0
0
mirror of https://github.com/zeromq/libzmq.git synced 2025-01-22 07:29:31 +08:00
libzmq/src/stream_engine.cpp
Min(Dongmin Yu) 2c1a3c55f7 LIBZMQ-497 there could be unsent bytes in encoder
When we send a large message, the message can be splitted into two chunks.
One is in the encoder buffer and the other is the zero-copy pointer.
The session could get the term before the last chunk is sent.
2013-02-01 17:32:28 +09:00

619 lines
18 KiB
C++

/*
Copyright (c) 2009-2011 250bpm s.r.o.
Copyright (c) 2007-2009 iMatix Corporation
Copyright (c) 2007-2011 Other contributors as noted in the AUTHORS file
This file is part of 0MQ.
0MQ is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
0MQ is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "platform.hpp"
#if defined ZMQ_HAVE_WINDOWS
#include "windows.hpp"
#else
#include <unistd.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/tcp.h>
#include <netinet/in.h>
#include <netdb.h>
#include <fcntl.h>
#endif
#include <string.h>
#include <new>
#include "stream_engine.hpp"
#include "io_thread.hpp"
#include "session_base.hpp"
#include "encoder.hpp"
#include "decoder.hpp"
#include "v1_encoder.hpp"
#include "v1_decoder.hpp"
#include "raw_decoder.hpp"
#include "raw_encoder.hpp"
#include "config.hpp"
#include "err.hpp"
#include "ip.hpp"
#include "likely.hpp"
#include "wire.hpp"
zmq::stream_engine_t::stream_engine_t (fd_t fd_, const options_t &options_, const std::string &endpoint_) :
s (fd_),
io_enabled (false),
inpos (NULL),
insize (0),
decoder (NULL),
outpos (NULL),
outsize (0),
encoder (NULL),
handshaking (true),
greeting_bytes_read (0),
session (NULL),
options (options_),
endpoint (endpoint_),
plugged (false),
terminating (false),
socket (NULL)
{
// Put the socket into non-blocking mode.
unblock_socket (s);
// Set the socket buffer limits for the underlying socket.
if (options.sndbuf) {
int rc = setsockopt (s, SOL_SOCKET, SO_SNDBUF,
(char*) &options.sndbuf, sizeof (int));
#ifdef ZMQ_HAVE_WINDOWS
wsa_assert (rc != SOCKET_ERROR);
#else
errno_assert (rc == 0);
#endif
}
if (options.rcvbuf) {
int rc = setsockopt (s, SOL_SOCKET, SO_RCVBUF,
(char*) &options.rcvbuf, sizeof (int));
#ifdef ZMQ_HAVE_WINDOWS
wsa_assert (rc != SOCKET_ERROR);
#else
errno_assert (rc == 0);
#endif
}
#ifdef SO_NOSIGPIPE
// Make sure that SIGPIPE signal is not generated when writing to a
// connection that was already closed by the peer.
int set = 1;
int rc = setsockopt (s, SOL_SOCKET, SO_NOSIGPIPE, &set, sizeof (int));
errno_assert (rc == 0);
#endif
}
zmq::stream_engine_t::~stream_engine_t ()
{
zmq_assert (!plugged);
if (s != retired_fd) {
#ifdef ZMQ_HAVE_WINDOWS
int rc = closesocket (s);
wsa_assert (rc != SOCKET_ERROR);
#else
int rc = close (s);
errno_assert (rc == 0);
#endif
s = retired_fd;
}
if (encoder != NULL)
delete encoder;
if (decoder != NULL)
delete decoder;
}
void zmq::stream_engine_t::plug (io_thread_t *io_thread_,
session_base_t *session_)
{
zmq_assert (!plugged);
plugged = true;
// Connect to session object.
zmq_assert (!session);
zmq_assert (session_);
session = session_;
socket = session-> get_socket ();
// Connect to I/O threads poller object.
io_object_t::plug (io_thread_);
handle = add_fd (s);
io_enabled = true;
if (options.raw_sock) {
// no handshaking for raw sock, instantiate raw encoder and decoders
encoder = new (std::nothrow) raw_encoder_t (out_batch_size, session);
alloc_assert (encoder);
decoder = new (std::nothrow)
raw_decoder_t (in_batch_size, options.maxmsgsize, session);
alloc_assert (decoder);
// disable handshaking for raw socket
handshaking = false;
}
else {
// Send the 'length' and 'flags' fields of the identity message.
