0
0
mirror of https://github.com/zeromq/libzmq.git synced 2024-12-28 16:15:23 +08:00

Merge pull request #1417 from jens-auer/zero_copy

Zero copy message receive in v2_decoder
This commit is contained in:
Pieter Hintjens 2015-06-03 23:09:03 +02:00
commit 9e80f07a8d
8 changed files with 364 additions and 125 deletions

View File

@ -183,7 +183,7 @@ namespace zmq
#endif
}
inline integer_t get ()
inline integer_t get () const
{
return value;
}

View File

@ -42,6 +42,45 @@
namespace zmq
{
// Static buffer policy.
class c_single_allocator
{
public:
c_single_allocator(size_t bufsize_):
buf((unsigned char*) malloc (bufsize) ),
bufsize(bufsize_)
{
alloc_assert (buf);
}
~c_single_allocator()
{
free(buf);
}
unsigned char* allocate()
{
return buf;
}
void deallocate()
{
}
size_t size() const
{
return bufsize;
}
private:
unsigned char* buf;
size_t bufsize;
c_single_allocator( c_single_allocator const& );
c_single_allocator& operator=(c_single_allocator const&);
};
// Helper base class for decoders that know the amount of data to read
// in advance at any moment. Knowing the amount in advance is a property
// of the protocol used. 0MQ framing protocol is based size-prefixed
@ -52,31 +91,34 @@ namespace zmq
//
// This class implements the state machine that parses the incoming buffer.
// Derived class should implement individual state machine actions.
template <typename T> class decoder_base_t : public i_decoder
//
// Buffer managment is done by an allocator policy.
template <typename T, typename A = c_single_allocator>
class decoder_base_t : public i_decoder
{
public:
inline decoder_base_t (size_t bufsize_) :
next (NULL),
read_pos (NULL),
to_read (0),
bufsize (bufsize_)
inline decoder_base_t (A* allocator_) :
next (NULL),
read_pos (NULL),
to_read (0),
allocator( allocator_ )
{
buf = (unsigned char*) malloc (bufsize_);
alloc_assert (buf);
buf = allocator->allocate();
}
// The destructor doesn't have to be virtual. It is mad virtual
// just to keep ICC and code checking tools from complaining.
inline virtual ~decoder_base_t ()
{
free (buf);
allocator->deallocate();
}
// Returns a buffer to be filled with binary data.
inline void get_buffer (unsigned char **data_, size_t *size_)
{
buf = allocator->allocate();
// If we are expected to read large message, we'll opt for zero-
// copy, i.e. we'll ask caller to fill the data directly to the
// message. Note that subsequent read(s) are non-blocking, thus
@ -85,14 +127,14 @@ namespace zmq
// As a consequence, large messages being received won't block
// other engines running in the same I/O thread for excessive
// amounts of time.
if (to_read >= bufsize) {
if (to_read >= allocator->size()) {
*data_ = read_pos;
*size_ = to_read;
return;
}
*data_ = buf;
*size_ = bufsize;
*size_ = allocator->size();
}
// Processes the data in the buffer previously allocated using
@ -116,7 +158,7 @@ namespace zmq
bytes_used_ = size_;
while (!to_read) {
const int rc = (static_cast <T*> (this)->*next) ();
const int rc = (static_cast <T*> (this)->*next) (data_ + bytes_used_);
if (rc != 0)
return rc;
}
@ -126,14 +168,20 @@ namespace zmq
while (bytes_used_ < size_) {
// Copy the data from buffer to the message.
const size_t to_copy = std::min (to_read, size_ - bytes_used_);
memcpy (read_pos, data_ + bytes_used_, to_copy);
// only copy when the destination address is different from the
// current address in the buffer
if (read_pos != data_ + bytes_used_) {
memcpy(read_pos, data_ + bytes_used_, to_copy);
}
read_pos += to_copy;
to_read -= to_copy;
bytes_used_ += to_copy;
// Try to get more space in the message to fill in.
// If none is available, return.
while (to_read == 0) {
const int rc = (static_cast <T*> (this)->*next) ();
// pass current address in the buffer
const int rc = (static_cast <T*> (this)->*next) (data_ + bytes_used_);
if (rc != 0)
return rc;
}
@ -146,7 +194,7 @@ namespace zmq
// Prototype of state machine action. Action should return false if
// it is unable to push the data to the system.
typedef int (T::*step_t) ();
typedef int (T::*step_t) (unsigned char const*);
// This function should be called from derived class to read data
// from the buffer and schedule next state machine action.
@ -171,8 +219,8 @@ namespace zmq
size_t to_read;
// The duffer for data to decode.
size_t bufsize;
unsigned char *buf;
A* allocator;
unsigned char* buf;
decoder_base_t (const decoder_base_t&);
const decoder_base_t &operator = (const decoder_base_t&);

