0
0
mirror of https://github.com/zeromq/libzmq.git synced 2025-01-22 07:29:31 +08:00
libzmq/src/stream_engine.cpp
2013-06-22 11:48:44 +02:00

854 lines
24 KiB
C++

/*
Copyright (c) 2007-2013 Contributors as noted in the AUTHORS file
This file is part of 0MQ.
0MQ is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
0MQ is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "platform.hpp"
#if defined ZMQ_HAVE_WINDOWS
#include "windows.hpp"
#else
#include <unistd.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/tcp.h>
#include <netinet/in.h>
#include <netdb.h>
#include <fcntl.h>
#endif
#include <string.h>
#include <new>
#include "stream_engine.hpp"
#include "io_thread.hpp"
#include "session_base.hpp"
#include "v1_encoder.hpp"
#include "v1_decoder.hpp"
#include "v2_encoder.hpp"
#include "v2_decoder.hpp"
#include "null_mechanism.hpp"
#include "plain_mechanism.hpp"
#include "curve_client.hpp"
#include "curve_server.hpp"
#include "raw_decoder.hpp"
#include "raw_encoder.hpp"
#include "config.hpp"
#include "err.hpp"
#include "ip.hpp"
#include "likely.hpp"
#include "wire.hpp"
zmq::stream_engine_t::stream_engine_t (fd_t fd_, const options_t &options_,
const std::string &endpoint_) :
s (fd_),
inpos (NULL),
insize (0),
decoder (NULL),
outpos (NULL),
outsize (0),
encoder (NULL),
handshaking (true),
greeting_size (v2_greeting_size),
greeting_bytes_read (0),
session (NULL),
options (options_),
endpoint (endpoint_),
plugged (false),
terminating (false),
read_msg (&stream_engine_t::read_identity),
write_msg (&stream_engine_t::write_identity),
io_error (false),
subscription_required (false),
mechanism (NULL),
input_paused (false),
output_paused (false),
socket (NULL)
{
int rc = tx_msg.init ();
errno_assert (rc == 0);
// Put the socket into non-blocking mode.
unblock_socket (s);
// Set the socket buffer limits for the underlying socket.
if (options.sndbuf) {
rc = setsockopt (s, SOL_SOCKET, SO_SNDBUF,
(char*) &options.sndbuf, sizeof (int));
#ifdef ZMQ_HAVE_WINDOWS
wsa_assert (rc != SOCKET_ERROR);
#else
errno_assert (rc == 0);
#endif
}
if (options.rcvbuf) {
rc = setsockopt (s, SOL_SOCKET, SO_RCVBUF,
(char*) &options.rcvbuf, sizeof (int));
#ifdef ZMQ_HAVE_WINDOWS
wsa_assert (rc != SOCKET_ERROR);
#else
errno_assert (rc == 0);
#endif
}
#ifdef SO_NOSIGPIPE
// Make sure that SIGPIPE signal is not generated when writing to a
// connection that was already closed by the peer.
int set = 1;
rc = setsockopt (s, SOL_SOCKET, SO_NOSIGPIPE, &set, sizeof (int));
errno_assert (rc == 0);
#endif
}
zmq::stream_engine_t::~stream_engine_t ()
{
zmq_assert (!plugged);
if (s != retired_fd) {
#ifdef ZMQ_HAVE_WINDOWS
int rc = closesocket (s);
wsa_assert (rc != SOCKET_ERROR);
#else
int rc = close (s);
errno_assert (rc == 0);
#endif
s = retired_fd;
}
int rc = tx_msg.close ();
errno_assert (rc == 0);
if (encoder != NULL)
delete encoder;
if (decoder != NULL)
delete decoder;
if (mechanism != NULL)
delete mechanism;
}
void zmq::stream_engine_t::plug (io_thread_t *io_thread_,
session_base_t *session_)
{
zmq_assert (!plugged);
plugged = true;
// Connect to session object.
zmq_assert (!session);
zmq_assert (session_);
session = session_;
socket = session-> get_socket ();
// Connect to I/O threads poller object.
io_object_t::plug (io_thread_);
handle = add_fd (s);
io_error = false;
if (options.raw_sock) {
// no handshaking for raw sock, instantiate raw encoder and decoders
encoder = new (std::nothrow) raw_encoder_t (out_batch_size);
alloc_assert (encoder);
decoder = new (std::nothrow) raw_decoder_t (in_batch_size);
alloc_assert (decoder);
// disable handshaking for raw socket
handshaking = false;
read_msg = &stream_engine_t::pull_msg_from_session;
write_msg = &stream_engine_t::push_msg_to_session;
}
else {
// Send the 'length' and 'flags' fields of the identity message.
