mirror of
https://github.com/zeromq/libzmq.git
synced 2025-01-22 07:29:31 +08:00
758 lines
21 KiB
C++
758 lines
21 KiB
C++
/*
|
|
Copyright (c) 2007-2009 FastMQ Inc.
|
|
|
|
This file is part of 0MQ.
|
|
|
|
0MQ is free software; you can redistribute it and/or modify it under
|
|
the terms of the Lesser GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
0MQ is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
Lesser GNU General Public License for more details.
|
|
|
|
You should have received a copy of the Lesser GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "platform.hpp"
|
|
|
|
#if defined ZMQ_HAVE_OPENPGM
|
|
|
|
#ifdef ZMQ_HAVE_LINUX
|
|
#include <pgm/pgm.h>
|
|
#else
|
|
#include <Winsock2.h>
|
|
#include <Wsrm.h>
|
|
#include <ws2spi.h>
|
|
#endif
|
|
|
|
#include <string>
|
|
#include <iostream>
|
|
|
|
#include "options.hpp"
|
|
#include "pgm_socket.hpp"
|
|
#include "config.hpp"
|
|
#include "err.hpp"
|
|
|
|
//#define PGM_SOCKET_DEBUG
|
|
//#define PGM_SOCKET_DEBUG_LEVEL 1
|
|
|
|
// level 1 = key behaviour
|
|
// level 2 = processing flow
|
|
// level 4 = infos
|
|
|
|
#ifndef PGM_SOCKET_DEBUG
|
|
# define zmq_log(n, ...) while (0)
|
|
#else
|
|
# define zmq_log(n, ...) do { if ((n) <= PGM_SOCKET_DEBUG_LEVEL) \
|
|
{ printf (__VA_ARGS__);}} while (0)
|
|
#endif
|
|
|
|
#ifdef ZMQ_HAVE_LINUX
|
|
|
|
zmq::pgm_socket_t::pgm_socket_t (bool receiver_, const options_t &options_) :
|
|
g_transport (NULL),
|
|
options (options_),
|
|
receiver (receiver_),
|
|
port_number (0),
|
|
udp_encapsulation (false),
|
|
pgm_msgv (NULL),
|
|
nbytes_rec (0),
|
|
nbytes_processed (0),
|
|
pgm_msgv_processed (0),
|
|
pgm_msgv_len (0)
|
|
{
|
|
|
|
}
|
|
|
|
int zmq::pgm_socket_t::init (const char *network_)
|
|
{
|
|
// Check if we are encapsulating into UDP, natwork string has to
|
|
// start with udp:.
|
|
const char *network_ptr = network_;
|
|
|
|
if (strlen (network_) >= 4 && network_ [0] == 'u' &&
|
|
network_ [1] == 'd' && network_ [2] == 'p' &&
|
|
network_ [3] == ':') {
|
|
|
|
// Shift interface_ptr after ':'.
|
|
network_ptr += 4;
|
|
|
|
udp_encapsulation = true;
|
|
}
|
|
|
|
// Parse port number.
|
|
const char *port_delim = strchr (network_ptr, ':');
|
|
if (!port_delim) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
port_number = atoi (port_delim + 1);
|
|
|
|
// Store interface string.
|
|
if (port_delim <= network_ptr) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
if (port_delim - network_ptr >= (int) sizeof (network) - 1) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
memset (network, '\0', sizeof (network));
|
|
memcpy (network, network_ptr, port_delim - network_ptr);
|
|
|
|
|
|
zmq_log (1, "parsed: network %s, port %i, udp encaps. %s, %s(%i)\n",
|
|
network, port_number, udp_encapsulation ? "yes" : "no",
|
|
__FILE__, __LINE__);
|
|
|
|
// Open PGM transport.
|
|
int rc = open_transport ();
|
|
if (rc != 0)
|
|
return -1;
|
|
|
|
// For receiver transport preallocate pgm_msgv array.
|
|
// in_batch_size configured in confing.hpp
|
|
if (receiver) {
|
|
pgm_msgv_len = get_max_apdu_at_once (in_batch_size);
|
|
pgm_msgv = new pgm_msgv_t [pgm_msgv_len];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int zmq::pgm_socket_t::open_transport (void)
|
|
{
|
|
|
|
zmq_log (1, "Opening PGM: network %s, port %i, udp encaps. %s, %s(%i)\n",
|
|
network, port_number, udp_encapsulation ? "yes" : "no",
|
|
__FILE__, __LINE__);
|
|
|
|
// Can not open transport before destroying old one.