View File

@ -45,11 +45,30 @@
typedef char zmq_msg_size_check
[2 * ((sizeof (zmq::msg_t) == sizeof (zmq_msg_t)) != 0) - 1];
// check whether the size of atomic_counter_t matches the size of the wrapped integer
// to ensure that the lsmg union is correctly aligned
typedef char zmq_msg_size_check
[2 * ((sizeof (zmq::atomic_counter_t) == sizeof (zmq::atomic_counter_t::integer_t)) != 0) - 1];
bool zmq::msg_t::check ()
{
return u.base.type >= type_min && u.base.type <= type_max;
}
int zmq::msg_t::init (void *data_, size_t size_, msg_free_fn *ffn_, void *hint_)
{
if (size_ <= max_vsm_size)
{
int rc = init_size(size_);
memcpy(data(), data_, size_);
return rc;
}
else
{
return init_data(data_, size_, ffn_, hint_);
}
}
int zmq::msg_t::init ()
{
u.vsm.metadata = NULL;
@ -76,18 +95,16 @@ int zmq::msg_t::init_size (size_t size_)
u.lmsg.type = type_lmsg;
u.lmsg.flags = 0;
u.lmsg.routing_id = 0;
u.lmsg.content =
(content_t*) malloc (sizeof (content_t) + size_);
if (unlikely (!u.lmsg.content)) {
u.lmsg.data = malloc(size_);
if (unlikely (!u.lmsg.data)) {
errno = ENOMEM;
return -1;
}
u.lmsg.content->data = u.lmsg.content + 1;
u.lmsg.content->size = size_;
u.lmsg.content->ffn = NULL;
u.lmsg.content->hint = NULL;
new (&u.lmsg.content->refcnt) zmq::atomic_counter_t ();
u.lmsg.size = size_;
u.lmsg.ffn = NULL;
u.lmsg.hint = NULL;
new (&u.lmsg.refcnt.counter) zmq::atomic_counter_t ();
}
return 0;
}
@ -115,17 +132,12 @@ int zmq::msg_t::init_data (void *data_, size_t size_, msg_free_fn *ffn_,
u.lmsg.type = type_lmsg;
u.lmsg.flags = 0;
u.lmsg.routing_id = 0;
u.lmsg.content = (content_t*) malloc (sizeof (content_t));
if (!u.lmsg.content) {
errno = ENOMEM;
return -1;
}
u.lmsg.content->data = data_;
u.lmsg.content->size = size_;
u.lmsg.content->ffn = ffn_;
u.lmsg.content->hint = hint_;
new (&u.lmsg.content->refcnt) zmq::atomic_counter_t ();
u.lmsg.data = data_;
u.lmsg.size = size_;
u.lmsg.ffn = ffn_;
u.lmsg.hint = hint_;
new (&u.lmsg.refcnt.counter) zmq::atomic_counter_t ();
}
return 0;
@ -140,6 +152,13 @@ int zmq::msg_t::init_delimiter ()
return 0;
}
zmq::atomic_counter_t& zmq::msg_t::msg_counter()
{
zmq_assert( is_lmsg() );
void* ptr = static_cast<void*>( &u.lmsg.refcnt.counter );
return *static_cast<atomic_counter_t*>( ptr );
}
int zmq::msg_t::close ()
{
// Check the validity of the message.
@ -153,16 +172,14 @@ int zmq::msg_t::close ()
// If the content is not shared, or if it is shared and the reference
// count has dropped to zero, deallocate it.
if (!(u.lmsg.flags & msg_t::shared) ||
