIN;
return -1;
}
}
}
return 0;
}
int zmq::socket_base_t::recv (msg_t *msg_, int flags_)
{
scoped_optional_lock_t sync_lock (_thread_safe ? &_sync : NULL);
// Check whether the context hasn't been shut down yet.
if (unlikely (_ctx_terminated)) {
errno = ETERM;
return -1;
}
// Check whether message passed to the function is valid.
if (unlikely (!msg_ || !msg_->check ())) {
errno = EFAULT;
return -1;
}
// Once every inbound_poll_rate messages check for signals and process
// incoming commands. This happens only if we are not polling altogether
// because there are messages available all the time. If poll occurs,
// ticks is set to zero and thus we avoid this code.
//
// Note that 'recv' uses different command throttling algorithm (the one
// described above) from the one used by 'send'. This is because counting
// ticks is more efficient than doing RDTSC all the time.
if (++_ticks == inbound_poll_rate) {
if (unlikely (process_commands (0, false) != 0)) {
return -1;
}
_ticks = 0;
}
// Get the message.
int rc = xrecv (msg_);
if (unlikely (rc != 0 && errno != EAGAIN)) {
return -1;
}
// If we have the message, return immediately.
if (rc == 0) {
extract_flags (msg_);
return 0;
}
// If the message cannot be fetched immediately, there are two scenarios.
// For non-blocking recv, commands are processed in case there's an
// activate_reader command already waiting in a command pipe.
// If it's not, return EAGAIN.
if ((flags_ & ZMQ_DONTWAIT) || options.rcvtimeo == 0) {
if (unlikely (process_commands (0, false) != 0)) {
return -1;
}
_ticks = 0;
rc = xrecv (msg_);
if (rc < 0) {
return rc;
}
extract_flags (msg_);
return 0;
}
// Compute the time when the timeout should occur.
// If the timeout is infinite, don't care.
int timeout = options.rcvtimeo;
const uint64_t end = timeout < 0 ? 0 : (_clock.now_ms () + timeout);
// In blocking scenario, commands are processed over and over again until
// we are able to fetch a message.
bool block = (_ticks != 0);
while (true) {
if (unlikely (process_commands (block ? timeout : 0, false) != 0)) {
return -1;
}
rc = xrecv (msg_);
if (rc == 0) {
_ticks = 0;
break;
}
if (unlikely (errno != EAGAIN)) {
return -1;
}
block = true;
if (timeout > 0) {
timeout = static_cast<int> (end - _clock.now_ms ());
if (timeout <= 0) {
errno = EAGAIN;
return -1;
}
}
}
extract_flags (msg_);
return 0;
}
int zmq::socket_base_t::close ()
{
scoped_optional_lock_t sync_lock (_thread_safe ? &_sync : NULL);
// Remove all existing signalers for thread safe sockets
if (_thread_safe)
(static_cast<mailbox_safe_t *> (_mailbox))->clear_signalers ();
// Mark the socket as dead
_tag = 0xdeadbeef;
// Transfer the ownership of the socket from this application thread
// to the reaper thread which will take care of the rest of shutdown
// process.
send_reap (this);
return 0;
}
bool zmq::socket_base_t::has_in ()
{
return xhas_in ();
}
bool zmq::socket_base_t::has_out ()
{
return xhas_out ();
}
void zmq::socket_base_t::start_reaping (poller_t *poller_)
{
// Plug the socket to the reaper thread.