|
|
zmq_assert (g_transport == NULL);
|
|
|
|
// Set actual_tsi and prev_tsi to zeros.
|
|
memset (&tsi, '\0', sizeof (pgm_tsi_t));
|
|
memset (&retired_tsi, '\0', sizeof (pgm_tsi_t));
|
|
|
|
// Zero counter used in msgrecv.
|
|
nbytes_rec = 0;
|
|
nbytes_processed = 0;
|
|
pgm_msgv_processed = 0;
|
|
|
|
// Init PGM transport.
|
|
// Ensure threading enabled, ensure timer enabled and find PGM protocol id.
|
|
//
|
|
// Note that if you want to use gettimeofday and sleep for openPGM timing,
|
|
// set environment variables PGM_TIMER to "GTOD"
|
|
// and PGM_SLEEP to "USLEEP".
|
|
int rc = pgm_init ();
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
// PGM transport GSI.
|
|
pgm_gsi_t gsi;
|
|
|
|
// PGM transport GSRs.
|
|
struct group_source_req recv_gsr, send_gsr;
|
|
size_t recv_gsr_len = 1;
|
|
|
|
rc = pgm_create_md5_gsi (&gsi);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
// On success, 0 is returned. On invalid arguments, -EINVAL is returned.
|
|
// If more multicast groups are found than the recv_len parameter,
|
|
// -ENOMEM is returned.
|
|
rc = pgm_if_parse_transport (network, AF_INET, &recv_gsr,
|
|
&recv_gsr_len, &send_gsr);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
if (recv_gsr_len != 1) {
|
|
errno = ENOMEM;
|
|
return -1;
|
|
}
|
|
|
|
// If we are using UDP encapsulation update send_gsr & recv_gsr
|
|
// structures. Note that send_gsr & recv_gsr has to be updated after
|
|
// pgm_if_parse_transport call.
|
|
if (udp_encapsulation) {
|
|
|
|
// Use the same port for UDP encapsulation.
|
|
((struct sockaddr_in*)&send_gsr.gsr_group)->sin_port =
|
|
g_htons (port_number);
|
|
((struct sockaddr_in*)&recv_gsr.gsr_group)->sin_port =
|
|
g_htons (port_number);
|
|
}
|
|
|
|
rc = pgm_transport_create (&g_transport, &gsi, 0, port_number, &recv_gsr,
|
|
1, &send_gsr);
|
|
if (rc != 0) {
|
|
return -1;
|
|
}
|
|
|
|
// Common parameters for receiver and sender.
|
|
|
|
// Set maximum transport protocol data unit size (TPDU).
|
|
rc = pgm_transport_set_max_tpdu (g_transport, pgm_max_tpdu);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
// Set maximum number of network hops to cross.
|
|
rc = pgm_transport_set_hops (g_transport, 16);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
// Receiver transport.
|
|
if (receiver) {
|
|
|
|
// Set transport->may_close_on_failure to true,
|
|
// after data los recvmsgv returns -1 errno set to ECONNRESET.
|
|
rc = pgm_transport_set_close_on_failure (g_transport, TRUE);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
// Set transport->can_send_data = FALSE.
|
|
// Note that NAKs are still generated by the transport.
|
|
rc = pgm_transport_set_recv_only (g_transport, false);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
// Set NAK transmit back-off interval [us].
|
|
rc = pgm_transport_set_nak_bo_ivl (g_transport, 50*1000);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
// Set timeout before repeating NAK [us].
|
|
rc = pgm_transport_set_nak_rpt_ivl (g_transport, 200*1000);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
// Set timeout for receiving RDATA.
|
|
rc = pgm_transport_set_nak_rdata_ivl (g_transport, 200*1000);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
// Set retries for NAK without NCF/DATA (NAK_DATA_RETRIES).
|
|
rc = pgm_transport_set_nak_data_retries (g_transport, 5);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
// Set retries for NCF after NAK (NAK_NCF_RETRIES).
|
|
rc = pgm_transport_set_nak_ncf_retries (g_transport, 2);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
// Set timeout for removing a dead peer [us].
|
|
rc = pgm_transport_set_peer_expiry (g_transport, 5*8192*1000);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
// Set expiration time of SPM Requests [us].
|
|
rc = pgm_transport_set_spmr_expiry (g_transport, 25*1000);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
// Set the size of the receive window.
|
|
//
|
|
// data rate [B/s] (options.rate is kb/s).