!u.lmsg.content->refcnt.sub (1)) {
!msg_counter().sub (1)) {
// We used "placement new" operator to initialize the reference
// counter so we call the destructor explicitly now.
u.lmsg.content->refcnt.~atomic_counter_t ();
if (u.lmsg.content->ffn)
u.lmsg.content->ffn (u.lmsg.content->data,
u.lmsg.content->hint);
free (u.lmsg.content);
if (u.lmsg.ffn) {
u.lmsg.ffn(u.lmsg.data, u.lmsg.hint);
}
else {
free (u.lmsg.data);
}
}
}
@ -214,10 +231,10 @@ int zmq::msg_t::copy (msg_t &src_)
// One reference is added to shared messages. Non-shared messages
// are turned into shared messages and reference count is set to 2.
if (src_.u.lmsg.flags & msg_t::shared)
src_.u.lmsg.content->refcnt.add (1);
src_.msg_counter().add (1);
else {
src_.u.lmsg.flags |= msg_t::shared;
src_.u.lmsg.content->refcnt.set (2);
src_.msg_counter().set (2);
}
}
@ -239,7 +256,7 @@ void *zmq::msg_t::data ()
case type_vsm:
return u.vsm.data;
case type_lmsg:
return u.lmsg.content->data;
return u.lmsg.data;
case type_cmsg:
return u.cmsg.data;
default:
@ -257,7 +274,7 @@ size_t zmq::msg_t::size ()
case type_vsm:
return u.vsm.size;
case type_lmsg:
return u.lmsg.content->size;
return u.lmsg.size;
case type_cmsg:
return u.cmsg.size;
default:
@ -333,6 +350,11 @@ bool zmq::msg_t::is_vsm ()
return u.base.type == type_vsm;
}
bool zmq::msg_t::is_lmsg () const
{
return u.base.type == type_lmsg;
}
bool zmq::msg_t::is_cmsg ()
{
return u.base.type == type_cmsg;
@ -353,9 +375,9 @@ void zmq::msg_t::add_refs (int refs_)
// message type that needs special care are long messages.
if (u.base.type == type_lmsg) {
if (u.lmsg.flags & msg_t::shared)
u.lmsg.content->refcnt.add (refs_);
msg_counter().add (refs_);
else {
u.lmsg.content->refcnt.set (refs_ + 1);
msg_counter().set (refs_ + 1);
u.lmsg.flags |= msg_t::shared;
}
}
@ -379,14 +401,14 @@ bool zmq::msg_t::rm_refs (int refs_)
}
// The only message type that needs special care are long messages.
if (!u.lmsg.content->refcnt.sub (refs_)) {
if (!msg_counter().sub (refs_)) {
// We used "placement new" operator to initialize the reference
// counter so we call the destructor explicitly now.
u.lmsg.content->refcnt.~atomic_counter_t ();
msg_counter().~atomic_counter_t ();
if (u.lmsg.content->ffn)
u.lmsg.content->ffn (u.lmsg.content->data, u.lmsg.content->hint);
free (u.lmsg.content);
if (u.lmsg.ffn)
u.lmsg.ffn (u.lmsg.data, u.lmsg.hint);
free (u.lmsg.data);
return false;
}
@ -404,3 +426,4 @@ int zmq::msg_t::set_routing_id(uint32_t routing_id_)
u.base.routing_id = routing_id_;
return 0;
}