_poller = poller_;
fd_t fd;
if (!_thread_safe)
fd = (static_cast<mailbox_t *> (_mailbox))->get_fd ();
else {
scoped_optional_lock_t sync_lock (_thread_safe ? &_sync : NULL);
_reaper_signaler = new (std::nothrow) signaler_t ();
zmq_assert (_reaper_signaler);
// Add signaler to the safe mailbox
fd = _reaper_signaler->get_fd ();
(static_cast<mailbox_safe_t *> (_mailbox))
->add_signaler (_reaper_signaler);
// Send a signal to make sure reaper handle existing commands
_reaper_signaler->send ();
}
_handle = _poller->add_fd (fd, this);
_poller->set_pollin (_handle);
// Initialise the termination and check whether it can be deallocated
// immediately.
terminate ();
check_destroy ();
}
int zmq::socket_base_t::process_commands (int timeout_, bool throttle_)
{
if (timeout_ == 0) {
// If we are asked not to wait, check whether we haven't processed
// commands recently, so that we can throttle the new commands.
// Get the CPU's tick counter. If 0, the counter is not available.
const uint64_t tsc = zmq::clock_t::rdtsc ();
// Optimised version of command processing - it doesn't have to check
// for incoming commands each time. It does so only if certain time
// elapsed since last command processing. Command delay varies
// depending on CPU speed: It's ~1ms on 3GHz CPU, ~2ms on 1.5GHz CPU
// etc. The optimisation makes sense only on platforms where getting
// a timestamp is a very cheap operation (tens of nanoseconds).
if (tsc && throttle_) {
// Check whether TSC haven't jumped backwards (in case of migration
// between CPU cores) and whether certain time have elapsed since
// last command processing. If it didn't do nothing.
if (tsc >= _last_tsc && tsc - _last_tsc <= max_command_delay)
return 0;
_last_tsc = tsc;
}
}
// Check whether there are any commands pending for this thread.
command_t cmd;
int rc = _mailbox->recv (&cmd, timeout_);
if (rc != 0 && errno == EINTR)
return -1;
// Process all available commands.
while (rc == 0 || errno == EINTR) {
if (rc == 0) {
cmd.destination->process_command (cmd);
}
rc = _mailbox->recv (&cmd, 0);
}
zmq_assert (errno == EAGAIN);
if (_ctx_terminated) {
errno = ETERM;
return -1;
}
return 0;
}
void zmq::socket_base_t::process_stop ()
{
// Here, someone have called zmq_ctx_term while the socket was still alive.
// We'll remember the fact so that any blocking call is interrupted and any
// further attempt to use the socket will return ETERM. The user is still
// responsible for calling zmq_close on the socket though!
scoped_lock_t lock (_monitor_sync);
stop_monitor ();
_ctx_terminated = true;
}
void zmq::socket_base_t::process_bind (pipe_t *pipe_)
{
attach_pipe (pipe_);
}
void zmq::socket_base_t::process_term (int linger_)
{
// Unregister all inproc endpoints associated with this socket.
// Doing this we make sure that no new pipes from other sockets (inproc)
// will be initiated.
unregister_endpoints (this);
// Ask all attached pipes to terminate.
for (pipes_t::size_type i = 0, size = _pipes.size (); i != size; ++i) {
// Only inprocs might have a disconnect message set
_pipes[i]->send_disconnect_msg ();
_pipes[i]->terminate (false);
}
register_term_acks (static_cast<int> (_pipes.size ()));
// Continue the termination process immediately.
own_t::process_term (linger_);
}
void zmq::socket_base_t::process_term_endpoint (std::string *endpoint_)
{
term_endpoint (endpoint_->c_str ());
delete endpoint_;
}
void zmq::socket_base_t::process_pipe_stats_publish (
uint64_t outbound_queue_count_,
uint64_t inbound_queue_count_,
endpoint_uri_pair_t *endpoint_pair_)
{
uint64_t values[2] = {outbound_queue_count_, inbound_queue_count_};
event (*endpoint_pair_, values, 2, ZMQ_EVENT_PIPES_STATS);
delete endpoint_pair_;
}
/*
* There are 2 pipes per connection, and the inbound one _must_ be queried from
* the I/O thread. So ask the outbound pipe, in the application thread, to send
* a message (pipe_peer_stats) to its peer. The message will carry the outbound
* pipe stats and endpoint, and the reference to the socket object.
