Linux now supports Virtual Routing and Forwarding (VRF) as per:
https://www.kernel.org/doc/Documentation/networking/vrf.txt
In order for an application to bind or connect to a socket with an
address in a VRF, they need to first bind the socket to the VRF device:
setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1);
Note "dev" is the VRF device, eg. VRF "blue", rather than an interface
enslaved to the VRF.
Add a new socket option, ZMQ_BINDTODEVICE, to bind a socket to a device.
In general, if a socket is bound to a device, eg. an interface, only
packets received from that particular device are processed by the socket.
If device is a VRF device, then subsequent binds/connects to that socket
use addresses in the VRF routing table.
Problem: GSSAPI DRAFT code was made conditional on
ZMQ_BUILD_DRAFT_API, but zmq_draft.h duplicates the DRAFT
symbols definitions from zmq.h so this is unnecessary.
Solution: drop the extra ifdefs
Problem: The new GSSAPI NAMESPACE options should have been
added to the DRAFT section of the API so they can be changed
until stabilized.
Solution:
- Move defines to the DRAFT section of zmq.h
- Duplicate them in zmq_draft.h, as is the local custom
- Compile only if defined (ZMQ_BUILD_DRAFT_API)
- Refactor internals slightly to avoid #ifdef hell
Problem: principals are looked up unconditionally
with the GSS_C_NT_HOSTBASED_SERVICE name type.
Solution: Add two new socket options to set the name type
for ZMQ_GSSAPI_PRINCIPAL and ZMQ_GSSAPI_SERVICE_PRINCIPAL:
ZMQ_GSSAPI_PRINCIPAL_NAMETYPE
ZMQ_GSSAPI_SERVICE_PRINCIPAL_NAMETYPE
They take an integer argument which must be one of
ZMQ_GSSAPI_NT_HOSTBASED (0) - default
ZMQ_GSSAPI_NT_USER_NAME (1)
ZMQ_GSSAPI_NT_KRB5_PRINCIPAL (2)
These correspond to GSSAPI name types of:
GSS_C_NT_HOSTBASED_SERVICE
GSS_C_NT_USER_NAME
GSS_KRB5_NT_PRINCIPAL_NAME
Fixes#2542
These options are confusing and redundant. Their names suggest
they apply to the tcp:// transport, yet they are used for all
stream protocols. The methods zmq::set_tcp_receive_buffer and
zmq::set_tcp_send_buffer don't use these values at all, they use
ZMQ_SNDBUF and ZMQ_RCVBUF.
Solution: merge these new options into ZMQ_SNDBUF and ZMQ_RCVBUF.
This means defaulting these two options to 8192, and removing the
new options. We now have ZMQ_SNDBUF and ZMQ_RCVBUF being used both
for TCP socket control, and for input/output buffering.
Note: the default for SNDBUF and RCVBUF are otherwise 4096.
Solution: add new [set|get]sockopt ZMQ_PRE_ALLOCATED_FD to allow
users to let ZMQ use a pre-allocated file descriptor instead of
allocating a new one. Update [set|get]sockopt documentation and
test accordingly.
The main use case for this feature is a socket-activated systemd
service. For more information about this feature see:
http://0pointer.de/blog/projects/socket-activation.html
VMCI transport allows fast communication between the Host
and a virtual machine, between virtual machines on the same host,
and within a virtual machine (like IPC).
It requires VMware to be installed on the host and Guest Additions
to be installed on a guest.
Of course people still "can" distributed the sources under the
LGPLv3. However we provide COPYING.LESSER with additional grants.
Solution: specify these grants in the header of each source file.
ZMQ_INVERT_MATCHING reverses the PUB/SUB prefix matching. The subscription
list becomes a rejection list. The PUB socket sends messages to all
connected (X)SUB sockets that do not have any matching subscription.
Whenever the option is used on a PUB/XPUB socket, any connecting SUB
sockets must also set it or they will reject everything the publisher
sends them. XSUB sockets are unaffected because they do not filter out
incoming messages.
Symptom is that ZMQ_STREAM sockets in 4.1.0 and 4.1.1 generate zero
sized messages on each new connection, unlike 4.0.x which did not do
this.
Person who made this commit also changed test cases so that contract
breakage did not show. Same person was later banned for persistently
poor form in CZMQ contributions.
Solution: enable connect notifications on ZMQ_STREAM sockets using a
new ZMQ_STREAM_NOTIFY setting. By default, socket does not deliver
notifications, and behaves as in 4.0.x.
Fixes#1316
This is still raw and experimental.
To connect through a SOCKS proxy, set ZMQ_SOCKS_PROXY socket option on
socket before issuing a connect call, e.g.:
zmq_setsockopt (s, ZMQ_SOCKS_PROXY,
"127.0.0.1:22222", strlen ("127.0.0.1:22222"));
zmq_connect (s, "tcp://127.0.0.1:5555");
Known limitations:
- only SOCKS version 5 supported
- authentication not supported
- new option is still undocumented
Another take on LIBZMQ-568 to allow filtering IPC connections, this time
using ZAP. This change is backward compatible. If the
ZMQ_ZAP_IPC_CREDS option is set, the user, group, and process IDs of the
peer process are appended to the address (separated by colons) of a ZAP
request; otherwise, nothing changes. See LIBZMQ-568 and zmq_setsockopt
documentation for more information.
Adds sets of process (Linux only), user, and group IDs for filtering
connections from peer processes over IPC transport. If all of the
filter sets are empty, every connection is accepted. Otherwise,
credentials for a connecting process are checked against the filter sets
and the connection is only accepted if a match is found.
This commit is part of LIBZMQ-568 and only adds the filter sets and
implements the filter in the IPC accept method. The interface for
adding IDs to filter sets are included in a separate commit.
IPC accept filtering is supported only on Linux and OS X.
On ZMQ_CURVE_xxxKEY fetches, would return 41 bytes into caller's 40-byte
buffer. Now these fetches only return 41 bytes if the caller explicitly
provides a 41-byte buffer (i.e. the option size is 41).
* This is passed to the ZAP handler in the 'domain' field
* If not set, or empty, then NULL security does not call the ZAP handler
* This resolves the phantom ZAP request syndrome seen with sockets where
security was never intended (e.g. in test cases)
* This means if you install a ZAP handler, it will not get any requests
for new connections until you take some explicit action, which can be
setting a username/password for PLAIN, a key for CURVE, or the domain
for NULL.
These were exposed to users, but have subsequently been removed as
sockopts. They are currently only being used by ZAP, so I've moved it to
a simpl function call (actually it's only used in one case even in that,
so there may be a further simplification possible there).
The use of binary for CURVE keys is painful; you cannot easily copy
these in e.g. email, or use them directly in source code. There are
various encoding possibilities. Base16 and Base64 are not optimal.
Ascii85 is not safe for source (it generates quotes and escapes).
So, I've designed a new Base85 encoding, Z85, which is safe to use
in code and elsewhere, and I've modified libzmq to use this where
it also uses binary keys (in get/setsockopt).
Very simply, if you use a 32-byte value, it's Base256 (binary),
and if you use a 40-byte value, it's Base85 (Z85).
I've put the Z85 codec into z85_codec.hpp, it's not elegant C++
but it is minimal and it works. Feel free to rewrap as a real class
if this annoys you.