|
|
if (options.rate <= 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
rc = pgm_transport_set_rxw_max_rte (g_transport,
|
|
options.rate * 1000 / 8);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
// Recovery interval [s].
|
|
if (options.recovery_ivl <= 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
rc = pgm_transport_set_rxw_secs (g_transport, options.recovery_ivl);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
// Sender transport.
|
|
} else {
|
|
|
|
// Set transport->can_recv = FALSE, waiting_pipe wont not be read.
|
|
rc = pgm_transport_set_send_only (g_transport, TRUE);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
// Set the size of the send window.
|
|
//
|
|
// data rate [B/s] (options.rate is kb/s).
|
|
if (options.rate <= 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
rc = pgm_transport_set_txw_max_rte (g_transport,
|
|
options.rate * 1000 / 8);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
// Recovery interval [s].
|
|
if (options.recovery_ivl <= 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
rc = pgm_transport_set_txw_secs (g_transport, options.recovery_ivl);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
// Preallocate full transmit window. For simplification always
|
|
// worst case is used (40 bytes ipv6 header and 20 bytes UDP
|
|
// encapsulation).
|
|
int to_preallocate = options.recovery_ivl * (options.rate * 1000 / 8)
|
|
/ (pgm_max_tpdu - 40 - 20);
|
|
|
|
rc = pgm_transport_set_txw_preallocate (g_transport, to_preallocate);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
zmq_log (1, "Preallocated %i slices in TX window. %s(%i)\n",
|
|
to_preallocate, __FILE__, __LINE__);
|
|
|
|
// Set interval of background SPM packets [us].
|
|
rc = pgm_transport_set_ambient_spm (g_transport, 8192 * 1000);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
// Set intervals of data flushing SPM packets [us].
|
|
guint spm_heartbeat[] = {4 * 1000, 4 * 1000, 8 * 1000, 16 * 1000,
|
|
32 * 1000, 64 * 1000, 128 * 1000, 256 * 1000, 512 * 1000,
|
|
1024 * 1000, 2048 * 1000, 4096 * 1000, 8192 * 1000};
|
|
|
|
rc = pgm_transport_set_heartbeat_spm (g_transport, spm_heartbeat,
|
|
G_N_ELEMENTS(spm_heartbeat));
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// Enable multicast loopback.
|
|
if (options.use_multicast_loop) {
|
|
rc = pgm_transport_set_multicast_loop (g_transport, true);
|
|
if (rc != 0) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
// Bind a transport to the specified network devices.
|
|
rc = pgm_transport_bind (g_transport);
|
|
if (rc != 0) {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
zmq::pgm_socket_t::~pgm_socket_t ()
|
|
{
|
|
// Celanup.
|
|
if (pgm_msgv) {
|
|
delete [] pgm_msgv;
|
|
}
|
|
|
|
if (g_transport)
|
|
close_transport ();
|
|
}
|
|
|
|
void zmq::pgm_socket_t::close_transport (void)
|
|
{
|
|
// g_transport has to be valid.
|
|
zmq_assert (g_transport);
|
|
|
|
pgm_transport_destroy (g_transport, TRUE);
|
|
|
|
g_transport = NULL;
|
|
}
|
|
|
|
// Get receiver fds. recv_fd is from transport->recv_sock
|
|
// waiting_pipe_fd is from transport->waiting_pipe [0]
|
|
int zmq::pgm_socket_t::get_receiver_fds (int *recv_fd_,
|
|
int *waiting_pipe_fd_)
|
|
{
|
|
|
|
// For POLLIN there are 2 pollfds in pgm_transport.
|
|
int fds_array_size = pgm_receiver_fd_count;
|
|
pollfd *fds = new pollfd [fds_array_size];
|
|
memset (fds, '\0', fds_array_size * sizeof (fds));
|
|
|
|
// Retrieve pollfds from pgm_transport.
|
|
int rc = pgm_transport_poll_info (g_transport, fds, &fds_array_size,
|
|
POLLIN);
|
|
|
|
// pgm_transport_poll_info has to return 2 pollfds for POLLIN.
|
|
// Note that fds_array_size parameter can be
|
|
// changed inside pgm_transport_poll_info call.
|
|
zmq_assert (rc == pgm_receiver_fd_count);
|
|
|
|
// Store pfds into user allocated space.
|
|
*recv_fd_ = fds [0].fd;
|
|
*waiting_pipe_fd_ = fds [1].fd;
|
|
|
|
delete [] fds;
|
|
|
|
return pgm_receiver_fd_count;
|
|
}
|
|
|
|
// Get fds and store them into user allocated memory.