* The inbound pipe on the I/O thread will then add its own stats and endpoint,
* and write back a message to the socket object (pipe_stats_publish) which
* will raise an event with the data.
*/
int zmq::socket_base_t::query_pipes_stats ()
{
{
scoped_lock_t lock (_monitor_sync);
if (!(_monitor_events & ZMQ_EVENT_PIPES_STATS)) {
errno = EINVAL;
return -1;
}
}
if (_pipes.size () == 0) {
errno = EAGAIN;
return -1;
}
for (pipes_t::size_type i = 0, size = _pipes.size (); i != size; ++i) {
_pipes[i]->send_stats_to_peer (this);
}
return 0;
}
void zmq::socket_base_t::update_pipe_options (int option_)
{
if (option_ == ZMQ_SNDHWM || option_ == ZMQ_RCVHWM) {
for (pipes_t::size_type i = 0, size = _pipes.size (); i != size; ++i) {
_pipes[i]->set_hwms (options.rcvhwm, options.sndhwm);
_pipes[i]->send_hwms_to_peer (options.sndhwm, options.rcvhwm);
}
}
}
void zmq::socket_base_t::process_destroy ()
{
_destroyed = true;
}
int zmq::socket_base_t::xsetsockopt (int, const void *, size_t)
{
errno = EINVAL;
return -1;
}
int zmq::socket_base_t::xgetsockopt (int, void *, size_t *)
{
errno = EINVAL;
return -1;
}
bool zmq::socket_base_t::xhas_out ()
{
return false;
}
int zmq::socket_base_t::xsend (msg_t *)
{
errno = ENOTSUP;
return -1;
}
bool zmq::socket_base_t::xhas_in ()
{
return false;
}
int zmq::socket_base_t::xjoin (const char *group_)
{
LIBZMQ_UNUSED (group_);
errno = ENOTSUP;
return -1;
}
int zmq::socket_base_t::xleave (const char *group_)
{
LIBZMQ_UNUSED (group_);
errno = ENOTSUP;
return -1;
}
int zmq::socket_base_t::xrecv (msg_t *)
{
errno = ENOTSUP;
return -1;
}
void zmq::socket_base_t::xread_activated (pipe_t *)
{
zmq_assert (false);
}
void zmq::socket_base_t::xwrite_activated (pipe_t *)
{
zmq_assert (false);
}
void zmq::socket_base_t::xhiccuped (pipe_t *)
{
zmq_assert (false);
}
void zmq::socket_base_t::in_event ()
{
// This function is invoked only once the socket is running in the context
// of the reaper thread. Process any commands from other threads/sockets
// that may be available at the moment. Ultimately, the socket will
// be destroyed.
{
scoped_optional_lock_t sync_lock (_thread_safe ? &_sync : NULL);
// If the socket is thread safe we need to unsignal the reaper signaler
if (_thread_safe)
_reaper_signaler->recv ();
process_commands (0, false);
}
check_destroy ();
}
void zmq::socket_base_t::out_event ()
{
zmq_assert (false);
}
void zmq::socket_base_t::timer_event (int)
{
zmq_assert (false);
}
void zmq::socket_base_t::check_destroy ()
{
// If the object was already marked as destroyed, finish the deallocation.
if (_destroyed) {
// Remove the socket from the reaper's poller.
_poller->rm_fd (_handle);
// Remove the socket from the context.
destroy_socket (this);
// Notify the reaper about the fact.
send_reaped ();
// Deallocate.
own_t::process_destroy ();
}
}
void zmq::socket_base_t::read_activated (pipe_t *pipe_)
{
xread_activated (pipe_);
}
void zmq::socket_base_t::write_activated (pipe_t *pipe_)
{
xwrite_activated (pipe_);
}
void zmq::socket_base_t::hiccuped (pipe_t *pipe_)
{
if (options.immediate == 1)
pipe_->terminate (false);
else
// Notify derived sockets of the hiccup
xhiccuped (pipe_);
}
void zmq::socket_base_t::pipe_terminated (pipe_t *pipe_)
{
// Notify the specific socket type about the pipe termination.
xpipe_terminated (pipe_);
// Remove pipe from inproc pipes
_inprocs.erase_pipe (pipe_);
// Remove the pipe from the list of attached pipes and confirm its
// termination if we are already shutting down.
