mirror of
https://github.com/zeromq/libzmq.git
synced 2025-01-14 09:47:56 +08:00
591 lines
25 KiB
C++
591 lines
25 KiB
C++
/*
|
|
Copyright (c) 2018 Contributors as noted in the AUTHORS file
|
|
|
|
This file is part of libzmq, the ZeroMQ core engine in C++.
|
|
|
|
libzmq is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License (LGPL) as published
|
|
by the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
As a special exception, the Contributors give you permission to link
|
|
this library with independent modules to produce an executable,
|
|
regardless of the license terms of these independent modules, and to
|
|
copy and distribute the resulting executable under terms of your choice,
|
|
provided that you also meet, for each linked independent module, the
|
|
terms and conditions of the license of that module. An independent
|
|
module is a module which is not derived from or based on this library.
|
|
If you modify this library, you must extend this exception to your
|
|
version of the library.
|
|
|
|
libzmq is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef __ZMQ_GENERIC_MTRIE_IMPL_HPP_INCLUDED__
|
|
#define __ZMQ_GENERIC_MTRIE_IMPL_HPP_INCLUDED__
|
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <new>
|
|
#include <algorithm>
|
|
#include <list>
|
|
|
|
#include "err.hpp"
|
|
#include "macros.hpp"
|
|
#include "generic_mtrie.hpp"
|
|
|
|
namespace zmq
|
|
{
|
|
template <typename T>
|
|
generic_mtrie_t<T>::generic_mtrie_t () :
|
|
_pipes (0), _min (0), _count (0), _live_nodes (0)
|
|
{
|
|
}
|
|
|
|
template <typename T> generic_mtrie_t<T>::~generic_mtrie_t ()
|
|
{
|
|
LIBZMQ_DELETE (_pipes);
|
|
|
|
if (_count == 1) {
|
|
zmq_assert (_next.node);
|
|
LIBZMQ_DELETE (_next.node);
|
|
} else if (_count > 1) {
|
|
for (unsigned short i = 0; i != _count; ++i) {
|
|
LIBZMQ_DELETE (_next.table[i]);
|
|
}
|
|
free (_next.table);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
bool generic_mtrie_t<T>::add (prefix_t prefix_, size_t size_, value_t *pipe_)
|
|
{
|
|
generic_mtrie_t<value_t> *it = this;
|
|
|
|
while (size_) {
|
|
const unsigned char c = *prefix_;
|
|
|
|
if (c < it->_min || c >= it->_min + it->_count) {
|
|
// The character is out of range of currently handled
|
|
// characters. We have to extend the table.
|
|
if (!it->_count) {
|
|
it->_min = c;
|
|
it->_count = 1;
|
|
it->_next.node = NULL;
|
|
} else if (it->_count == 1) {
|
|
const unsigned char oldc = it->_min;
|
|
generic_mtrie_t *oldp = it->_next.node;
|
|
it->_count = (it->_min < c ? c - it->_min : it->_min - c) + 1;
|
|
it->_next.table = static_cast<generic_mtrie_t **> (
|
|
malloc (sizeof (generic_mtrie_t *) * it->_count));
|
|
alloc_assert (it->_next.table);
|
|
for (unsigned short i = 0; i != it->_count; ++i)
|
|
it->_next.table[i] = 0;
|
|
it->_min = std::min (it->_min, c);
|
|
it->_next.table[oldc - it->_min] = oldp;
|
|
} else if (it->_min < c) {
|
|
// The new character is above the current character range.
|
|
const unsigned short old_count = it->_count;
|
|
it->_count = c - it->_min + 1;
|
|
it->_next.table = static_cast<generic_mtrie_t **> (realloc (
|
|
it->_next.table, sizeof (generic_mtrie_t *) * it->_count));
|
|
alloc_assert (it->_next.table);
|
|
for (unsigned short i = old_count; i != it->_count; i++)
|
|
it->_next.table[i] = NULL;
|
|
} else {
|
|
// The new character is below the current character range.
|
|
const unsigned short old_count = it->_count;
|
|
it->_count = (it->_min + old_count) - c;
|
|
it->_next.table = static_cast<generic_mtrie_t **> (realloc (
|
|
it->_next.table, sizeof (generic_mtrie_t *) * it->_count));
|
|
alloc_assert (it->_next.table);
|
|
memmove (it->_next.table + it->_min - c, it->_next.table,
|
|
old_count * sizeof (generic_mtrie_t *));
|
|
for (unsigned short i = 0; i != it->_min - c; i++)
|
|
it->_next.table[i] = NULL;
|
|
it->_min = c;
|
|
}
|
|
}
|
|
|
|
// If next node does not exist, create one.