// The 'length' field is encoded in the long format.
outpos = greeting_output_buffer;
outpos [outsize++] = 0xff;
put_uint64 (&outpos [outsize], options.identity_size + 1);
outsize += 8;
outpos [outsize++] = 0x7f;
}
set_pollin (handle);
set_pollout (handle);
// Flush all the data that may have been already received downstream.
in_event ();
}
void zmq::stream_engine_t::unplug ()
{
zmq_assert (plugged);
plugged = false;
// Cancel all fd subscriptions.
if (io_enabled) {
rm_fd (handle);
io_enabled = false;
}
// Disconnect from I/O threads poller object.
io_object_t::unplug ();
// Disconnect from session object.
if (encoder)
encoder->set_msg_source (NULL);
if (decoder)
decoder->set_msg_sink (NULL);
session = NULL;
}
void zmq::stream_engine_t::terminate ()
{
if (!terminating && encoder && encoder->has_data ()) {
// Give io_thread a chance to send in the buffer
terminating = true;
return;
}
unplug ();
delete this;
}
void zmq::stream_engine_t::in_event ()
{
// If still handshaking, receive and process the greeting message.
if (unlikely (handshaking))
if (!handshake ())
return;
zmq_assert (decoder);
bool disconnection = false;
size_t processed;
// If there's no data to process in the buffer...
if (!insize) {
// Retrieve the buffer and read as much data as possible.
// Note that buffer can be arbitrarily large. However, we assume
// the underlying TCP layer has fixed buffer size and thus the
// number of bytes read will be always limited.
decoder->get_buffer (&inpos, &insize);
insize = read (inpos, insize);
// Check whether the peer has closed the connection.
if (insize == (size_t) -1) {
insize = 0;
disconnection = true;
}
}
if (options.raw_sock) {
if (insize == 0 || !decoder->message_ready_size (insize))
processed = 0;
else
processed = decoder->process_buffer (inpos, insize);
}
else {
// Push the data to the decoder.
processed = decoder->process_buffer (inpos, insize);
}
if (unlikely (processed == (size_t) -1)) {
disconnection = true;
}
else {
// Stop polling for input if we got stuck.
if (processed < insize)
reset_pollin (handle);
// Adjust the buffer.
inpos += processed;
insize -= processed;
}
// Flush all messages the decoder may have produced.
session->flush ();
// Input error has occurred. If the last decoded
// message has already been accepted, we terminate
// the engine immediately. Otherwise, we stop
// waiting for input events and postpone the termination
// until after the session has accepted the message.
if (disconnection) {
if (decoder->stalled ()) {
rm_fd (handle);
io_enabled = false;
}
else
error ();
}
}
void zmq::stream_engine_t::out_event ()
{
// If write buffer is empty, try to read new data from the encoder.
if (!outsize) {
// Even when we stop polling as soon as there is no
// data to send, the poller may invoke out_event one
// more time due to 'speculative write' optimisation.
if (unlikely (encoder == NULL)) {
zmq_assert (handshaking);
return;
}
outpos = NULL;
encoder->get_data (&outpos, &outsize);
// If there is no data to send, stop polling for output.
if (outsize == 0) {
reset_pollout (handle);
return;
}
}
// If there are any data to write in write buffer, write as much as
// possible to the socket. Note that amount of data to write can be
// arbitratily large. However, we assume that underlying TCP layer has
// limited transmission buffer and thus the actual number of bytes
// written should be reasonably modest.
int nbytes = write (outpos, outsize);
// IO error has occurred. We stop waiting for output events.
// The engine is not terminated until we detect input error;
// this is necessary to prevent losing incomming messages.
if (nbytes == -1) {
reset_pollout (handle);
if (unlikely (terminating))
terminate ();
return;
}
outpos += nbytes;
outsize -= nbytes;
// If we are still handshaking and there are no data
// to send, stop polling for output.
if (unlikely (handshaking))
if (outsize == 0)
reset_pollout (handle);
if (unlikely (terminating))
if (outsize == 0)
terminate ();
}
void zmq::stream_engine_t::activate_out ()
{
set_pollout (handle);
// Speculative write: The assumption is that at the moment new message
// was sent by the user the socket is probably available for writing.
