mirror of
https://github.com/zeromq/libzmq.git
synced 2025-01-21 15:12:03 +08:00
6ced7027a0
Symptom is that ZMQ_STREAM sockets in 4.1.0 and 4.1.1 generate zero sized messages on each new connection, unlike 4.0.x which did not do this. Person who made this commit also changed test cases so that contract breakage did not show. Same person was later banned for persistently poor form in CZMQ contributions. Solution: enable connect notifications on ZMQ_STREAM sockets using a new ZMQ_STREAM_NOTIFY setting. By default, socket does not deliver notifications, and behaves as in 4.0.x. Fixes #1316
131 lines
3.8 KiB
C++
131 lines
3.8 KiB
C++
/*
|
|
Copyright (c) 2007-2015 Contributors as noted in the AUTHORS file
|
|
|
|
This file is part of 0MQ.
|
|
|
|
0MQ is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
0MQ is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef __ZMQ_ROUTER_HPP_INCLUDED__
|
|
#define __ZMQ_ROUTER_HPP_INCLUDED__
|
|
|
|
#include <map>
|
|
|
|
#include "socket_base.hpp"
|
|
#include "session_base.hpp"
|
|
#include "stdint.hpp"
|
|
#include "blob.hpp"
|
|
#include "msg.hpp"
|
|
#include "fq.hpp"
|
|
|
|
namespace zmq
|
|
{
|
|
|
|
class ctx_t;
|
|
class pipe_t;
|
|
|
|
// TODO: This class uses O(n) scheduling. Rewrite it to use O(1) algorithm.
|
|
class router_t :
|
|
public socket_base_t
|
|
{
|
|
public:
|
|
|
|
router_t (zmq::ctx_t *parent_, uint32_t tid_, int sid);
|
|
~router_t ();
|
|
|
|
// Overrides of functions from socket_base_t.
|
|
void xattach_pipe (zmq::pipe_t *pipe_, bool subscribe_to_all_);
|
|
int xsetsockopt (int option_, const void *optval_, size_t optvallen_);
|
|
int xsend (zmq::msg_t *msg_);
|
|
int xrecv (zmq::msg_t *msg_);
|
|
bool xhas_in ();
|
|
bool xhas_out ();
|
|
void xread_activated (zmq::pipe_t *pipe_);
|
|
void xwrite_activated (zmq::pipe_t *pipe_);
|
|
void xpipe_terminated (zmq::pipe_t *pipe_);
|
|
|
|
protected:
|
|
|
|
// Rollback any message parts that were sent but not yet flushed.
|
|
int rollback ();
|
|
blob_t get_credential () const;
|
|
|
|
private:
|
|
|
|
// Receive peer id and update lookup map
|
|
bool identify_peer (pipe_t *pipe_);
|
|
|
|
// Fair queueing object for inbound pipes.
|
|
fq_t fq;
|
|
|
|
// True iff there is a message held in the pre-fetch buffer.
|
|
bool prefetched;
|
|
|
|
// If true, the receiver got the message part with
|
|
// the peer's identity.
|
|
bool identity_sent;
|
|
|
|
// Holds the prefetched identity.
|
|
msg_t prefetched_id;
|
|
|
|
// Holds the prefetched message.
|
|
msg_t prefetched_msg;
|
|
|
|
// If true, more incoming message parts are expected.
|
|
bool more_in;
|
|
|
|
struct outpipe_t
|
|
{
|
|
zmq::pipe_t *pipe;
|
|
bool active;
|
|
};
|
|
|
|
// We keep a set of pipes that have not been identified yet.
|
|
std::set <pipe_t*> anonymous_pipes;
|
|
|
|
// Outbound pipes indexed by the peer IDs.
|
|
typedef std::map <blob_t, outpipe_t> outpipes_t;
|
|
outpipes_t outpipes;
|
|
|
|
// The pipe we are currently writing to.
|
|
zmq::pipe_t *current_out;
|
|
|
|
// If true, more outgoing message parts are expected.
|
|
bool more_out;
|
|
|
|
// Routing IDs are generated. It's a simple increment and wrap-over
|
|
// algorithm. This value is the next ID to use (if not used already).
|
|
uint32_t next_rid;
|
|
|
|
// If true, report EAGAIN to the caller instead of silently dropping
|
|
// the message targeting an unknown peer.
|
|
bool mandatory;
|
|
bool raw_socket;
|
|
|
|
// if true, send an empty message to every connected router peer
|
|
bool probe_router;
|
|
|
|
// If true, the router will reassign an identity upon encountering a
|
|
// name collision. The new pipe will take the identity, the old pipe
|
|
// will be terminated.
|
|
bool handover;
|
|
|
|
router_t (const router_t&);
|
|
const router_t &operator = (const router_t&);
|
|
};
|
|
|
|
}
|
|
|
|
#endif
|