_pipes.erase (pipe_);
// Remove the pipe from _endpoints (set it to NULL).
const std::string &identifier = pipe_->get_endpoint_pair ().identifier ();
if (!identifier.empty ()) {
std::pair<endpoints_t::iterator, endpoints_t::iterator> range;
range = _endpoints.equal_range (identifier);
for (endpoints_t::iterator it = range.first; it != range.second; ++it) {
if (it->second.second == pipe_) {
it->second.second = NULL;
break;
}
}
}
if (is_terminating ())
unregister_term_ack ();
}
void zmq::socket_base_t::extract_flags (const msg_t *msg_)
{
// Test whether routing_id flag is valid for this socket type.
if (unlikely (msg_->flags () & msg_t::routing_id))
zmq_assert (options.recv_routing_id);
// Remove MORE flag.
_rcvmore = (msg_->flags () & msg_t::more) != 0;
}
int zmq::socket_base_t::monitor (const char *endpoint_,
uint64_t events_,
int event_version_,
int type_)
{
scoped_lock_t lock (_monitor_sync);
if (unlikely (_ctx_terminated)) {
errno = ETERM;
return -1;
}
// Event version 1 supports only first 16 events.
if (unlikely (event_version_ == 1 && events_ >> 16 != 0)) {
errno = EINVAL;
return -1;
}
// Support deregistering monitoring endpoints as well
if (endpoint_ == NULL) {
stop_monitor ();
return 0;
}
// Parse endpoint_uri_ string.
std::string protocol;
std::string address;
if (parse_uri (endpoint_, protocol, address) || check_protocol (protocol))
return -1;
// Event notification only supported over inproc://
if (protocol != protocol_name::inproc) {
errno = EPROTONOSUPPORT;
return -1;
}
// already monitoring. Stop previous monitor before starting new one.
if (_monitor_socket != NULL) {
stop_monitor (true);
}
// Check if the specified socket type is supported. It must be a
// one-way socket types that support the SNDMORE flag.
switch (type_) {
case ZMQ_PAIR:
break;
case ZMQ_PUB:
break;
case ZMQ_PUSH:
break;
default:
errno = EINVAL;
return -1;
}
// Register events to monitor
_monitor_events = events_;
options.monitor_event_version = event_version_;
// Create a monitor socket of the specified type.
_monitor_socket = zmq_socket (get_ctx (), type_);
if (_monitor_socket == NULL)
return -1;
// Never block context termination on pending event messages
int linger = 0;
int rc =
zmq_setsockopt (_monitor_socket, ZMQ_LINGER, &linger, sizeof (linger));
if (rc == -1)
stop_monitor (false);
// Spawn the monitor socket endpoint
rc = zmq_bind (_monitor_socket, endpoint_);
if (rc == -1)
stop_monitor (false);
return rc;
}
void zmq::socket_base_t::event_connected (
const endpoint_uri_pair_t &endpoint_uri_pair_, zmq::fd_t fd_)
{
uint64_t values[1] = {static_cast<uint64_t> (fd_)};
event (endpoint_uri_pair_, values, 1, ZMQ_EVENT_CONNECTED);
}
void zmq::socket_base_t::event_connect_delayed (
const endpoint_uri_pair_t &endpoint_uri_pair_, int err_)
{
uint64_t values[1] = {static_cast<uint64_t> (err_)};
event (endpoint_uri_pair_, values, 1, ZMQ_EVENT_CONNECT_DELAYED);
}
void zmq::socket_base_t::event_connect_retried (
const endpoint_uri_pair_t &endpoint_uri_pair_, int interval_)
