/* Copyright (c) 2007-2019 Contributors as noted in the AUTHORS file This file is part of libzmq, the ZeroMQ core engine in C++. libzmq is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. As a special exception, the Contributors give you permission to link this library with independent modules to produce an executable, regardless of the license terms of these independent modules, and to copy and distribute the resulting executable under terms of your choice, provided that you also meet, for each linked independent module, the terms and conditions of the license of that module. An independent module is a module which is not derived from or based on this library. If you modify this library, you must extend this exception to your version of the library. libzmq is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program. If not, see . */ #include "testutil.hpp" #include "testutil_unity.hpp" #include #include #if defined _WIN32 #include "../src/windows.hpp" #if defined _MSC_VER #if defined ZMQ_HAVE_IPC #include #include #endif #include #pragma warning(disable : 4996) // iphlpapi is needed for if_nametoindex (not on Windows XP) #if _WIN32_WINNT > _WIN32_WINNT_WINXP #pragma comment(lib, "iphlpapi") #endif #endif #else #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(ZMQ_HAVE_AIX) #include #include #endif #endif #ifndef PATH_MAX #define PATH_MAX 1024 #endif const char *SEQ_END = (const char *) 1; const char bounce_content[] = "12345678ABCDEFGH12345678abcdefgh"; static void send_bounce_msg (void *socket_) { send_string_expect_success (socket_, bounce_content, ZMQ_SNDMORE); send_string_expect_success (socket_, bounce_content, 0); } static void recv_bounce_msg (void *socket_) { recv_string_expect_success (socket_, bounce_content, 0); int rcvmore; size_t sz = sizeof (rcvmore); TEST_ASSERT_SUCCESS_ERRNO ( zmq_getsockopt (socket_, ZMQ_RCVMORE, &rcvmore, &sz)); TEST_ASSERT_TRUE (rcvmore); recv_string_expect_success (socket_, bounce_content, 0); TEST_ASSERT_SUCCESS_ERRNO ( zmq_getsockopt (socket_, ZMQ_RCVMORE, &rcvmore, &sz)); TEST_ASSERT_FALSE (rcvmore); } void bounce (void *server_, void *client_) { // Send message from client to server send_bounce_msg (client_); // Receive message at server side and // check that message is still the same recv_bounce_msg (server_); // Send two parts back to client send_bounce_msg (server_); // Receive the two parts at the client side recv_bounce_msg (client_); } static void send_bounce_msg_may_fail (void *socket_) { int timeout = 250; TEST_ASSERT_SUCCESS_ERRNO ( zmq_setsockopt (socket_, ZMQ_SNDTIMEO, &timeout, sizeof (int))); int rc = zmq_send (socket_, bounce_content, 32, ZMQ_SNDMORE); TEST_ASSERT_TRUE ((rc == 32) || ((rc == -1) && (errno == EAGAIN))); rc = zmq_send (socket_, bounce_content, 32, 0); TEST_ASSERT_TRUE ((rc == 32) || ((rc == -1) && (errno == EAGAIN))); } static void recv_bounce_msg_fail (void *socket_) { int