View File

@ -54,7 +54,6 @@ namespace zmq
class msg_t
{
public:
// Message flags.
enum
{
@ -66,6 +65,8 @@ namespace zmq
};
bool check ();
int init (void *data_, size_t size_, msg_free_fn *ffn_,
void *hint_);
int init ();
int init_size (size_t size_);
int init_data (void *data_, size_t size_, msg_free_fn *ffn_,
@ -88,6 +89,7 @@ namespace zmq
bool is_credential () const;
bool is_delimiter () const;
bool is_vsm ();
bool is_lmsg () const;
bool is_cmsg ();
uint32_t get_routing_id();
int set_routing_id(uint32_t routing_id_);
@ -107,22 +109,6 @@ namespace zmq
enum { msg_t_size = 64 };
enum { max_vsm_size = msg_t_size - (8 + sizeof (metadata_t *) + 3 + sizeof(uint32_t)) };
// Shared message buffer. Message data are either allocated in one
// continuous block along with this structure - thus avoiding one
// malloc/free pair or they are stored in used-supplied memory.
// In the latter case, ffn member stores pointer to the function to be
// used to deallocate the data. If the buffer is actually shared (there
// are at least 2 references to it) refcount member contains number of
// references.
struct content_t
{
void *data;
size_t size;
msg_free_fn *ffn;
void *hint;
zmq::atomic_counter_t refcnt;
};
// Different message types.
enum type_t
{
@ -138,6 +124,8 @@ namespace zmq
type_max = 104
};
atomic_counter_t& msg_counter();
// the file descriptor where this message originated, needs to be 64bit due to alignment
int64_t file_desc;
@ -161,10 +149,32 @@ namespace zmq
unsigned char flags;
uint32_t routing_id;
} vsm;
struct {
struct lmsg_t {
metadata_t *metadata;
content_t *content;
unsigned char unused [msg_t_size - (8 + sizeof (metadata_t *) + sizeof (content_t*) + 2 + sizeof(uint32_t))];
// Shared message buffer. Message data are either allocated in one
// continuous block along with this structure - thus avoiding one
// malloc/free pair or they are stored in used-supplied memory.
// In the latter case, ffn member stores pointer to the function to be
// used to deallocate the data. If the buffer is actually shared (there
// are at least 2 references to it) refcount member contains number of
// references.
void *data;
size_t size;
msg_free_fn *ffn;
void *hint;
// create an aligned block for an atomic_counter_t object
union aligned_atomic_counter_storage {
zmq::atomic_counter_t::integer_t maxAlign;
unsigned char counter[ sizeof(zmq::atomic_counter_t) ];
} refcnt;
unsigned char unused [msg_t_size - (8 + sizeof (metadata_t *)
+ sizeof(void*)
+ sizeof(size_t)
+ sizeof(msg_free_fn*)
+ sizeof(void*)
+ sizeof(aligned_atomic_counter_storage)
+ 2
+ sizeof(uint32_t))];
unsigned char type;
unsigned char flags;
uint32_t routing_id;

View File

@ -43,7 +43,8 @@
#include "err.hpp"
zmq::v1_decoder_t::v1_decoder_t (size_t bufsize_, int64_t maxmsgsize_) :
decoder_base_t <v1_decoder_t> (bufsize_),
c_single_allocator(bufsize_),
decoder_base_t <v1_decoder_t> (this),
maxmsgsize (maxmsgsize_)
{
int rc = in_progress.init ();
@ -59,7 +60,7 @@ zmq::v1_decoder_t::~v1_decoder_t ()
errno_assert (rc == 0);
}
int zmq::v1_decoder_t::one_byte_size_ready ()
int zmq::v1_decoder_t::one_byte_size_ready (unsigned char const*)
{
// First byte of size is read. If it is 0xff read 8-byte size.
// Otherwise allocate the buffer for message data and read the
@ -96,7 +97,7 @@ int zmq::v1_decoder_t::one_byte_size_ready ()
return 0;
}
int zmq::v1_decoder_t::eight_byte_size_ready ()
int zmq::v1_decoder_t::eight_byte_size_ready (unsigned char const*)
{
// 8-byte payload length is read. Allocate the buffer
// for message body and read the message data into it.
@ -138,7 +139,7 @@ int zmq::v1_decoder_t::eight_byte_size_ready ()
return 0;
}
int zmq::v1_decoder_t::flags_ready ()
int zmq::v1_decoder_t::flags_ready (unsigned char const*)
{
// Store the flags from the wire into the message structure.
in_progress.set_flags (tmpbuf [0] & msg_t::more);
@ -149,7 +150,7 @@ int zmq::v1_decoder_t::flags_ready ()
return 0;
}
int zmq::v1_decoder_t::message_ready ()
int zmq::v1_decoder_t::message_ready (unsigned char const*)
{
// Message is completely read. Push it further and start reading
// new message. (in_progress is a 0-byte message after this point.)

View File

@ -36,7 +36,9 @@ namespace zmq
{
// Decoder for ZMTP/1.0 protocol. Converts data batches into messages.
class v1_decoder_t : public decoder_base_t <v1_decoder_t>
class v1_decoder_t :
public zmq::c_single_allocator,
public decoder_base_t <v1_decoder_t>
{
public:
@ -47,10 +49,10 @@ namespace zmq
private:
int one_byte_size_ready ();
int eight_byte_size_ready ();
int flags_ready ();
int message_ready ();
int one_byte_size_ready (unsigned char const*);
int eight_byte_size_ready (unsigned char const*);
int flags_ready (unsigned char const*);
int message_ready (unsigned char const*);
unsigned char tmpbuf [8];
msg_t in_progress;