|
|
// sender_fd is from pgm_transport->send_sock.
|
|
// receive_fd_ is from transport->recv_sock.
|
|
int zmq::pgm_socket_t::get_sender_fds (int *send_fd_, int *receive_fd_)
|
|
{
|
|
|
|
// Preallocate pollfds array.
|
|
int fds_array_size = pgm_sender_fd_count;
|
|
pollfd *fds = new pollfd [fds_array_size];
|
|
memset (fds, '\0', fds_array_size * sizeof (fds));
|
|
|
|
// Retrieve pollfds from pgm_transport
|
|
int rc = pgm_transport_poll_info (g_transport, fds, &fds_array_size,
|
|
POLLOUT | POLLIN);
|
|
|
|
// pgm_transport_poll_info has to return one pollfds for POLLOUT and
|
|
// second for POLLIN.
|
|
// Note that fds_array_size parameter can be
|
|
// changed inside pgm_transport_poll_info call.
|
|
zmq_assert (rc == pgm_sender_fd_count);
|
|
|
|
// Store pfds into user allocated space.
|
|
*receive_fd_ = fds [0].fd;
|
|
*send_fd_ = fds [1].fd;
|
|
|
|
delete [] fds;
|
|
|
|
return pgm_sender_fd_count;
|
|
}
|
|
|
|
// Send one APDU, transmit window owned memory.
|
|
size_t zmq::pgm_socket_t::send (unsigned char *data_, size_t data_len_)
|
|
{
|
|
|
|
iovec iov = {data_,data_len_};
|
|
|
|
ssize_t nbytes = pgm_transport_send_packetv (g_transport, &iov, 1,
|
|
MSG_DONTWAIT | MSG_WAITALL, true);
|
|
|
|
zmq_assert (nbytes != -EINVAL);
|
|
|
|
if (nbytes == -1 && errno != EAGAIN) {
|
|
errno_assert (false);
|
|
}
|
|
|
|
// If nbytes is -1 and errno is EAGAIN means that we can not send data
|
|
// now. We have to call write_one_pkt again.
|
|
nbytes = nbytes == -1 ? 0 : nbytes;
|
|
|
|
zmq_log (4, "wrote %iB, %s(%i)\n", (int)nbytes, __FILE__, __LINE__);
|
|
|
|
// We have to write all data as one packet.
|
|
if (nbytes > 0) {
|
|
zmq_assert (nbytes == (ssize_t)data_len_);
|
|
}
|
|
|
|
return nbytes;
|
|
}
|
|
|
|
// Return max TSDU size without fragmentation from current PGM transport.
|
|
size_t zmq::pgm_socket_t::get_max_tsdu_size (void)
|
|
{
|
|
return (size_t)pgm_transport_max_tsdu (g_transport, false);
|
|
}
|
|
|
|
// Returns how many APDUs are needed to fill reading buffer.
|
|
size_t zmq::pgm_socket_t::get_max_apdu_at_once (size_t readbuf_size_)
|
|
{
|
|
zmq_assert (readbuf_size_ > 0);
|
|
|
|
// Read max TSDU size without fragmentation.
|
|
size_t max_tsdu_size = get_max_tsdu_size ();
|
|
|
|
// Calculate number of APDUs needed to fill the reading buffer.
|
|
size_t apdu_count = (int)readbuf_size_ / max_tsdu_size;
|
|
|
|
if ((int) readbuf_size_ % max_tsdu_size)
|
|
apdu_count ++;
|
|
|
|
// Have to have at least one APDU.
|
|
zmq_assert (apdu_count);
|
|
|
|
return apdu_count;
|
|
}
|
|
|
|
// Allocate buffer for one packet from the transmit window, The memory buffer
|
|
// is owned by the transmit window and so must be returned to the window with
|
|
// content via pgm_transport_send() calls or unused with pgm_packetv_free1().
|
|
void *zmq::pgm_socket_t::get_buffer (size_t *size_)
|
|
{
|
|
// Store size.
|
|
*size_ = get_max_tsdu_size ();
|
|
|
|
// Allocate one packet.
|
|
return pgm_packetv_alloc (g_transport, false);
|
|
}
|
|
|
|
// Return an unused packet allocated from the transmit window
|
|
// via pgm_packetv_alloc().