timeout = 250; char buffer[32]; TEST_ASSERT_SUCCESS_ERRNO ( zmq_setsockopt (socket_, ZMQ_RCVTIMEO, &timeout, sizeof (int))); TEST_ASSERT_FAILURE_ERRNO (EAGAIN, zmq_recv (socket_, buffer, 32, 0)); } void expect_bounce_fail (void *server_, void *client_) { // Send message from client to server send_bounce_msg_may_fail (client_); // Receive message at server side (should not succeed) recv_bounce_msg_fail (server_); // Send message from server to client to test other direction // If connection failed, send may block, without a timeout send_bounce_msg_may_fail (server_); // Receive message at client side (should not succeed) recv_bounce_msg_fail (client_); } char *s_recv (void *socket_) { char buffer[256]; int size = zmq_recv (socket_, buffer, 255, 0); if (size == -1) return NULL; if (size > 255) size = 255; buffer[size] = 0; return strdup (buffer); } void s_send_seq (void *socket_, ...) { va_list ap; va_start (ap, socket_); const char *data = va_arg (ap, const char *); while (true) { const char *prev = data; data = va_arg (ap, const char *); bool end = data == SEQ_END; if (!prev) { TEST_ASSERT_SUCCESS_ERRNO ( zmq_send (socket_, 0, 0, end ? 0 : ZMQ_SNDMORE)); } else { TEST_ASSERT_SUCCESS_ERRNO (zmq_send ( socket_, prev, strlen (prev) + 1, end ? 0 : ZMQ_SNDMORE)); } if (end) break; } va_end (ap); } void s_recv_seq (void *socket_, ...) { zmq_msg_t msg; zmq_msg_init (&msg); int more; size_t more_size = sizeof (more); va_list ap; va_start (ap, socket_); const char *data = va_arg (ap, const char *); while (true) { TEST_ASSERT_SUCCESS_ERRNO (zmq_msg_recv (&msg, socket_, 0)); if (!data) TEST_ASSERT_EQUAL_INT (0, zmq_msg_size (&msg)); else TEST_ASSERT_EQUAL_STRING (data, (const char *) zmq_msg_data (&msg)); data = va_arg (ap, const char *); bool end = data == SEQ_END; TEST_ASSERT_SUCCESS_ERRNO ( zmq_getsockopt (socket_, ZMQ_RCVMORE, &more, &more_size)); TEST_ASSERT_TRUE (!more == end); if (end) break; } va_end (ap); zmq_msg_close (&msg); } void close_zero_linger (void *socket_) { int linger = 0; int rc = zmq_setsockopt (socket_, ZMQ_LINGER, &linger, sizeof (linger)); TEST_ASSERT_TRUE (rc == 0 || errno == ETERM); TEST_ASSERT_SUCCESS_ERRNO (zmq_close (socket_)); } void setup_test_environment (int timeout_seconds_) { #if defined _WIN32 #if defined _MSC_VER _set_abort_behavior (0, _WRITE_ABORT_MSG); _CrtSetReportMode (_CRT_ASSERT, _CRTDBG_MODE_FILE); _CrtSetReportFile (_CRT_ASSERT, _CRTDBG_FILE_STDERR); #endif #else #if defined ZMQ_HAVE_CYGWIN // abort test after 121 seconds alarm (121); #else #if !defined ZMQ_DISABLE_TEST_TIMEOUT // abort test after timeout_seconds_ seconds alarm (timeout_seconds_); #endif #endif #endif #if defined __MVS__ // z/OS UNIX System Services: Ignore SIGPIPE during test runs, as a // workaround for no SO_NOGSIGPIPE socket option. signal (SIGPIPE, SIG_IGN); #endif } void msleep (int milliseconds_) { #ifdef ZMQ_HAVE_WINDOWS Sleep (milliseconds_); #else usleep (static_cast (milliseconds_) * 1000); #endif } int is_ipv6_available () { #if defined(ZMQ_HAVE_WINDOWS) && (_WIN32_WINNT < 0x0600) return 0; #else int rc, ipv6 = 1; struct sockaddr_in6 test_addr; memset (&test_addr, 0, sizeof (test_addr)); test_addr.sin6_family = AF_INET6; inet_pton (AF_INET6, "::1", &(test_addr.sin6_addr)); fd_t fd = socket (AF_INET6, SOCK_STREAM, IPPROTO_IP); if (fd == retired_fd) ipv6 = 0; else { #ifdef ZMQ_HAVE_WINDOWS setsockopt (fd, SOL_SOCKET, SO_REUSEADDR, (const char *) &ipv6, sizeof (int)); rc = setsockopt (fd, IPPROTO_IPV6, IPV6_V6ONLY, (const char *) &ipv6, sizeof (int)); if (rc == SOCKET_ERROR) ipv6 = 0; else { rc = bind (fd, (struct sockaddr *) &test_addr, sizeof (test_addr)); if (rc == SOCKET_ERROR) ipv6 = 0; } #else setsockopt (fd, SOL_SOCKET, SO_REUSEADDR, &ipv6, sizeof (int)); rc = setsockopt (fd, IPPROTO_IPV6, IPV6_V6ONLY, &ipv6, sizeof (int)); if (rc != 0) ipv6 = 0; else { rc = bind (fd, reinterpret_cast (&test_addr), sizeof (test_addr)); if (rc != 0) ipv6 = 0; } #endif close (fd); } return ipv6; #endif // _WIN32_WINNT < 0x0600 } int is_tipc_available () { #ifndef ZMQ_HAVE_TIPC return 0; #else int tipc = 0; void *ctx = zmq_init (1); TEST_ASSERT_NOT_NULL (ctx); void *rep = zmq_socket (ctx, ZMQ_REP); TEST_ASSERT_NOT_NULL (rep); tipc = zmq_bind (rep, "tipc://{5560,0,0}"); zmq_close (rep); zmq_ctx_term (ctx); return tipc == 0; #endif // ZMQ_HAVE_TIPC } int test_inet_pton (int af_, const char *src_, void *dst_) { #if defined(ZMQ_HAVE_WINDOWS) && (_WIN32_WINNT < 0x0600) if (af_ == AF_INET) { struct in_addr *ip4addr = (struct in_addr *) dst_; ip4addr->s_addr = inet_addr (src_); // INADDR_NONE is -1 which is also a valid representation for IP // 255.255.255.255 if (ip4addr->s_addr == INADDR_NONE && strcmp (src_, "255.255.255.255") != 0) { return 0; } // Success return 1; } else { // Not supported. return 0; } #else return inet_pton (af_, src_, dst_); #endif } sockaddr_in bind_bsd_socket (int socket_) { struct sockaddr_in saddr; memset (&saddr, 0, sizeof (saddr)); saddr.sin_family = AF_INET; saddr.sin_addr.s_addr = INADDR_ANY; #if !defined(_WIN32_WINNT) || (_WIN32_WINNT >= 0x0600) saddr.sin_port = 0; #else saddr.sin_port = htons (PORT_6); #endif TEST_ASSERT_SUCCESS_RAW_ERRNO ( bind (socket_, (struct sockaddr *) &saddr, sizeof (saddr))); #if !defined(_WIN32_WINNT) || (_WIN32_WINNT >= 0x0600) socklen_t saddr_len = sizeof (saddr); TEST_ASSERT_SUCCESS_RAW_ERRNO ( getsockname (socket_, (struct sockaddr *) &saddr, &saddr_len)); #endif return saddr; } fd_t connect_socket (const char *endpoint_, const int af_, const int protocol_) { struct sockaddr_storage addr; // OSX is very opinionated and wants the size to match the AF family type socklen_t addr_len; const fd_t s_pre = socket (af_, SOCK_STREAM, protocol_ == IPPROTO_UDP ? IPPROTO_UDP : protocol_ == IPPROTO_TCP ? IPPROTO_TCP : 0); #ifdef ZMQ_HAVE_WINDOWS