View File

@ -41,8 +41,96 @@
#include "wire.hpp"
#include "err.hpp"
zmq::shared_message_memory_allocator::shared_message_memory_allocator(size_t bufsize_):
buf(NULL),
bufsize( bufsize_ )
{
}
zmq::shared_message_memory_allocator::~shared_message_memory_allocator()
{
deallocate();
}
unsigned char* zmq::shared_message_memory_allocator::allocate()
{
if (buf)
{
// release reference count to couple lifetime to messages
call_dec_ref(NULL, buf);
// release pointer because we are going to create a new buffer
release();
}
// @todo aligmnet padding may be needed
if (!buf)
{
buf = (unsigned char *) malloc(bufsize + sizeof(zmq::atomic_counter_t));
alloc_assert (buf);
new(buf) atomic_counter_t(1);
}
return buf + sizeof( zmq::atomic_counter_t);
}
void zmq::shared_message_memory_allocator::deallocate()
{
free(buf);
buf = NULL;
}
unsigned char* zmq::shared_message_memory_allocator::release()
{
unsigned char* b = buf;
buf = NULL;
return b;
}
void zmq::shared_message_memory_allocator::reset(unsigned char* b)
{
deallocate();
buf = b;
}
void zmq::shared_message_memory_allocator::inc_ref()
{
((zmq::atomic_counter_t*)buf)->add(1);
}
void zmq::shared_message_memory_allocator::call_dec_ref(void*, void* hint) {
zmq_assert( hint );
zmq::atomic_counter_t *c = reinterpret_cast<zmq::atomic_counter_t *>(hint);
if (!c->sub(1)) {
c->~atomic_counter_t();
free(hint);
}
}
size_t zmq::shared_message_memory_allocator::size() const
{
if (buf)
{
return bufsize;
}
else
{
return 0;
}
}
unsigned char* zmq::shared_message_memory_allocator::data()
{
zmq_assert(buf);
return buf + sizeof(zmq::atomic_counter_t);
}
zmq::v2_decoder_t::v2_decoder_t (size_t bufsize_, int64_t maxmsgsize_) :
decoder_base_t <v2_decoder_t> (bufsize_),
shared_message_memory_allocator( bufsize_),
decoder_base_t <v2_decoder_t, shared_message_memory_allocator> (this),
msg_flags (0),
maxmsgsize (maxmsgsize_)
{
@ -59,7 +147,7 @@ zmq::v2_decoder_t::~v2_decoder_t ()
errno_assert (rc == 0);
}
int zmq::v2_decoder_t::flags_ready ()
int zmq::v2_decoder_t::flags_ready (unsigned char const*)
{
msg_flags = 0;
if (tmpbuf [0] & v2_protocol_t::more_flag)
@ -77,40 +165,20 @@ int zmq::v2_decoder_t::flags_ready ()
return 0;
}
int zmq::v2_decoder_t::one_byte_size_ready ()
int zmq::v2_decoder_t::one_byte_size_ready (unsigned char const* read_from)
{
// Message size must not exceed the maximum allowed size.
if (maxmsgsize >= 0)
if (unlikely (tmpbuf [0] > static_cast <uint64_t> (maxmsgsize))) {
errno = EMSGSIZE;
return -1;
}
// in_progress is initialised at this point so in theory we should
// close it before calling zmq_msg_init_size, however, it's a 0-byte
// message and thus we can treat it as uninitialised...
int rc = in_progress.init_size (tmpbuf [0]);
if (unlikely (rc)) {
errno_assert (errno == ENOMEM);
rc = in_progress.init ();
errno_assert (rc == 0);
errno = ENOMEM;
return -1;
}
in_progress.set_flags (msg_flags);
next_step (in_progress.data (), in_progress.size (),
&v2_decoder_t::message_ready);
return 0;
return size_ready(tmpbuf[0], read_from);
}
int zmq::v2_decoder_t::eight_byte_size_ready ()
{
int zmq::v2_decoder_t::eight_byte_size_ready (unsigned char const* read_from) {
// The payload size is encoded as 64-bit unsigned integer.
// The most significant byte comes first.
const uint64_t msg_size = get_uint64 (tmpbuf);
const uint64_t msg_size = get_uint64(tmpbuf);
return size_ready(msg_size, read_from);
}
int zmq::v2_decoder_t::size_ready(uint64_t msg_size, unsigned char const* read_pos) {
// Message size must not exceed the maximum allowed size.
if (maxmsgsize >= 0)
if (unlikely (msg_size > static_cast <uint64_t> (maxmsgsize))) {
@ -127,7 +195,31 @@ int zmq::v2_decoder_t::eight_byte_size_ready ()
// in_progress is initialised at this point so in theory we should
// close it before calling init_size, however, it's a 0-byte
// message and thus we can treat it as uninitialised.
int rc = in_progress.init_size (static_cast <size_t> (msg_size));
int rc = -1;
// the current message can exceed the current buffer. We have to copy the buffer
// data into a new message and complete it in the next receive.
if (unlikely ((unsigned char*)read_pos + msg_size > (data() + size())))
{
// a new message has started, but the size would exceed the pre-allocated arena
// this happens everytime when a message does not fit completely into the buffer
rc = in_progress.init_size (static_cast <size_t> (msg_size));
}
else
{
// construct message using n bytes from the buffer as storage
// increase buffer ref count
rc = in_progress.init( (unsigned char*)read_pos,
msg_size, shared_message_memory_allocator::call_dec_ref,
buffer() );
// For small messages, data has been copied and refcount does not have to be increased
if (in_progress.is_lmsg())
{
inc_ref();
}
}
if (unlikely (rc)) {
errno_assert (errno == ENOMEM);
rc = in_progress.init ();
@ -137,13 +229,19 @@ int zmq::v2_decoder_t::eight_byte_size_ready ()
}
in_progress.set_flags (msg_flags);
// this sets read_pos to
// the message data address if the data needs to be copied
// for small message / messages exceeding the current buffer
// or
// to the current start address in the buffer because the message
// was constructed to use n bytes from the address passed as argument
next_step (in_progress.data (), in_progress.size (),
&v2_decoder_t::message_ready);
return 0;
}
int zmq::v2_decoder_t::message_ready ()
int zmq::v2_decoder_t::message_ready (unsigned char const*)
{
// Message is completely read. Signal this to the caller
// and prepare to decode next message.