{
uint64_t values[1] = {static_cast<uint64_t> (interval_)};
event (endpoint_uri_pair_, values, 1, ZMQ_EVENT_CONNECT_RETRIED);
}
void zmq::socket_base_t::event_listening (
const endpoint_uri_pair_t &endpoint_uri_pair_, zmq::fd_t fd_)
{
uint64_t values[1] = {static_cast<uint64_t> (fd_)};
event (endpoint_uri_pair_, values, 1, ZMQ_EVENT_LISTENING);
}
void zmq::socket_base_t::event_bind_failed (
const endpoint_uri_pair_t &endpoint_uri_pair_, int err_)
{
uint64_t values[1] = {static_cast<uint64_t> (err_)};
event (endpoint_uri_pair_, values, 1, ZMQ_EVENT_BIND_FAILED);
}
void zmq::socket_base_t::event_accepted (
const endpoint_uri_pair_t &endpoint_uri_pair_, zmq::fd_t fd_)
{
uint64_t values[1] = {static_cast<uint64_t> (fd_)};
event (endpoint_uri_pair_, values, 1, ZMQ_EVENT_ACCEPTED);
}
void zmq::socket_base_t::event_accept_failed (
const endpoint_uri_pair_t &endpoint_uri_pair_, int err_)
{
uint64_t values[1] = {static_cast<uint64_t> (err_)};
event (endpoint_uri_pair_, values, 1, ZMQ_EVENT_ACCEPT_FAILED);
}
void zmq::socket_base_t::event_closed (
const endpoint_uri_pair_t &endpoint_uri_pair_, zmq::fd_t fd_)
{
uint64_t values[1] = {static_cast<uint64_t> (fd_)};
event (endpoint_uri_pair_, values, 1, ZMQ_EVENT_CLOSED);
}
void zmq::socket_base_t::event_close_failed (
const endpoint_uri_pair_t &endpoint_uri_pair_, int err_)
{
uint64_t values[1] = {static_cast<uint64_t> (err_)};
event (endpoint_uri_pair_, values, 1, ZMQ_EVENT_CLOSE_FAILED);
}
void zmq::socket_base_t::event_disconnected (
const endpoint_uri_pair_t &endpoint_uri_pair_, zmq::fd_t fd_)
{
uint64_t values[1] = {static_cast<uint64_t> (fd_)};
event (endpoint_uri_pair_, values, 1, ZMQ_EVENT_DISCONNECTED);
}
void zmq::socket_base_t::event_handshake_failed_no_detail (
const endpoint_uri_pair_t &endpoint_uri_pair_, int err_)
{
uint64_t values[1] = {static_cast<uint64_t> (err_)};
event (endpoint_uri_pair_, values, 1, ZMQ_EVENT_HANDSHAKE_FAILED_NO_DETAIL);
}
void zmq::socket_base_t::event_handshake_failed_protocol (
const endpoint_uri_pair_t &endpoint_uri_pair_, int err_)
{
uint64_t values[1] = {static_cast<uint64_t> (err_)};
event (endpoint_uri_pair_, values, 1, ZMQ_EVENT_HANDSHAKE_FAILED_PROTOCOL);
}
void zmq::socket_base_t::event_handshake_failed_auth (
const endpoint_uri_pair_t &endpoint_uri_pair_, int err_)
{
uint64_t values[1] = {static_cast<uint64_t> (err_)};
event (endpoint_uri_pair_, values, 1, ZMQ_EVENT_HANDSHAKE_FAILED_AUTH);
}
void zmq::socket_base_t::event_handshake_succeeded (
const endpoint_uri_pair_t &endpoint_uri_pair_, int err_)
{
uint64_t values[1] = {static_cast<uint64_t> (err_)};
event (endpoint_uri_pair_, values, 1, ZMQ_EVENT_HANDSHAKE_SUCCEEDED);
}
void zmq::socket_base_t::event (const endpoint_uri_pair_t &endpoint_uri_pair_,
uint64_t values_[],
uint64_t values_count_,
uint64_t type_)
{
scoped_lock_t lock (_monitor_sync);
if (_monitor_events & type_) {
monitor_event (type_, values_, values_count_, endpoint_uri_pair_);
}
}