|
|
if (it->_count == 1) {
|
|
if (!it->_next.node) {
|
|
it->_next.node = new (std::nothrow) generic_mtrie_t;
|
|
alloc_assert (it->_next.node);
|
|
++(it->_live_nodes);
|
|
}
|
|
|
|
++prefix_;
|
|
--size_;
|
|
it = it->_next.node;
|
|
} else {
|
|
if (!it->_next.table[c - it->_min]) {
|
|
it->_next.table[c - it->_min] =
|
|
new (std::nothrow) generic_mtrie_t;
|
|
alloc_assert (it->_next.table[c - it->_min]);
|
|
++(it->_live_nodes);
|
|
}
|
|
|
|
++prefix_;
|
|
--size_;
|
|
it = it->_next.table[c - it->_min];
|
|
}
|
|
}
|
|
|
|
// We are at the node corresponding to the prefix. We are done.
|
|
const bool result = !it->_pipes;
|
|
if (!it->_pipes) {
|
|
it->_pipes = new (std::nothrow) pipes_t;
|
|
alloc_assert (it->_pipes);
|
|
}
|
|
it->_pipes->insert (pipe_);
|
|
|
|
return result;
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename Arg>
|
|
void generic_mtrie_t<T>::rm (value_t *pipe_,
|
|
void (*func_) (prefix_t data_,
|
|
size_t size_,
|
|
Arg arg_),
|
|
Arg arg_,
|
|
bool call_on_uniq_)
|
|
{
|
|
// This used to be implemented as a non-tail recursive traversal of the trie,
|
|
// which means remote clients controlled the depth of the recursion and the
|
|
// stack size.
|
|
// To simulate the non-tail recursion, with post-recursion changes depending on
|
|
// the result of the recursive call, a stack is used to re-visit the same node
|
|
// and operate on it again after children have been visited.
|
|
// A boolean is used to record whether the node had already been visited and to
|
|
// determine if the pre- or post- children visit actions have to be taken.
|
|
// In the case of a node with (N > 1) children, the node has to be re-visited
|
|
// N times, in the correct order after each child visit.
|
|
std::list<struct iter> stack;
|
|
unsigned char *buff = NULL;
|
|
size_t maxbuffsize = 0;
|
|
struct iter it = {this, NULL, NULL, 0, 0, 0, 0, false};
|
|
stack.push_back (it);
|
|
|
|
while (!stack.empty ()) {
|
|
it = stack.back ();
|
|
stack.pop_back ();
|
|
|
|
if (!it.processed_for_removal) {
|
|
// Remove the subscription from this node.
|
|
if (it.node->_pipes && it.node->_pipes->erase (pipe_)) {
|
|
if (!call_on_uniq_ || it.node->_pipes->empty ()) {
|
|
func_ (buff, it.size, arg_);
|
|
}
|
|
|
|
if (it.node->_pipes->empty ()) {
|
|
LIBZMQ_DELETE (it.node->_pipes);
|
|
}
|
|
}
|
|
|
|
// Adjust the buffer.
|
|
if (it.size >= maxbuffsize) {
|
|
maxbuffsize = it.size + 256;
|
|
buff =
|
|
static_cast<unsigned char *> (realloc (buff, maxbuffsize));
|
|
alloc_assert (buff);
|
|
}
|
|
|
|
switch (it.node->_count) {
|
|
case 0:
|
|
// If there are no subnodes in the trie, we are done with this node
|
|
// pre-processing.
|
|
break;
|
|
case 1: {
|
|
// If there's one subnode (optimisation).
|
|
|
|
buff[it.size] = it.node->_min;
|
|
// Mark this node as pre-processed and push it, so that the next
|
|
// visit after the operation on the child can do the removals.
|
|
it.processed_for_removal = true;
|
|
stack.push_back (it);
|
|
struct iter next = {it.node->_next.node,
|
|
NULL,
|
|
NULL,
|
|
++it.size,
|
|
0,
|
|
0,
|
|
0,
|
|
false};
|
|
stack.push_back (next);
|
|
break;
|
|
}
|
|
default: {
|
|
// If there are multiple subnodes.