|
|
void zmq::pgm_socket_t::free_buffer (void *data_)
|
|
{
|
|
pgm_packetv_free1 (g_transport, data_, false);
|
|
}
|
|
|
|
// pgm_transport_recvmsgv is called to fill the pgm_msgv array up to
|
|
// pgm_msgv_len. In subsequent calls data from pgm_msgv structure are
|
|
// returned.
|
|
ssize_t zmq::pgm_socket_t::receive (void **raw_data_)
|
|
{
|
|
// We just sent all data from pgm_transport_recvmsgv up
|
|
// and have to return 0 that another engine in this thread is scheduled.
|
|
if (nbytes_rec == nbytes_processed && nbytes_rec > 0) {
|
|
|
|
// Reset all the counters.
|
|
nbytes_rec = 0;
|
|
nbytes_processed = 0;
|
|
pgm_msgv_processed = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
// If we have are going first time or if we have processed all pgm_msgv_t
|
|
// structure previously read from the pgm socket.
|
|
if (nbytes_rec == nbytes_processed) {
|
|
|
|
// Check program flow.
|
|
zmq_assert (pgm_msgv_processed == 0);
|
|
zmq_assert (nbytes_processed == 0);
|
|
zmq_assert (nbytes_rec == 0);
|
|
|
|
// Receive a vector of Application Protocol Domain Unit's (APDUs)
|
|
// from the transport.
|
|
nbytes_rec = pgm_transport_recvmsgv (g_transport, pgm_msgv,
|
|
pgm_msgv_len, MSG_DONTWAIT);
|
|
|
|
// In a case when no ODATA/RDATA fired POLLIN event (SPM...)
|
|
// pgm_transport_recvmsg returns -1 with errno == EAGAIN.
|
|
if (nbytes_rec == -1 && errno == EAGAIN) {
|
|
|
|
// In case if no RDATA/ODATA caused POLLIN 0 is
|
|
// returned.
|
|
nbytes_rec = 0;
|
|
return 0;
|
|
}
|
|
|
|
// For data loss nbytes_rec == -1 errno == ECONNRESET.
|
|
if (nbytes_rec == -1 && errno == ECONNRESET) {
|
|
|
|
// In case of dala loss -1 is returned.
|
|
zmq_log (1, "Data loss detected, %s(%i)\n", __FILE__, __LINE__);
|
|
nbytes_rec = 0;
|
|
return -1;
|
|
}
|
|
|
|
// Catch the rest of the errors.
|
|
if (nbytes_rec <= 0) {
|
|
zmq_log (1, "received %i B, errno %i, %s(%i)", (int)nbytes_rec,
|
|
errno, __FILE__, __LINE__);
|
|
errno_assert (nbytes_rec > 0);
|
|
}
|
|
|
|
zmq_log (4, "received %i bytes\n", (int)nbytes_rec);
|
|
|
|
}
|
|
|
|
zmq_assert (nbytes_rec > 0);
|
|
|
|
// Only one APDU per pgm_msgv_t structure is allowed.
|
|
zmq_assert (pgm_msgv [pgm_msgv_processed].msgv_iovlen == 1);
|
|
|
|
// Take pointers from pgm_msgv_t structure.
|
|
*raw_data_ = pgm_msgv[pgm_msgv_processed].msgv_iov->iov_base;
|
|
size_t raw_data_len = pgm_msgv[pgm_msgv_processed].msgv_iov->iov_len;
|
|
|
|
// Check if peer TSI did not change, this is detection of peer restart.
|
|
const pgm_tsi_t *current_tsi = pgm_msgv [pgm_msgv_processed].msgv_tsi;
|
|
|
|
// If empty store new TSI.
|
|
if (tsi_empty (&tsi)) {
|
|
// Store current peer TSI.
|
|
memcpy (&tsi, current_tsi, sizeof (pgm_tsi_t));
|
|
#ifdef PGM_SOCKET_DEBUG
|
|
uint8_t *gsi = (uint8_t*)(&tsi)->gsi.identifier;
|
|
#endif
|
|
|
|
zmq_log (1, "First peer TSI: %i.%i.%i.%i.%i.%i.%i, %s(%i)\n",
|
|
gsi [0], gsi [1], gsi [2], gsi [3], gsi [4], gsi [5],
|
|
ntohs (tsi.sport), __FILE__, __LINE__);
|
|
}
|
|
|
|
// Compare stored TSI with actual.
|
|
if (!tsi_equal (&tsi, current_tsi)) {
|
|
// Peer change detected.