TEST_ASSERT_NOT_EQUAL (INVALID_SOCKET, s_pre); #else TEST_ASSERT_NOT_EQUAL (-1, s_pre); #endif if (af_ == AF_INET || af_ == AF_INET6) { const char *port = strrchr (endpoint_, ':') + 1; char address[MAX_SOCKET_STRING]; // getaddrinfo does not like [x:y::z] if (*strchr (endpoint_, '/') + 2 == '[') { strcpy (address, strchr (endpoint_, '[') + 1); address[strlen (address) - strlen (port) - 2] = '\0'; } else { strcpy (address, strchr (endpoint_, '/') + 2); address[strlen (address) - strlen (port) - 1] = '\0'; } struct addrinfo *in, hint; memset (&hint, 0, sizeof (struct addrinfo)); hint.ai_flags = AI_NUMERICSERV; hint.ai_family = af_; hint.ai_socktype = protocol_ == IPPROTO_UDP ? SOCK_DGRAM : SOCK_STREAM; hint.ai_protocol = protocol_ == IPPROTO_UDP ? IPPROTO_UDP : IPPROTO_TCP; TEST_ASSERT_SUCCESS_RAW_ZERO_ERRNO ( getaddrinfo (address, port, &hint, &in)); TEST_ASSERT_NOT_NULL (in); memcpy (&addr, in->ai_addr, in->ai_addrlen); addr_len = (socklen_t) in->ai_addrlen; freeaddrinfo (in); } else { #if defined(ZMQ_HAVE_IPC) // Cannot cast addr as gcc 4.4 will fail with strict aliasing errors (*(struct sockaddr_un *) &addr).sun_family = AF_UNIX; strcpy ((*(struct sockaddr_un *) &addr).sun_path, endpoint_); addr_len = sizeof (struct sockaddr_un); #else return retired_fd; #endif } TEST_ASSERT_SUCCESS_RAW_ERRNO ( connect (s_pre, (struct sockaddr *) &addr, addr_len)); return s_pre; } fd_t bind_socket_resolve_port (const char *address_, const char *port_, char *my_endpoint_, const int af_, const int protocol_) { struct sockaddr_storage addr; // OSX is very opinionated and wants the size to match the AF family type socklen_t addr_len; const fd_t s_pre = socket (af_, SOCK_STREAM, protocol_ == IPPROTO_UDP ? IPPROTO_UDP : protocol_ == IPPROTO_TCP ? IPPROTO_TCP : 0); #ifdef ZMQ_HAVE_WINDOWS TEST_ASSERT_NOT_EQUAL (INVALID_SOCKET, s_pre); #else TEST_ASSERT_NOT_EQUAL (-1, s_pre); #endif if (af_ == AF_INET || af_ == AF_INET6) { #ifdef ZMQ_HAVE_WINDOWS const char flag = '\1'; #elif defined ZMQ_HAVE_VXWORKS char flag = '\1'; #else int flag = 1; #endif struct addrinfo *in, hint; memset (&hint, 0, sizeof (struct addrinfo)); hint.ai_flags = AI_NUMERICSERV; hint.ai_family = af_; hint.ai_socktype = protocol_ == IPPROTO_UDP ? SOCK_DGRAM : SOCK_STREAM; hint.ai_protocol = protocol_ == IPPROTO_UDP ? IPPROTO_UDP : IPPROTO_TCP; TEST_ASSERT_SUCCESS_RAW_ERRNO ( setsockopt (s_pre, SOL_SOCKET, SO_REUSEADDR, &flag, sizeof (int))); TEST_ASSERT_SUCCESS_RAW_ZERO_ERRNO ( getaddrinfo (address_, port_, &hint, &in)); TEST_ASSERT_NOT_NULL (in); memcpy (&addr, in->ai_addr, in->ai_addrlen); addr_len = (socklen_t) in->ai_addrlen; freeaddrinfo (in); } else { #if defined(ZMQ_HAVE_IPC) // Cannot cast addr as gcc 4.4 will fail with strict aliasing errors (*(struct sockaddr_un *) &addr).sun_family = AF_UNIX; addr_len = sizeof (struct sockaddr_un); #if defined ZMQ_HAVE_WINDOWS char buffer[MAX_PATH] = ""; TEST_ASSERT_SUCCESS_RAW_ERRNO (tmpnam_s (buffer)); TEST_ASSERT_SUCCESS_RAW_ERRNO (_mkdir (buffer)); strcat (buffer, "/ipc"); #else char buffer[PATH_MAX] = ""; strcpy (buffer, "tmpXXXXXX"); #ifdef HAVE_MKDTEMP TEST_ASSERT_TRUE (mkdtemp (buffer)); strcat (buffer, "/socket"); #else int fd = mkstemp (buffer); TEST_ASSERT_TRUE (fd != -1); close (fd); #endif #endif strcpy ((*(struct sockaddr_un *) &addr).sun_path, buffer); memcpy (my_endpoint_, "ipc://", 7); strcat (my_endpoint_, buffer); // TODO check return value of unlink unlink (buffer); #else return retired_fd; #endif } TEST_ASSERT_SUCCESS_RAW_ERRNO ( bind (s_pre, (struct sockaddr *) &addr, addr_len)); TEST_ASSERT_SUCCESS_RAW_ERRNO (listen (s_pre, SOMAXCONN)); if (af_ == AF_INET || af_ == AF_INET6) { addr_len = sizeof (struct sockaddr_storage); TEST_ASSERT_SUCCESS_RAW_ERRNO ( getsockname (s_pre, (struct sockaddr *) &addr, &addr_len)); sprintf (my_endpoint_, "%s://%s:%u", protocol_ == IPPROTO_TCP ? "tcp" : protocol_ == IPPROTO_UDP ? "udp" : protocol_ == IPPROTO_WSS ? "wss" : "ws", address_, af_ == AF_INET ? ntohs ((*(struct sockaddr_in *) &addr).sin_port) : ntohs ((*(struct sockaddr_in6 *) &addr).sin6_port)); } return s_pre; } bool streq (const char *lhs_, const char *rhs_) { return strcmp (lhs_, rhs_) == 0; } bool strneq (const char *lhs_, const char *rhs_) { return strcmp (lhs_, rhs_) != 0; } #if defined _WIN32 int fuzzer_corpus_encode (const char *dirname, uint8_t ***data, size_t **len, size_t *num_cases) { (void) dirname; (void) data; (void) len; (void) num_cases; return -1; } #else int fuzzer_corpus_encode (const char *dirname, uint8_t ***data, size_t **len, size_t *num_cases) { TEST_ASSERT_NOT_NULL (dirname); TEST_ASSERT_NOT_NULL (data); TEST_ASSERT_NOT_NULL (len); struct dirent *ent; DIR *dir = opendir (dirname); if (!dir) return -1; *len = NULL; *data = NULL; *num_cases = 0; while ((ent = readdir (dir)) != NULL) { if (!strcmp (ent->d_name, ".") || !strcmp (ent->d_name, "..")) continue; char *filename = (char *) malloc (strlen (dirname) + strlen (ent->d_name) + 2); TEST_ASSERT_NOT_NULL (filename); strcpy (filename, dirname); strcat (filename, "/"); strcat (filename, ent->d_name); FILE *f = fopen (filename, "r"); free (filename); if (!f) continue; fseek (f, 0, SEEK_END); size_t file_len = ftell (f); fseek (f, 0, SEEK_SET); if (file_len == 0) { fclose (f); continue; } *len = (size_t *) realloc (*len, (*num_cases + 1) * sizeof (size_t)); TEST_ASSERT_NOT_NULL (*len); *(*len + *num_cases) = file_len; *data = (uint8_t **) realloc (*data, (*num_cases + 1) * sizeof (uint8_t *)); TEST_ASSERT_NOT_NULL (*data); *(*data + *num_cases) = (uint8_t *) malloc (file_len * sizeof (uint8_t)); TEST_ASSERT_NOT_NULL (*(*data + *num_cases)); size_t read_bytes = 0; read_bytes = fread (*(*data + *num_cases), 1, file_len, f); TEST_ASSERT_EQUAL (file_len, read_bytes); (*num_cases)++; fclose (f); } closedir (dir); return 0; } #endif