|
|
// When first visiting this node, initialize the new_min/max parameters
|
|
// which will then be used after each child has been processed, on the
|
|
// post-children iterations.
|
|
if (it.current_child == 0) {
|
|
// New min non-null character in the node table after the removal
|
|
it.new_min = it.node->_min + it.node->_count - 1;
|
|
// New max non-null character in the node table after the removal
|
|
it.new_max = it.node->_min;
|
|
}
|
|
|
|
// Mark this node as pre-processed and push it, so that the next
|
|
// visit after the operation on the child can do the removals.
|
|
buff[it.size] = it.node->_min + it.current_child;
|
|
it.processed_for_removal = true;
|
|
stack.push_back (it);
|
|
if (it.node->_next.table[it.current_child]) {
|
|
struct iter next = {
|
|
it.node->_next.table[it.current_child],
|
|
NULL,
|
|
NULL,
|
|
it.size + 1,
|
|
0,
|
|
0,
|
|
0,
|
|
false};
|
|
stack.push_back (next);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// Reset back for the next time, in case this node doesn't get deleted.
|
|
// This is done unconditionally, unlike when setting this variable to true.
|
|
it.processed_for_removal = false;
|
|
|
|
switch (it.node->_count) {
|
|
case 0:
|
|
// If there are no subnodes in the trie, we are done with this node
|
|
// post-processing.
|
|
break;
|
|
case 1:
|
|
// If there's one subnode (optimisation).
|
|
|
|
// Prune the node if it was made redundant by the removal
|
|
if (it.node->_next.node->is_redundant ()) {
|
|
LIBZMQ_DELETE (it.node->_next.node);
|
|
it.node->_count = 0;
|
|
--it.node->_live_nodes;
|
|
zmq_assert (it.node->_live_nodes == 0);
|
|
}
|
|
break;
|
|
default:
|
|
// If there are multiple subnodes.
|
|
{
|
|
if (it.node->_next.table[it.current_child]) {
|
|
// Prune redundant nodes from the mtrie
|
|
if (it.node->_next.table[it.current_child]
|
|
->is_redundant ()) {
|
|
LIBZMQ_DELETE (
|
|
it.node->_next.table[it.current_child]);
|
|
|
|
zmq_assert (it.node->_live_nodes > 0);
|
|
--it.node->_live_nodes;
|
|
} else {
|
|
// The node is not redundant, so it's a candidate for being
|
|
// the new min/max node.
|
|
//
|
|
// We loop through the node array from left to right, so the
|
|
// first non-null, non-redundant node encountered is the new
|
|
// minimum index. Conversely, the last non-redundant, non-null
|
|
// node encountered is the new maximum index.
|
|
if (it.current_child + it.node->_min
|
|
< it.new_min)
|
|
it.new_min =
|
|
it.current_child + it.node->_min;
|
|
if (it.current_child + it.node->_min
|
|
> it.new_max)
|
|
it.new_max =
|
|
it.current_child + it.node->_min;
|
|
}
|
|
}
|
|
|
|
// If there are more children to visit, push again the current
|
|
// node, so that pre-processing can happen on the next child.
|
|
// If we are done, reset the child index so that the ::rm is
|
|
// fully idempotent.
|
|
++it.current_child;
|
|
if (it.current_child >= it.node->_count)
|
|
it.current_child = 0;
|
|
else {
|
|
stack.push_back (it);
|
|
continue;
|
|
}
|
|
|
|
// All children have been visited and removed if needed, and
|
|
// all pre- and post-visit operations have been carried.
|
|
// Resize/free the node table if needed.
|
|
zmq_assert (it.node->_count > 1);
|
|
|
|
// Free the node table if it's no longer used.
