/*
Copyright (c) 2007-2015 Contributors as noted in the AUTHORS file
This file is part of libzmq, the ZeroMQ core engine in C++.
libzmq is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License (LGPL) as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
As a special exception, the Contributors give you permission to link
this library with independent modules to produce an executable,
regardless of the license terms of these independent modules, and to
copy and distribute the resulting executable under terms of your choice,
provided that you also meet, for each linked independent module, the
terms and conditions of the license of that module. An independent
module is a module which is not derived from or based on this library.
If you modify this library, you must extend this exception to your
version of the library.
libzmq is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see .
*/
#include
#include
#include "tcp_connecter.hpp"
#include "stream_engine.hpp"
#include "io_thread.hpp"
#include "platform.hpp"
#include "random.hpp"
#include "err.hpp"
#include "ip.hpp"
#include "tcp.hpp"
#include "address.hpp"
#include "tcp_address.hpp"
#include "session_base.hpp"
#if defined ZMQ_HAVE_WINDOWS
#include "windows.hpp"
#else
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef ZMQ_HAVE_OPENVMS
#include
#endif
#endif
zmq::tcp_connecter_t::tcp_connecter_t (class io_thread_t *io_thread_,
class session_base_t *session_, const options_t &options_,
address_t *addr_, bool delayed_start_) :
own_t (io_thread_, options_),
io_object_t (io_thread_),
addr (addr_),
s (retired_fd),
handle_valid (false),
delayed_start (delayed_start_),
connect_timer_started (false),
reconnect_timer_started (false),
session (session_),
current_reconnect_ivl (options.reconnect_ivl)
{
zmq_assert (addr);
zmq_assert (addr->protocol == "tcp");
addr->to_string (endpoint);
socket = session->get_socket ();
}
zmq::tcp_connecter_t::~tcp_connecter_t ()
{
zmq_assert (!connect_timer_started);
zmq_assert (!reconnect_timer_started);
zmq_assert (!handle_valid);
zmq_assert (s == retired_fd);
}
void zmq::tcp_connecter_t::process_plug ()
{
if (delayed_start)
add_reconnect_timer ();
else
start_connecting ();
}
void zmq::tcp_connecter_t::process_term (int linger_)
{
if (connect_timer_started) {
cancel_timer (connect_timer_id);
connect_timer_started = false;
}
if (reconnect_timer_started) {
cancel_timer (reconnect_timer_id);
reconnect_timer_started = false;
}
if (handle_valid) {
rm_fd (handle);
handle_valid = false;
}
if (s != retired_fd)
close ();
own_t::process_term (linger_);
}
void zmq::tcp_connecter_t::in_event ()
{
// We are not polling for incoming data, so we are actually called
// because of error here. However, we can get error on out event as well
// on some platforms, so we'll simply handle both events in the same way.
out_event ();
}
void zmq::tcp_connecter_t::out_event ()
{
if (connect_timer_started) {
cancel_timer (connect_timer_id);
connect_timer_started = false;
}
rm_fd (handle);
handle_valid = false;
const fd_t fd = connect ();
// Handle the error condition by attempt to reconnect.
if (fd == retired_fd) {
close ();
add_reconnect_timer ();
return;
}
tune_tcp_socket (fd);
tune_tcp_keepalives (fd, options.tcp_keepalive, options.tcp_keepalive_cnt, options.tcp_keepalive_idle, options.tcp_keepalive_intvl);
tune_tcp_retransmit_timeout (fd, options.tcp_retransmit_timeout);
// remember our fd for ZMQ_SRCFD in messages
socket->set_fd (fd);
// Create the engine object for this connection.
stream_engine_t *engine = new (std::nothrow)
stream_engine_t (fd, options, endpoint);
alloc_assert (engine);
// Attach the engine to the corresponding session object.
send_attach (session, engine);
// Shut the connecter down.
terminate ();
socket->event_connected (endpoint, (int) fd);
}
void zmq::tcp_connecter_t::timer_event (int id_)
{
zmq_assert (id_ == reconnect_timer_id || id_ == connect_timer_id);
if (id_ == connect_timer_id) {
connect_timer_started = false;
rm_fd (handle);
handle_valid = false;
close ();
add_reconnect_timer ();
}
else if (id_ == reconnect_timer_id) {
reconnect_timer_started = false;
start_connecting ();
}
}
void zmq::tcp_connecter_t::start_connecting ()
{
// Open the connecting socket.
const int rc = open ();
// Connect may succeed in synchronous manner.
if (rc == 0) {
handle = add_fd (s);
handle_valid = true;
out_event ();
}
// Connection establishment may be delayed. Poll for its completion.
else
if (rc == -1 && errno == EINPROGRESS) {
handle = add_fd (s);
handle_valid = true;
set_pollout (handle);
socket->event_connect_delayed (endpoint, zmq_errno());
// add userspace connect timeout
add_connect_timer ();
}
// Handle any other error condition by eventual reconnect.
else {
if (s != retired_fd)
close ();
add_reconnect_timer ();
}
}
void zmq::tcp_connecter_t::add_connect_timer ()
{
if (options.connect_timeout > 0) {
add_timer (options.connect_timeout, connect_timer_id);
connect_timer_started = true;
}
}
void zmq::tcp_connecter_t::add_reconnect_timer ()
{
const int interval = get_new_reconnect_ivl ();
add_timer (interval, reconnect_timer_id);
socket->event_connect_retried (endpoint, interval);
reconnect_timer_started = true;
}
int zmq::tcp_connecter_t::get_new_reconnect_ivl ()
{
// The new interval is the current interval + random value.