// Thus we try to write the data to socket avoiding polling for POLLOUT.
// Consequently, the latency should be better in request/reply scenarios.
out_event ();
}
void zmq::stream_engine_t::activate_in ()
{
if (unlikely (!io_enabled)) {
// There was an input error but the engine could not
// be terminated (due to the stalled decoder).
// Flush the pending message and terminate the engine now.
zmq_assert (decoder);
decoder->process_buffer (inpos, 0);
zmq_assert (!decoder->stalled ());
session->flush ();
error ();
return;
}
set_pollin (handle);
// Speculative read.
in_event ();
}
bool zmq::stream_engine_t::handshake ()
{
zmq_assert (handshaking);
zmq_assert (greeting_bytes_read < greeting_size);
// Receive the greeting.
while (greeting_bytes_read < greeting_size) {
const int n = read (greeting + greeting_bytes_read,
greeting_size - greeting_bytes_read);
if (n == -1) {
error ();
return false;
}
if (n == 0)
return false;
greeting_bytes_read += n;
// We have received at least one byte from the peer.
// If the first byte is not 0xff, we know that the
// peer is using unversioned protocol.
if (greeting [0] != 0xff)
break;
if (greeting_bytes_read < 10)
continue;
// Inspect the right-most bit of the 10th byte (which coincides
// with the 'flags' field if a regular message was sent).
// Zero indicates this is a header of identity message
// (i.e. the peer is using the unversioned protocol).
if (!(greeting [9] & 0x01))
break;
// The peer is using versioned protocol.
// Send the rest of the greeting, if necessary.
if (outpos + outsize != greeting_output_buffer + greeting_size) {
if (outsize == 0)
set_pollout (handle);
outpos [outsize++] = 1; // Protocol version
outpos [outsize++] = options.type; // Socket type
}
}
// Position of the version field in the greeting.
const size_t version_pos = 10;
// Is the peer using ZMTP/1.0 with no version number?
// If so, we send and receive rests of identity messages
if (greeting [0] != 0xff || !(greeting [9] & 0x01)) {
encoder = new (std::nothrow) encoder_t (out_batch_size);
alloc_assert (encoder);
encoder->set_msg_source (session);
decoder = new (std::nothrow) decoder_t (in_batch_size, options.maxmsgsize);
alloc_assert (decoder);
decoder->set_msg_sink (session);
// We have already sent the message header.
// Since there is no way to tell the encoder to
// skip the message header, we simply throw that
// header data away.
const size_t header_size = options.identity_size + 1 >= 255 ? 10 : 2;
unsigned char tmp [10], *bufferp = tmp;
size_t buffer_size = header_size;
encoder->get_data (&bufferp, &buffer_size);
zmq_assert (buffer_size == header_size);
// Make sure the decoder sees the data we have already received.
inpos = greeting;
insize = greeting_bytes_read;
// To allow for interoperability with peers that do not forward
// their subscriptions, we inject a phony subscription
// message into the incoming message stream. To put this
// message right after the identity message, we temporarily
// divert the message stream from session to ourselves.
if (options.type == ZMQ_PUB || options.type == ZMQ_XPUB)
decoder->set_msg_sink (this);
}
else
if (greeting [version_pos] == 0) {
// ZMTP/1.0 framing.
encoder = new (std::nothrow) encoder_t (out_batch_size);
alloc_assert (encoder);
encoder->set_msg_source (session);
decoder = new (std::nothrow) decoder_t (in_batch_size, options.maxmsgsize);
alloc_assert (decoder);
decoder->set_msg_sink (session);
}
else {
// v1 framing protocol.
encoder = new (std::nothrow) v1_encoder_t (out_batch_size, session);
alloc_assert (encoder);
decoder = new (std::nothrow)
v1_decoder_t (in_batch_size, options.maxmsgsize, session);
alloc_assert (decoder);
}
// Start polling for output if necessary.
if (outsize == 0)
set_pollout (handle);
// Handshaking was successful.
// Switch into the normal message flow.
handshaking = false;
return true;
}
int zmq::stream_engine_t::push_msg (msg_t *msg_)
{
zmq_assert (options.type == ZMQ_PUB || options.type == ZMQ_XPUB);
// The first message is identity.