// Send a monitor event
void zmq::socket_base_t::monitor_event (
uint64_t event_,
const uint64_t values_[],
uint64_t values_count_,
const endpoint_uri_pair_t &endpoint_uri_pair_) const
{
// this is a private method which is only called from
// contexts where the _monitor_sync mutex has been locked before
if (_monitor_socket) {
zmq_msg_t msg;
switch (options.monitor_event_version) {
case 1: {
// The API should not allow to activate unsupported events
zmq_assert (event_ <= std::numeric_limits<uint16_t>::max ());
// v1 only allows one value
zmq_assert (values_count_ == 1);
zmq_assert (values_[0]
<= std::numeric_limits<uint32_t>::max ());
// Send event and value in first frame
const uint16_t event = static_cast<uint16_t> (event_);
const uint32_t value = static_cast<uint32_t> (values_[0]);
zmq_msg_init_size (&msg, sizeof (event) + sizeof (value));
uint8_t *data = static_cast<uint8_t *> (zmq_msg_data (&msg));
// Avoid dereferencing uint32_t on unaligned address
memcpy (data + 0, &event, sizeof (event));
memcpy (data + sizeof (event), &value, sizeof (value));
zmq_msg_send (&msg, _monitor_socket, ZMQ_SNDMORE);
const std::string &endpoint_uri =
endpoint_uri_pair_.identifier ();
// Send address in second frame
zmq_msg_init_size (&msg, endpoint_uri.size ());
memcpy (zmq_msg_data (&msg), endpoint_uri.c_str (),
endpoint_uri.size ());
zmq_msg_send (&msg, _monitor_socket, 0);
} break;
case 2: {
// Send event in first frame (64bit unsigned)
zmq_msg_init_size (&msg, sizeof (event_));
memcpy (zmq_msg_data (&msg), &event_, sizeof (event_));
zmq_msg_send (&msg, _monitor_socket, ZMQ_SNDMORE);
// Send number of values that will follow in second frame
zmq_msg_init_size (&msg, sizeof (values_count_));
memcpy (zmq_msg_data (&msg), &values_count_,
sizeof (values_count_));
zmq_msg_send (&msg, _monitor_socket, ZMQ_SNDMORE);
// Send values in third-Nth frames (64bit unsigned)
for (uint64_t i = 0; i < values_count_; ++i) {
zmq_msg_init_size (&msg, sizeof (values_[i]));
memcpy (zmq_msg_data (&msg), &values_[i],
sizeof (values_[i]));
zmq_msg_send (&msg, _monitor_socket, ZMQ_SNDMORE);
}
// Send local endpoint URI in second-to-last frame (string)
zmq_msg_init_size (&msg, endpoint_uri_pair_.local.size ());
memcpy (zmq_msg_data (&msg), endpoint_uri_pair_.local.c_str (),
endpoint_uri_pair_.local.size ());
zmq_msg_send (&msg, _monitor_socket, ZMQ_SNDMORE);
// Send remote endpoint URI in last frame (string)
zmq_msg_init_size (&msg, endpoint_uri_pair_.remote.size ());
memcpy (zmq_msg_data (&msg), endpoint_uri_pair_.remote.c_str (),
endpoint_uri_pair_.remote.size ());
zmq_msg_send (&msg, _monitor_socket, 0);
} break;
}
}
}
void zmq::socket_base_t::stop_monitor (bool send_monitor_stopped_event_)
{
// this is a private method which is only called from
// contexts where the _monitor_sync mutex has been locked before
if (_monitor_socket) {
if ((_monitor_events & ZMQ_EVENT_MONITOR_STOPPED)
&& send_monitor_stopped_event_) {
uint64_t values[1] = {0};