// The 'length' field is encoded in the long format.
outpos = greeting_send;
outpos [outsize++] = 0xff;
put_uint64 (&outpos [outsize], options.identity_size + 1);
outsize += 8;
outpos [outsize++] = 0x7f;
}
set_pollin (handle);
set_pollout (handle);
// Flush all the data that may have been already received downstream.
in_event ();
}
void zmq::stream_engine_t::unplug ()
{
zmq_assert (plugged);
plugged = false;
// Cancel all fd subscriptions.
if (!io_error)
rm_fd (handle);
// Disconnect from I/O threads poller object.
io_object_t::unplug ();
session = NULL;
}
void zmq::stream_engine_t::terminate ()
{
if (!terminating && encoder && encoder->has_data ()) {
// Give io_thread a chance to send in the buffer
terminating = true;
return;
}
unplug ();
delete this;
}
void zmq::stream_engine_t::in_event ()
{
assert (!io_error);
// If still handshaking, receive and process the greeting message.
if (unlikely (handshaking))
if (!handshake ())
return;
zmq_assert (decoder);
// If there has been an I/O error, stop polling.
if (input_paused) {
rm_fd (handle);
io_error = true;
return;
}
// If there's no data to process in the buffer...
if (!insize) {
// Retrieve the buffer and read as much data as possible.
// Note that buffer can be arbitrarily large. However, we assume
// the underlying TCP layer has fixed buffer size and thus the
// number of bytes read will be always limited.
decoder->get_buffer (&inpos, &insize);
const int bytes_read = read (inpos, insize);
// Check whether the peer has closed the connection.
if (bytes_read == -1) {
error ();
return;
}
// Adjust input size
insize = static_cast <size_t> (bytes_read);
}
int rc = 0;
size_t processed = 0;
while (insize > 0) {
rc = decoder->decode (inpos, insize, processed);
zmq_assert (processed <= insize);
inpos += processed;
insize -= processed;
if (rc == 0 || rc == -1)
break;
rc = (this->*write_msg) (decoder->msg ());
if (rc == -1)
break;
}
// Tear down the connection if we have failed to decode input data
// or the session has rejected the message.
if (rc == -1) {
if (errno != EAGAIN) {
error ();
return;
}
input_paused = true;
reset_pollin (handle);
}
session->flush ();
}
void zmq::stream_engine_t::out_event ()
{
zmq_assert (!io_error);
// If write buffer is empty, try to read new data from the encoder.
if (!outsize) {
// Even when we stop polling as soon as there is no
// data to send, the poller may invoke out_event one
// more time due to 'speculative write' optimisation.
if (unlikely (encoder == NULL)) {
zmq_assert (handshaking);
return;
}
outpos = NULL;
outsize = encoder->encode (&outpos, 0);
while (outsize < out_batch_size) {
if ((this->*read_msg) (&tx_msg) == -1)
break;
encoder->load_msg (&tx_msg);
unsigned char *bufptr = outpos + outsize;
size_t n = encoder->encode (&bufptr, out_batch_size - outsize);
zmq_assert (n > 0);
if (outpos == NULL)
outpos = bufptr;
outsize += n;
}
// If there is no data to send, stop polling for output.
if (outsize == 0) {
output_paused = true;
reset_pollout (handle);
return;
}
}
// If there are any data to write in write buffer, write as much as
// possible to the socket. Note that amount of data to write can be
// arbitrarily large. However, we assume that underlying TCP layer has
// limited transmission buffer and thus the actual number of bytes
// written should be reasonably modest.
int nbytes = write (outpos, outsize);
// IO error has occurred. We stop waiting for output events.
// The engine is not terminated until we detect input error;
// this is necessary to prevent losing incoming messages.
if (nbytes == -1) {
reset_pollout (handle);
if (unlikely (terminating))
terminate ();
return;
}
outpos += nbytes;
outsize -= nbytes;
// If we are still handshaking and there are no data
// to send, stop polling for output.
if (unlikely (handshaking))
if (outsize == 0)
reset_pollout (handle);
if (unlikely (terminating))
if (outsize == 0)
terminate ();
}
void zmq::stream_engine_t::activate_out ()
{
if (unlikely (io_error))
return;
if (likely (output_paused)) {
set_pollout (handle);
output_paused = false;
}
// Speculative write: The assumption is that at the moment new message
// was sent by the user the socket is probably available for writing.
// Thus we try to write the data to socket avoiding polling for POLLOUT.
