0
0
mirror of https://github.com/zeromq/libzmq.git synced 2025-01-13 17:27:57 +08:00
libzmq/tests/test_req_relaxed.cpp
Luca Boccassi d77c60a0db Problem: tests fails to receive with EAGAIN on slow architectures
Solution: remove arbitrary timeouts, as they are testing reliable pipes
with no contention, so if it can connect eventually it has to
work. The overall test timeout covers cases where it doesn't.

If tests want to use receive timeouts, they need to handle EAGAIN
properly.
2020-11-18 13:29:33 +00:00

234 lines
7.2 KiB
C++

/*
Copyright (c) 2007-2017 Contributors as noted in the AUTHORS file
This file is part of libzmq, the ZeroMQ core engine in C++.
libzmq is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
As a special exception, the Contributors give you permission to link
this library with independent modules to produce an executable,
regardless of the license terms of these independent modules, and to
copy and distribute the resulting executable under terms of your choice,
provided that you also meet, for each linked independent module, the
terms and conditions of the license of that module. An independent
module is a module which is not derived from or based on this library.
If you modify this library, you must extend this exception to your
version of the library.
libzmq is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "testutil.hpp"
#include "testutil_unity.hpp"
#include <unity.h>
const size_t services = 5;
void *req;
void *rep[services];
void setUp ()
{
setup_test_context ();
char my_endpoint[MAX_SOCKET_STRING];
req = test_context_socket (ZMQ_REQ);
int enabled = 1;
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (req, ZMQ_REQ_RELAXED, &enabled, sizeof (int)));
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (req, ZMQ_REQ_CORRELATE, &enabled, sizeof (int)));
bind_loopback_ipv4 (req, my_endpoint, sizeof (my_endpoint));
for (size_t peer = 0; peer < services; peer++) {
rep[peer] = test_context_socket (ZMQ_REP);
TEST_ASSERT_SUCCESS_ERRNO (zmq_connect (rep[peer], my_endpoint));
// These tests require strict ordering, so wait for the connections to
// happen before opening the next, so that messages flow in the
// expected direction
msleep (SETTLE_TIME);
}
}
void tearDown ()
{
test_context_socket_close_zero_linger (req);
for (size_t peer = 0; peer < services; peer++)
test_context_socket_close_zero_linger (rep[peer]);
teardown_test_context ();
}
static void bounce (void *socket_)
{
int more;
size_t more_size = sizeof (more);
do {
zmq_msg_t recv_part, sent_part;
TEST_ASSERT_SUCCESS_ERRNO (zmq_msg_init (&recv_part));
TEST_ASSERT_SUCCESS_ERRNO (zmq_msg_recv (&recv_part, socket_, 0));
TEST_ASSERT_SUCCESS_ERRNO (
zmq_getsockopt (socket_, ZMQ_RCVMORE, &more, &more_size));
zmq_msg_init (&sent_part);
zmq_msg_copy (&sent_part, &recv_part);
TEST_ASSERT_SUCCESS_ERRNO (
zmq_msg_send (&sent_part, socket_, more ? ZMQ_SNDMORE : 0));
zmq_msg_close (&recv_part);
} while (more);
}
static int get_events (void *socket_)
{
int events;
size_t events_size = sizeof (events);
TEST_ASSERT_SUCCESS_ERRNO (
zmq_getsockopt (socket_, ZMQ_EVENTS, &events, &events_size));
return events;
}
void test_case_1 ()
{
// Case 1: Second send() before a reply arrives in a pipe.
int events = get_events (req);
TEST_ASSERT_EQUAL_INT (ZMQ_POLLOUT, events);
// Send a request, ensure it arrives, don't send a reply