const int interval = current_reconnect_ivl +
generate_random () % options.reconnect_ivl;
// Only change the current reconnect interval if the maximum reconnect
// interval was set and if it's larger than the reconnect interval.
if (options.reconnect_ivl_max > 0 &&
options.reconnect_ivl_max > options.reconnect_ivl)
// Calculate the next interval
current_reconnect_ivl =
std::min (current_reconnect_ivl * 2, options.reconnect_ivl_max);
return interval;
}
int zmq::tcp_connecter_t::open ()
{
zmq_assert (s == retired_fd);
// Resolve the address
if (addr->resolved.tcp_addr != NULL) {
LIBZMQ_DELETE(addr->resolved.tcp_addr);
}
addr->resolved.tcp_addr = new (std::nothrow) tcp_address_t ();
alloc_assert (addr->resolved.tcp_addr);
int rc = addr->resolved.tcp_addr->resolve (
addr->address.c_str (), false, options.ipv6);
if (rc != 0) {
LIBZMQ_DELETE(addr->resolved.tcp_addr);
return -1;
}
zmq_assert (addr->resolved.tcp_addr != NULL);
tcp_address_t * const tcp_addr = addr->resolved.tcp_addr;
// Create the socket.
s = open_socket (tcp_addr->family (), SOCK_STREAM, IPPROTO_TCP);
#ifdef ZMQ_HAVE_WINDOWS
if (s == INVALID_SOCKET) {
errno = wsa_error_to_errno (WSAGetLastError ());
return -1;
}
#else
if (s == -1)
return -1;
#endif
// On some systems, IPv4 mapping in IPv6 sockets is disabled by default.
// Switch it on in such cases.
if (tcp_addr->family () == AF_INET6)
enable_ipv4_mapping (s);
// Set the IP Type-Of-Service priority for this socket
if (options.tos != 0)
set_ip_type_of_service (s, options.tos);
// Set the socket to non-blocking mode so that we get async connect().
unblock_socket (s);
// Set the socket buffer limits for the underlying socket.
if (options.sndbuf >= 0)
set_tcp_send_buffer (s, options.sndbuf);
if (options.rcvbuf >= 0)
set_tcp_receive_buffer (s, options.rcvbuf);
// Set the IP Type-Of-Service for the underlying socket
if (options.tos != 0)
set_ip_type_of_service (s, options.tos);
// Set a source address for conversations
if (tcp_addr->has_src_addr ()) {
rc = ::bind (s, tcp_addr->src_addr (), tcp_addr->src_addrlen ());
if (rc == -1)
return -1;
}
// Connect to the remote peer.
rc = ::connect (s, tcp_addr->addr (), tcp_addr->addrlen ());
// Connect was successfull immediately.
if (rc == 0)
return 0;
// Translate error codes indicating asynchronous connect has been
// launched to a uniform EINPROGRESS.
#ifdef ZMQ_HAVE_WINDOWS
const int last_error = WSAGetLastError();
if (last_error == WSAEINPROGRESS || last_error == WSAEWOULDBLOCK)
errno = EINPROGRESS;
else
errno = wsa_error_to_errno (last_error);
#else
if (errno == EINTR)
errno = EINPROGRESS;
#endif
return -1;
}
zmq::fd_t zmq::tcp_connecter_t::connect ()
{
// Async connect has finished. Check whether an error occurred
int err = 0;
#ifdef ZMQ_HAVE_HPUX
int len = sizeof err;
#else
socklen_t len = sizeof err;
#endif
const int rc = getsockopt (s, SOL_SOCKET, SO_ERROR, (char*) &err, &len);
// Assert if the error was caused by 0MQ bug.
// Networking problems are OK. No need to assert.
#ifdef ZMQ_HAVE_WINDOWS
zmq_assert (rc == 0);
if (err != 0) {
if (err != WSAECONNREFUSED
&& err != WSAETIMEDOUT
&& err != WSAECONNABORTED
&& err != WSAEHOSTUNREACH
&& err != WSAENETUNREACH
&& err != WSAENETDOWN
&& err != WSAEACCES
&& err != WSAEINVAL
&& err != WSAEADDRINUSE)
{
wsa_assert_no (err);
}
return retired_fd;
}
#else
// Following code should handle both Berkeley-derived socket
// implementations and Solaris.
if (rc == -1)
err = errno;
if (err != 0) {
errno = err;
errno_assert (
errno == ECONNREFUSED ||
errno == ECONNRESET ||
errno == ETIMEDOUT ||
errno == EHOSTUNREACH ||
errno == ENETUNREACH ||
errno == ENETDOWN ||
errno == EINVAL);
return retired_fd;
}
#endif
// Return the newly connected socket.
const fd_t result = s;
s = retired_fd;
return result;
}
void zmq::tcp_connecter_t::close ()
{
zmq_assert (s != retired_fd);
#ifdef ZMQ_HAVE_WINDOWS
const int rc = closesocket (s);
wsa_assert (rc != SOCKET_ERROR);
#else
const int rc = ::close (s);
errno_assert (rc == 0);
#endif
socket->event_closed (endpoint, (int) s);
s = retired_fd;
}