// Consequently, the latency should be better in request/reply scenarios.
out_event ();
}
void zmq::stream_engine_t::activate_in ()
{
zmq_assert (input_paused);
zmq_assert (session != NULL);
zmq_assert (decoder != NULL);
int rc = (this->*write_msg) (decoder->msg ());
if (rc == -1) {
if (errno == EAGAIN)
session->flush ();
else
error ();
return;
}
while (insize > 0) {
size_t processed = 0;
rc = decoder->decode (inpos, insize, processed);
zmq_assert (processed <= insize);
inpos += processed;
insize -= processed;
if (rc == 0 || rc == -1)
break;
rc = (this->*write_msg) (decoder->msg ());
if (rc == -1)
break;
}
if (rc == -1 && errno == EAGAIN)
session->flush ();
else
if (rc == -1 || io_error)
error ();
else {
input_paused = false;
set_pollin (handle);
session->flush ();
// Speculative read.
in_event ();
}
}
bool zmq::stream_engine_t::handshake ()
{
zmq_assert (handshaking);
zmq_assert (greeting_bytes_read < greeting_size);
// Receive the greeting.
while (greeting_bytes_read < greeting_size) {
const int n = read (greeting_recv + greeting_bytes_read,
greeting_size - greeting_bytes_read);
if (n == -1) {
error ();
return false;
}
if (n == 0)
return false;
greeting_bytes_read += n;
// We have received at least one byte from the peer.
// If the first byte is not 0xff, we know that the
// peer is using unversioned protocol.
if (greeting_recv [0] != 0xff)
break;
if (greeting_bytes_read < signature_size)
continue;
// Inspect the right-most bit of the 10th byte (which coincides
// with the 'flags' field if a regular message was sent).
// Zero indicates this is a header of identity message
// (i.e. the peer is using the unversioned protocol).
if (!(greeting_recv [9] & 0x01))
break;
// The peer is using versioned protocol.
// Send the major version number.
if (outpos + outsize == greeting_send + signature_size) {
if (outsize == 0)
set_pollout (handle);
outpos [outsize++] = 3; // Major version number
}
if (greeting_bytes_read > signature_size) {
if (outpos + outsize == greeting_send + signature_size + 1) {
if (outsize == 0)
set_pollout (handle);
// Use ZMTP/2.0 to talk to older peers.
if (greeting_recv [10] == ZMTP_1_0
|| greeting_recv [10] == ZMTP_2_0)
outpos [outsize++] = options.type;
else {
outpos [outsize++] = 0; // Minor version number
memset (outpos + outsize, 0, 20);
zmq_assert (options.mechanism == ZMQ_NULL
|| options.mechanism == ZMQ_PLAIN
|| options.mechanism == ZMQ_CURVE);
if (options.mechanism == ZMQ_NULL)
memcpy (outpos + outsize, "NULL", 4);
else
if (options.mechanism == ZMQ_PLAIN)
memcpy (outpos + outsize, "PLAIN", 5);
else
memcpy (outpos + outsize, "CURVE", 5);
outsize += 20;
memset (outpos + outsize, 0, 32);
outsize += 32;
greeting_size = v3_greeting_size;
}
}
}
}
// Position of the revision field in the greeting.
const size_t revision_pos = 10;
// Is the peer using ZMTP/1.0 with no revision number?
// If so, we send and receive rest of identity message
if (greeting_recv [0] != 0xff || !(greeting_recv [9] & 0x01)) {
encoder = new (std::nothrow) v1_encoder_t (out_batch_size);
alloc_assert (encoder);
decoder = new (std::nothrow) v1_decoder_t (in_batch_size, options.maxmsgsize);
alloc_assert (decoder);
// We have already sent the message header.
// Since there is no way to tell the encoder to
// skip the message header, we simply throw that
// header data away.
const size_t header_size = options.identity_size + 1 >= 255 ? 10 : 2;
unsigned char tmp [10], *bufferp = tmp;
size_t buffer_size = encoder->encode (&bufferp, header_size);
zmq_assert (buffer_size == header_size);
// Make sure the decoder sees the data we have already received.
inpos = greeting_recv;
insize = greeting_bytes_read;
// To allow for interoperability with peers that do not forward
// their subscriptions, we inject a phony subscription
// message into the incomming message stream.