|
|
switch (it.node->_live_nodes) {
|
|
case 0:
|
|
free (it.node->_next.table);
|
|
it.node->_next.table = NULL;
|
|
it.node->_count = 0;
|
|
break;
|
|
case 1:
|
|
// Compact the node table if possible
|
|
|
|
// If there's only one live node in the table we can
|
|
// switch to using the more compact single-node
|
|
// representation
|
|
zmq_assert (it.new_min == it.new_max);
|
|
zmq_assert (it.new_min >= it.node->_min);
|
|
zmq_assert (it.new_min
|
|
< it.node->_min + it.node->_count);
|
|
{
|
|
generic_mtrie_t *node =
|
|
it.node->_next
|
|
.table[it.new_min - it.node->_min];
|
|
zmq_assert (node);
|
|
free (it.node->_next.table);
|
|
it.node->_next.node = node;
|
|
}
|
|
it.node->_count = 1;
|
|
it.node->_min = it.new_min;
|
|
break;
|
|
default:
|
|
if (it.new_min > it.node->_min
|
|
|| it.new_max < it.node->_min
|
|
+ it.node->_count - 1) {
|
|
zmq_assert (it.new_max - it.new_min + 1
|
|
> 1);
|
|
|
|
generic_mtrie_t **old_table =
|
|
it.node->_next.table;
|
|
zmq_assert (it.new_min > it.node->_min
|
|
|| it.new_max
|
|
< it.node->_min
|
|
+ it.node->_count - 1);
|
|
zmq_assert (it.new_min >= it.node->_min);
|
|
zmq_assert (it.new_max
|
|
<= it.node->_min
|
|
+ it.node->_count - 1);
|
|
zmq_assert (it.new_max - it.new_min + 1
|
|
< it.node->_count);
|
|
|
|
it.node->_count =
|
|
it.new_max - it.new_min + 1;
|
|
it.node->_next.table =
|
|
static_cast<generic_mtrie_t **> (
|
|
malloc (sizeof (generic_mtrie_t *)
|
|
* it.node->_count));
|
|
alloc_assert (it.node->_next.table);
|
|
|
|
memmove (it.node->_next.table,
|
|
old_table
|
|
+ (it.new_min - it.node->_min),
|
|
sizeof (generic_mtrie_t *)
|
|
* it.node->_count);
|
|
free (old_table);
|
|
|
|
it.node->_min = it.new_min;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
free (buff);
|
|
}
|
|
|
|
template <typename T>
|
|
typename generic_mtrie_t<T>::rm_result
|
|
generic_mtrie_t<T>::rm (prefix_t prefix_, size_t size_, value_t *pipe_)
|
|
{
|
|
// This used to be implemented as a non-tail recursive traversal of the trie,
|
|
// which means remote clients controlled the depth of the recursion and the
|
|
// stack size.
|
|
// To simulate the non-tail recursion, with post-recursion changes depending on
|
|
// the result of the recursive call, a stack is used to re-visit the same node
|
|
// and operate on it again after children have been visited.
|
|
// A boolean is used to record whether the node had already been visited and to
|
|
// determine if the pre- or post- children visit actions have to be taken.
|
|
rm_result ret = not_found;
|
|
std::list<struct iter> stack;
|
|
struct iter it = {this, NULL, prefix_, size_, 0, 0, 0, false};
|
|
stack.push_back (it);
|
|
|
|
while (!stack.empty ()) {
|
|
it = stack.back ();
|
|
stack.pop_back ();
|
|
|
|
if (!it.processed_for_removal) {
|
|
if (!it.size) {
|
|
if (!it.node->_pipes) {
|
|
ret = not_found;
|
|
continue;
|
|
}
|
|
|
|
typename pipes_t::size_type erased =
|
|
it.node->_pipes->erase (pipe_);
|
|
if (it.node->_pipes->empty ()) {
|
|
zmq_assert (erased == 1);
|
|
LIBZMQ_DELETE (it.node->_pipes);
|
|
ret = last_value_removed;
|
|
continue;
|
|
}
|
|
|
|
ret = (erased == 1) ? values_remain : not_found;
|
|
continue;
|
|
}
|
|
|
|
it.current_child = *it.prefix;
|
|
if (!it.node->_count || it.current_child < it.node->_min
|
|
|| it.current_child >= it.node->_min + it.node->_count) {
|
|
ret = not_found;
|
|
continue;
|
|
}
|
|
|
|
it.next_node =
|
|
it.node->_count == 1
|
|
? it.node->_next.node
|
|
: it.node->_next.table[it.current_child - it.node->_min];
|
|
if (!it.next_node) {
|
|
ret = not_found;
|
|
continue;
|
|
}
|
|
|
|
it.processed_for_removal = true;
|
|
stack.push_back (it);
|
|
struct iter next = {
|
|
it.next_node, NULL, it.prefix + 1, it.size - 1, 0, 0, 0, false};