s_send_seq (req, "A", "B", SEQ_END);
s_recv_seq (rep[0], "A", "B", SEQ_END);
events = get_events (req);
TEST_ASSERT_EQUAL_INT (ZMQ_POLLOUT, events);
// Send another request on the REQ socket
s_send_seq (req, "C", "D", SEQ_END);
s_recv_seq (rep[1], "C", "D", SEQ_END);
events = get_events (req);
TEST_ASSERT_EQUAL_INT (ZMQ_POLLOUT, events);
// Send a reply to the first request - that should be discarded by the REQ
s_send_seq (rep[0], "WRONG", SEQ_END);
// Send the expected reply
s_send_seq (rep[1], "OK", SEQ_END);
s_recv_seq (req, "OK", SEQ_END);
// Another standard req-rep cycle, just to check
s_send_seq (req, "E", SEQ_END);
s_recv_seq (rep[2], "E", SEQ_END);
s_send_seq (rep[2], "F", "G", SEQ_END);
s_recv_seq (req, "F", "G", SEQ_END);
}
void test_case_2 ()
{
// Case 2: Second send() after a reply is already in a pipe on the REQ.
// TODO instead of rerunning the previous test cases, only do the relevant parts (or change the peer)
test_case_1 ();
// Send a request, ensure it arrives, send a reply
s_send_seq (req, "H", SEQ_END);
s_recv_seq (rep[3], "H", SEQ_END);
s_send_seq (rep[3], "BAD", SEQ_END);
// Wait for message to be there.
msleep (SETTLE_TIME);
// Without receiving that reply, send another request on the REQ socket
s_send_seq (req, "I", SEQ_END);
s_recv_seq (rep[4], "I", SEQ_END);
// Send the expected reply
s_send_seq (rep[4], "GOOD", SEQ_END);
s_recv_seq (req, "GOOD", SEQ_END);
}
void test_case_3 ()
{
// Case 3: Check issue #1690. Two send() in a row should not close the
// communication pipes. For example pipe from req to rep[0] should not be
// closed after executing Case 1. So rep[0] should be the next to receive,
// not rep[1].
// TODO instead of rerunning the previous test cases, only do the relevant parts (or change the peer)
test_case_2 ();
s_send_seq (req, "J", SEQ_END);
s_recv_seq (rep[0], "J", SEQ_END);
}
void test_case_4 ()
{
// TODO this test case does not use the sockets from setUp
// Case 4: Check issue #1695. As messages may pile up before a responder
// is available, we check that responses to messages other than the last
// sent one are correctly discarded by the REQ pipe
// Setup REQ socket as client
void *req = test_context_socket (ZMQ_REQ);
int enabled = 1;
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (req, ZMQ_REQ_RELAXED, &enabled, sizeof (int)));
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (req, ZMQ_REQ_CORRELATE, &enabled, sizeof (int)));
TEST_ASSERT_SUCCESS_ERRNO (zmq_connect (req, ENDPOINT_0));
// Setup ROUTER socket as server but do not bind it just yet
void *router = test_context_socket (ZMQ_ROUTER);
// Send two requests
s_send_seq (req, "TO_BE_DISCARDED", SEQ_END);
s_send_seq (req, "TO_BE_ANSWERED", SEQ_END);
// Bind server allowing it to receive messages
TEST_ASSERT_SUCCESS_ERRNO (zmq_bind (router, ENDPOINT_0));
// Read the two messages and send them back as is
bounce (router);
bounce (router);
// Read the expected correlated reply. As the ZMQ_REQ_CORRELATE is active,
// the expected answer is "TO_BE_ANSWERED", not "TO_BE_DISCARDED".
s_recv_seq (req, "TO_BE_ANSWERED", SEQ_END);
test_context_socket_close_zero_linger (req);
test_context_socket_close_zero_linger (router);
}
int main ()
{
setup_test_environment ();
UNITY_BEGIN ();
RUN_TEST (test_case_1);
RUN_TEST (test_case_2);
RUN_TEST (test_case_3);
RUN_TEST (test_case_4);
return UNITY_END ();
}