if (options.type == ZMQ_PUB || options.type == ZMQ_XPUB)
subscription_required = true;
}
else
if (greeting_recv [revision_pos] == ZMTP_1_0) {
encoder = new (std::nothrow) v1_encoder_t (
out_batch_size);
alloc_assert (encoder);
decoder = new (std::nothrow) v1_decoder_t (
in_batch_size, options.maxmsgsize);
alloc_assert (decoder);
}
else
if (greeting_recv [revision_pos] == ZMTP_2_0) {
encoder = new (std::nothrow) v2_encoder_t (out_batch_size);
alloc_assert (encoder);
decoder = new (std::nothrow) v2_decoder_t (
in_batch_size, options.maxmsgsize);
alloc_assert (decoder);
}
else {
encoder = new (std::nothrow) v2_encoder_t (out_batch_size);
alloc_assert (encoder);
decoder = new (std::nothrow) v2_decoder_t (
in_batch_size, options.maxmsgsize);
alloc_assert (decoder);
if (memcmp (greeting_recv + 12, "NULL\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0", 20) == 0) {
mechanism = new (std::nothrow) null_mechanism_t (options);
alloc_assert (mechanism);
}
else
if (memcmp (greeting_recv + 12, "PLAIN\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0", 20) == 0) {
mechanism = new (std::nothrow) plain_mechanism_t (session, options);
alloc_assert (mechanism);
}
#ifdef HAVE_LIBSODIUM
else
if (memcmp (greeting_recv + 12, "CURVE\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0", 20) == 0) {
if (options.as_server)
mechanism = new (std::nothrow) curve_server_t (session, options);
else
mechanism = new (std::nothrow) curve_client_t (options);
alloc_assert (mechanism);
}
#endif
else {
error ();
return false;
}
read_msg = &stream_engine_t::next_handshake_message;
write_msg = &stream_engine_t::process_handshake_message;
}
// Start polling for output if necessary.
if (outsize == 0)
set_pollout (handle);
// Handshaking was successful.
// Switch into the normal message flow.
handshaking = false;
return true;
}
int zmq::stream_engine_t::read_identity (msg_t *msg_)
{
int rc = msg_->init_size (options.identity_size);
errno_assert (rc == 0);
if (options.identity_size > 0)
memcpy (msg_->data (), options.identity, options.identity_size);
read_msg = &stream_engine_t::pull_msg_from_session;
return 0;
}
int zmq::stream_engine_t::write_identity (msg_t *msg_)
{
if (options.recv_identity) {
msg_->set_flags (msg_t::identity);
int rc = session->push_msg (msg_);
errno_assert (rc == 0);
}
else {
int rc = msg_->close ();
errno_assert (rc == 0);
rc = msg_->init ();
errno_assert (rc == 0);
}
if (subscription_required)
write_msg = &stream_engine_t::write_subscription_msg;
else
write_msg = &stream_engine_t::push_msg_to_session;
return 0;
}
int zmq::stream_engine_t::next_handshake_message (msg_t *msg_)
{
zmq_assert (mechanism != NULL);
const int rc = mechanism->next_handshake_message (msg_);
if (rc == 0) {
if (mechanism->is_handshake_complete ())
mechanism_ready ();
}
return rc;
}
int zmq::stream_engine_t::process_handshake_message (msg_t *msg_)
{
zmq_assert (mechanism != NULL);
const int rc = mechanism->process_handshake_message (msg_);
if (rc == 0) {
if (mechanism->is_handshake_complete ())
mechanism_ready ();
if (output_paused)
activate_out ();
}
return rc;
}
void zmq::stream_engine_t::zap_msg_available ()
{
zmq_assert (mechanism != NULL);
const int rc = mechanism->zap_msg_available ();
if (rc == -1) {
error ();
return;
}
if (input_paused)
activate_in ();
if (output_paused)
activate_out ();
}
void zmq::stream_engine_t::mechanism_ready ()
{
if (options.recv_identity) {
msg_t identity;
mechanism->peer_identity (&identity);
const int rc = session->push_msg (&identity);
errno_assert (rc == 0);
}
read_msg = &stream_engine_t::pull_and_encode;
write_msg = &stream_engine_t::decode_and_push;
}
int zmq::stream_engine_t::pull_msg_from_session (msg_t *msg_)
{
return session->pull_msg (msg_);
}
int zmq::stream_engine_t::push_msg_to_session (msg_t *msg_)
{
return session->push_msg (msg_);
}
int zmq::stream_engine_t::pull_and_encode (msg_t *msg_)
{
zmq_assert (mechanism != NULL);
if (session->pull_msg (msg_) == -1)
return -1;
if (mechanism->encode (msg_) == -1)
return -1;
return 0;
}
int zmq::stream_engine_t::decode_and_push (msg_t *msg_)
{
zmq_assert (mechanism != NULL);
if (mechanism->decode (msg_) == -1)
return -1;
if (session->push_msg (msg_) == -1) {
if (errno == EAGAIN)
write_msg = &stream_engine_t::push_one_then_decode_and_push;
return -1;
}
return 0;
}
int zmq::stream_engine_t::push_one_then_decode_and_push (msg_t *msg_)
{
const int rc = session->push_msg (msg_);
if (rc == 0)
write_msg = &stream_engine_t::decode_and_push;
return rc;
}
int zmq::stream_engine_t::write_subscription_msg (msg_t *msg_)
{
msg_t subscription;
// Inject the subscription message, so that also
// ZMQ 2.x peers receive published messages.