monitor_event (ZMQ_EVENT_MONITOR_STOPPED, values, 1,
endpoint_uri_pair_t ());
}
zmq_close (_monitor_socket);
_monitor_socket = NULL;
_monitor_events = 0;
}
}
bool zmq::socket_base_t::is_disconnected () const
{
return _disconnected;
}
zmq::routing_socket_base_t::routing_socket_base_t (class ctx_t *parent_,
uint32_t tid_,
int sid_) :
socket_base_t (parent_, tid_, sid_)
{
}
zmq::routing_socket_base_t::~routing_socket_base_t ()
{
zmq_assert (_out_pipes.empty ());
}
int zmq::routing_socket_base_t::xsetsockopt (int option_,
const void *optval_,
size_t optvallen_)
{
switch (option_) {
case ZMQ_CONNECT_ROUTING_ID:
// TODO why isn't it possible to set an empty connect_routing_id
// (which is the default value)
if (optval_ && optvallen_) {
_connect_routing_id.assign (static_cast<const char *> (optval_),
optvallen_);
return 0;
}
break;
}
errno = EINVAL;
return -1;
}
void zmq::routing_socket_base_t::xwrite_activated (pipe_t *pipe_)
{
const out_pipes_t::iterator end = _out_pipes.end ();
out_pipes_t::iterator it;
for (it = _out_pipes.begin (); it != end; ++it)
if (it->second.pipe == pipe_)
break;
zmq_assert (it != end);
zmq_assert (!it->second.active);
it->second.active = true;
}
std::string zmq::routing_socket_base_t::extract_connect_routing_id ()
{
std::string res = ZMQ_MOVE (_connect_routing_id);
_connect_routing_id.clear ();
return res;
}
bool zmq::routing_socket_base_t::connect_routing_id_is_set () const
{
return !_connect_routing_id.empty ();
}
void zmq::routing_socket_base_t::add_out_pipe (blob_t routing_id_,
pipe_t *pipe_)
{
// Add the record into output pipes lookup table
const out_pipe_t outpipe = {pipe_, true};
const bool ok =
_out_pipes.ZMQ_MAP_INSERT_OR_EMPLACE (ZMQ_MOVE (routing_id_), outpipe)
.second;
zmq_assert (ok);
}
bool zmq::routing_socket_base_t::has_out_pipe (const blob_t &routing_id_) const
{
return 0 != _out_pipes.count (routing_id_);
}
zmq::routing_socket_base_t::out_pipe_t *
zmq::routing_socket_base_t::lookup_out_pipe (const blob_t &routing_id_)
{
// TODO we could probably avoid constructor a temporary blob_t to call this function
out_pipes_t::iterator it = _out_pipes.find (routing_id_);
return it == _out_pipes.end () ? NULL : &it->second;
}
const zmq::routing_socket_base_t::out_pipe_t *
zmq::routing_socket_base_t::lookup_out_pipe (const blob_t &routing_id_) const
{
// TODO we could probably avoid constructor a temporary blob_t to call this function
const out_pipes_t::const_iterator it = _out_pipes.find (routing_id_);
return it == _out_pipes.end () ? NULL : &it->second;
}
void zmq::routing_socket_base_t::erase_out_pipe (const pipe_t *pipe_)
{
const size_t erased = _out_pipes.erase (pipe_->get_routing_id ());
zmq_assert (erased);
}
zmq::routing_socket_base_t::out_pipe_t
zmq::routing_socket_base_t::try_erase_out_pipe (const blob_t &routing_id_)
{
const out_pipes_t::iterator it = _out_pipes.find (routing_id_);
out_pipe_t res = {NULL, false};
if (it != _out_pipes.end ()) {
res = it->second;
_out_pipes.erase (it);
}
return res;
}