|
|
zmq_log (1, "Peer change detected, %s(%i)\n", __FILE__, __LINE__);
|
|
|
|
// Compare with retired TSI, in case of match ignore APDU.
|
|
if (tsi_equal (&retired_tsi, current_tsi)) {
|
|
zmq_log (1, "Retired TSI - ignoring APDU, %s(%i)\n",
|
|
__FILE__, __LINE__);
|
|
|
|
// Move the the next pgm_msgv_t structure.
|
|
pgm_msgv_processed++;
|
|
nbytes_processed +=raw_data_len;
|
|
|
|
return 0;
|
|
|
|
} else {
|
|
zmq_log (1, "New TSI, %s(%i)\n", __FILE__, __LINE__);
|
|
|
|
// Store new TSI and move last valid to retired_tsi
|
|
memcpy (&retired_tsi, &tsi, sizeof (pgm_tsi_t));
|
|
memcpy (&tsi, current_tsi, sizeof (pgm_tsi_t));
|
|
|
|
#ifdef PGM_SOCKET_DEBUG
|
|
uint8_t *gsi = (uint8_t*)(&retired_tsi)->gsi.identifier;
|
|
#endif
|
|
zmq_log (1, "retired TSI: %i.%i.%i.%i.%i.%i.%i, %s(%i)\n",
|
|
gsi [0], gsi [1], gsi [2], gsi [3], gsi [4], gsi [5],
|
|
ntohs (retired_tsi.sport), __FILE__, __LINE__);
|
|
|
|
#ifdef PGM_SOCKET_DEBUG
|
|
gsi = (uint8_t*)(&tsi)->gsi.identifier;
|
|
#endif
|
|
zmq_log (1, " TSI: %i.%i.%i.%i.%i.%i.%i, %s(%i)\n",
|
|
gsi [0], gsi [1], gsi [2], gsi [3], gsi [4], gsi [5],
|
|
ntohs (tsi.sport), __FILE__, __LINE__);
|
|
|
|
// Peers change is recognized as a GAP.
|
|
return -1;
|
|
}
|
|
|
|
}
|
|
|
|
// Move the the next pgm_msgv_t structure.
|
|
pgm_msgv_processed++;
|
|
nbytes_processed +=raw_data_len;
|
|
|
|
zmq_log (4, "sendig up %i bytes\n", (int)raw_data_len);
|
|
|
|
return raw_data_len;
|
|
}
|
|
|
|
void zmq::pgm_socket_t::process_upstream (void)
|
|
{
|
|
zmq_log (1, "On upstream packet, %s(%i)\n", __FILE__, __LINE__);
|
|
// We acctually do not want to read any data here we are going to
|
|
// process NAK.
|
|
pgm_msgv_t dummy_msg;
|
|
|
|
ssize_t dummy_bytes = pgm_transport_recvmsgv (g_transport, &dummy_msg,
|
|
1, MSG_DONTWAIT);
|
|
|
|
// No data should be returned.
|
|
zmq_assert (dummy_bytes == -1 && errno == EAGAIN);
|
|
}
|
|
|
|
bool zmq::pgm_socket_t::tsi_equal (const pgm_tsi_t *tsi_a_,
|
|
const pgm_tsi_t *tsi_b_)
|
|
{
|
|
// Compare 6B GSI.
|
|
const uint8_t *gsi_a = tsi_a_->gsi.identifier;
|
|
const uint8_t *gsi_b = tsi_b_->gsi.identifier;
|
|
|
|
if (gsi_a [0] != gsi_b [0] || gsi_a [1] != gsi_b [1] ||
|
|
gsi_a [2] != gsi_b [2] || gsi_a [3] != gsi_b [3] ||
|
|
gsi_a [4] != gsi_b [4] || gsi_a [5] != gsi_b [5]) {
|
|
|
|
return false;
|
|
}
|
|
|
|
// Compare source port.
|
|
if (tsi_a_->sport != tsi_b_->sport) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool zmq::pgm_socket_t::tsi_empty (const pgm_tsi_t *tsi_)
|
|
{
|
|
|
|
uint8_t *gsi = (uint8_t*)tsi_->gsi.identifier;
|
|
|
|
// GSI.
|
|
if (gsi [0] != 0 || gsi [1] != 0 || gsi [2] != 0 ||
|
|
gsi [3] != 0 || gsi [4] != 0 || gsi [5] != 0) {
|
|
return false;
|
|
}
|
|
|
|
// Source port.
|
|
if (tsi_->sport != 0) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif
|