|
|
stack.push_back (next);
|
|
} else {
|
|
it.processed_for_removal = false;
|
|
|
|
if (it.next_node->is_redundant ()) {
|
|
LIBZMQ_DELETE (it.next_node);
|
|
zmq_assert (it.node->_count > 0);
|
|
|
|
if (it.node->_count == 1) {
|
|
it.node->_next.node = NULL;
|
|
it.node->_count = 0;
|
|
--it.node->_live_nodes;
|
|
zmq_assert (it.node->_live_nodes == 0);
|
|
} else {
|
|
it.node->_next.table[it.current_child - it.node->_min] = 0;
|
|
zmq_assert (it.node->_live_nodes > 1);
|
|
--it.node->_live_nodes;
|
|
|
|
// Compact the table if possible
|
|
if (it.node->_live_nodes == 1) {
|
|
// If there's only one live node in the table we can
|
|
// switch to using the more compact single-node
|
|
// representation
|
|
unsigned short i;
|
|
for (i = 0; i < it.node->_count; ++i)
|
|
if (it.node->_next.table[i])
|
|
break;
|
|
|
|
zmq_assert (i < it.node->_count);
|
|
it.node->_min += i;
|
|
it.node->_count = 1;
|
|
generic_mtrie_t *oldp = it.node->_next.table[i];
|
|
free (it.node->_next.table);
|
|
it.node->_next.table = NULL;
|
|
it.node->_next.node = oldp;
|
|
} else if (it.current_child == it.node->_min) {
|
|
// We can compact the table "from the left"
|
|
unsigned short i;
|
|
for (i = 1; i < it.node->_count; ++i)
|
|
if (it.node->_next.table[i])
|
|
break;
|
|
|
|
zmq_assert (i < it.node->_count);
|
|
it.node->_min += i;
|
|
it.node->_count -= i;
|
|
generic_mtrie_t **old_table = it.node->_next.table;
|
|
it.node->_next.table =
|
|
static_cast<generic_mtrie_t **> (malloc (
|
|
sizeof (generic_mtrie_t *) * it.node->_count));
|
|
alloc_assert (it.node->_next.table);
|
|
memmove (it.node->_next.table, old_table + i,
|
|
sizeof (generic_mtrie_t *) * it.node->_count);
|
|
free (old_table);
|
|
} else if (it.current_child
|
|
== it.node->_min + it.node->_count - 1) {
|
|
// We can compact the table "from the right"
|
|
unsigned short i;
|
|
for (i = 1; i < it.node->_count; ++i)
|
|
if (it.node->_next.table[it.node->_count - 1 - i])
|
|
break;
|
|
|
|
zmq_assert (i < it.node->_count);
|
|
it.node->_count -= i;
|
|
generic_mtrie_t **old_table = it.node->_next.table;
|
|
it.node->_next.table =
|
|
static_cast<generic_mtrie_t **> (malloc (
|
|
sizeof (generic_mtrie_t *) * it.node->_count));
|
|
alloc_assert (it.node->_next.table);
|
|
memmove (it.node->_next.table, old_table,
|
|
sizeof (generic_mtrie_t *) * it.node->_count);
|
|
free (old_table);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
template <typename T>
|
|
template <typename Arg>
|
|
void generic_mtrie_t<T>::match (prefix_t data_,
|
|
size_t size_,
|
|
void (*func_) (value_t *pipe_, Arg arg_),
|
|
Arg arg_)
|
|
{
|
|
for (generic_mtrie_t *current = this; current; data_++, size_--) {
|
|
// Signal the pipes attached to this node.
|
|
if (current->_pipes) {
|
|
for (typename pipes_t::iterator it = current->_pipes->begin (),
|
|
end = current->_pipes->end ();
|
|
it != end; ++it) {
|
|
func_ (*it, arg_);
|
|
}
|
|
}
|
|
|
|
// If we are at the end of the message, there's nothing more to match.
|
|
if (!size_)
|
|
break;
|
|
|
|
// If there are no subnodes in the trie, return.
|
|
if (current->_count == 0)
|
|
break;
|
|
|
|
if (current->_count == 1) {
|
|
// If there's one subnode (optimisation).
|
|
if (data_[0] != current->_min) {
|
|
break;
|
|
}
|
|
current = current->_next.node;
|
|
} else {
|
|
// If there are multiple subnodes.
|
|
if (data_[0] < current->_min
|
|
|| data_[0] >= current->_min + current->_count) {
|
|
break;
|
|
}
|
|
current = current->_next.table[data_[0] - current->_min];
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T> bool generic_mtrie_t<T>::is_redundant () const
|
|
{
|
|
return !_pipes && _live_nodes == 0;
|
|
}
|
|
}
|
|
|
|
|
|
#endif
|