View File

@ -34,11 +34,66 @@
namespace zmq
{
// Decoder for ZMTP/2.x framing protocol. Converts data stream into messages.
class v2_decoder_t : public decoder_base_t <v2_decoder_t>
// This allocater allocates a reference counted buffer which is used by v2_decoder_t
// to use zero-copy msg::init_data to create messages with memory from this buffer as
// data storage.
//
// The buffer is allocated with a reference count of 1 to make sure that is is alive while
// decoding messages. Otherwise, it is possible that e.g. the first message increases the count
// from zero to one, gets passed to the user application, processed in the user thread and deleted
// which would then deallocate the buffer. The drawback is that the buffer may be allocated longer
// than necessary because it is only deleted when allocate is called the next time.
class shared_message_memory_allocator
{
public:
shared_message_memory_allocator(size_t bufsize_);
~shared_message_memory_allocator();
// Allocate a new buffer
//
// This releases the current buffer to be bound to the lifetime of the messages
// created on this bufer.
unsigned char* allocate();
// force deallocation of buffer.
void deallocate();
// Give up ownership of the buffer. The buffer's lifetime is now coupled to
// the messages constructed on top of it.
unsigned char* release();
void reset(unsigned char* b);
void inc_ref();
static void call_dec_ref(void*, void* buffer);
size_t size() const;
// Return pointer to the first message data byte.
unsigned char* data();
// Return pointer to the first byte of the buffer.
unsigned char* buffer()
{
return buf;
}
private:
unsigned char* buf;
size_t bufsize;
};
// Decoder for ZMTP/2.x framing protocol. Converts data stream into messages.
// The class has to inherit from shared_message_memory_allocator because
// the base class calls allocate in its constructor.
class v2_decoder_t :
// inherit first from allocator to ensure that it is constructed before decoder_base_t
public shared_message_memory_allocator,
public decoder_base_t <v2_decoder_t, shared_message_memory_allocator>
{
public:
v2_decoder_t (size_t bufsize_, int64_t maxmsgsize_);
virtual ~v2_decoder_t ();
@ -47,10 +102,12 @@ namespace zmq
private:
int flags_ready ();
int one_byte_size_ready ();
int eight_byte_size_ready ();
int message_ready ();
int flags_ready (unsigned char const*);
int one_byte_size_ready (unsigned char const*);
int eight_byte_size_ready (unsigned char const*);
int message_ready (unsigned char const*);
int size_ready(uint64_t size_, unsigned char const*);
unsigned char tmpbuf [8];
unsigned char msg_flags;