// Let the session process it.
int rc = session->push_msg (msg_);
errno_assert (rc == 0);
// Inject the subscription message so that the ZMQ 2.x peer
// receives our messages.
rc = msg_->init_size (1);
errno_assert (rc == 0);
*(unsigned char*) msg_->data () = 1;
rc = session->push_msg (msg_);
session->flush ();
// Once we have injected the subscription message, we can
// Divert the message flow back to the session.
zmq_assert (decoder);
decoder->set_msg_sink (session);
return rc;
}
void zmq::stream_engine_t::error ()
{
zmq_assert (session);
socket->event_disconnected (endpoint, s);
session->detach ();
unplug ();
delete this;
}
int zmq::stream_engine_t::write (const void *data_, size_t size_)
{
#ifdef ZMQ_HAVE_WINDOWS
int nbytes = send (s, (char*) data_, (int) size_, 0);
// If not a single byte can be written to the socket in non-blocking mode
// we'll get an error (this may happen during the speculative write).
if (nbytes == SOCKET_ERROR && WSAGetLastError () == WSAEWOULDBLOCK)
return 0;
// Signalise peer failure.
if (nbytes == SOCKET_ERROR && (
WSAGetLastError () == WSAENETDOWN ||
WSAGetLastError () == WSAENETRESET ||
WSAGetLastError () == WSAEHOSTUNREACH ||
WSAGetLastError () == WSAECONNABORTED ||
WSAGetLastError () == WSAETIMEDOUT ||
WSAGetLastError () == WSAECONNRESET))
return -1;
wsa_assert (nbytes != SOCKET_ERROR);
return nbytes;
#else
ssize_t nbytes = send (s, data_, size_, 0);
// Several errors are OK. When speculative write is being done we may not
// be able to write a single byte from the socket. Also, SIGSTOP issued
// by a debugging tool can result in EINTR error.
if (nbytes == -1 && (errno == EAGAIN || errno == EWOULDBLOCK ||
errno == EINTR))
return 0;
// Signalise peer failure.
if (nbytes == -1) {
errno_assert (errno != EACCES
&& errno != EBADF
&& errno != EDESTADDRREQ
&& errno != EFAULT
&& errno != EINVAL
&& errno != EISCONN
&& errno != EMSGSIZE
&& errno != ENOMEM
&& errno != ENOTSOCK
&& errno != EOPNOTSUPP);
return -1;
}
return static_cast <int> (nbytes);
#endif
}
int zmq::stream_engine_t::read (void *data_, size_t size_)
{
#ifdef ZMQ_HAVE_WINDOWS
int nbytes = recv (s, (char*) data_, (int) size_, 0);
// If not a single byte can be read from the socket in non-blocking mode
// we'll get an error (this may happen during the speculative read).
if (nbytes == SOCKET_ERROR && WSAGetLastError () == WSAEWOULDBLOCK)
return 0;
// Connection failure.
if (nbytes == SOCKET_ERROR && (
WSAGetLastError () == WSAENETDOWN ||
WSAGetLastError () == WSAENETRESET ||
WSAGetLastError () == WSAECONNABORTED ||
WSAGetLastError () == WSAETIMEDOUT ||
WSAGetLastError () == WSAECONNRESET ||
WSAGetLastError () == WSAECONNREFUSED ||
WSAGetLastError () == WSAENOTCONN))
return -1;
wsa_assert (nbytes != SOCKET_ERROR);
// Orderly shutdown by the other peer.
if (nbytes == 0)
return -1;
return nbytes;
#else
ssize_t nbytes = recv (s, data_, size_, 0);
// Several errors are OK. When speculative read is being done we may not
// be able to read a single byte from the socket. Also, SIGSTOP issued
// by a debugging tool can result in EINTR error.
if (nbytes == -1 && (errno == EAGAIN || errno == EWOULDBLOCK ||
errno == EINTR))
return 0;
// Signalise peer failure.
if (nbytes == -1) {
errno_assert (errno != EBADF
&& errno != EFAULT
&& errno != EINVAL
&& errno != ENOMEM
&& errno != ENOTSOCK);
return -1;
}
// Orderly shutdown by the peer.
if (nbytes == 0)
return -1;
return static_cast <int> (nbytes);
#endif
}