int rc = subscription.init_size (1);
errno_assert (rc == 0);
*(unsigned char*) subscription.data () = 1;
rc = session->push_msg (&subscription);
if (rc == -1)
return -1;
write_msg = &stream_engine_t::push_msg_to_session;
return push_msg_to_session (msg_);
}
void zmq::stream_engine_t::error ()
{
zmq_assert (session);
socket->event_disconnected (endpoint, s);
session->flush ();
session->detach ();
unplug ();
delete this;
}
int zmq::stream_engine_t::write (const void *data_, size_t size_)
{
#ifdef ZMQ_HAVE_WINDOWS
int nbytes = send (s, (char*) data_, (int) size_, 0);
// If not a single byte can be written to the socket in non-blocking mode
// we'll get an error (this may happen during the speculative write).
if (nbytes == SOCKET_ERROR && WSAGetLastError () == WSAEWOULDBLOCK)
return 0;
// Signalise peer failure.
if (nbytes == SOCKET_ERROR && (
WSAGetLastError () == WSAENETDOWN ||
WSAGetLastError () == WSAENETRESET ||
WSAGetLastError () == WSAEHOSTUNREACH ||
WSAGetLastError () == WSAECONNABORTED ||
WSAGetLastError () == WSAETIMEDOUT ||
WSAGetLastError () == WSAECONNRESET))
return -1;
wsa_assert (nbytes != SOCKET_ERROR);
return nbytes;
#else
ssize_t nbytes = send (s, data_, size_, 0);
// Several errors are OK. When speculative write is being done we may not
// be able to write a single byte from the socket. Also, SIGSTOP issued
// by a debugging tool can result in EINTR error.
if (nbytes == -1 && (errno == EAGAIN || errno == EWOULDBLOCK ||
errno == EINTR))
return 0;
// Signalise peer failure.
if (nbytes == -1) {
errno_assert (errno != EACCES
&& errno != EBADF
&& errno != EDESTADDRREQ
&& errno != EFAULT
&& errno != EINVAL
&& errno != EISCONN
&& errno != EMSGSIZE
&& errno != ENOMEM
&& errno != ENOTSOCK
&& errno != EOPNOTSUPP);
return -1;
}
return static_cast <int> (nbytes);
#endif
}
int zmq::stream_engine_t::read (void *data_, size_t size_)
{
#ifdef ZMQ_HAVE_WINDOWS
int nbytes = recv (s, (char*) data_, (int) size_, 0);
// If not a single byte can be read from the socket in non-blocking mode
// we'll get an error (this may happen during the speculative read).
if (nbytes == SOCKET_ERROR && WSAGetLastError () == WSAEWOULDBLOCK)
return 0;
// Connection failure.
if (nbytes == SOCKET_ERROR && (
WSAGetLastError () == WSAENETDOWN ||
WSAGetLastError () == WSAENETRESET ||
WSAGetLastError () == WSAECONNABORTED ||
WSAGetLastError () == WSAETIMEDOUT ||
WSAGetLastError () == WSAECONNRESET ||
WSAGetLastError () == WSAECONNREFUSED ||
WSAGetLastError () == WSAENOTCONN))
return -1;
wsa_assert (nbytes != SOCKET_ERROR);
// Orderly shutdown by the other peer.
if (nbytes == 0)
return -1;
return nbytes;
#else
ssize_t nbytes = recv (s, data_, size_, 0);
// Several errors are OK. When speculative read is being done we may not
// be able to read a single byte from the socket. Also, SIGSTOP issued
// by a debugging tool can result in EINTR error.
if (nbytes == -1 && (errno == EAGAIN || errno == EWOULDBLOCK ||
errno == EINTR))
return 0;
// Signalise peer failure.
if (nbytes == -1) {
errno_assert (errno != EBADF
&& errno != EFAULT
&& errno != EINVAL
&& errno != ENOMEM
&& errno != ENOTSOCK);
return -1;
}
// Orderly shutdown by the peer.
if (nbytes == 0)
return -1;
return static_cast <int> (nbytes);
#endif
}