0
0
mirror of https://github.com/zeromq/libzmq.git synced 2024-12-29 00:32:34 +08:00

PGM code cleanup

This commit is contained in:
Martin Sustrik 2009-12-28 11:51:06 +01:00
parent aebff623f3
commit 5852db451a
6 changed files with 159 additions and 327 deletions

View File

@ -27,9 +27,6 @@
#include "windows.hpp"
#endif
#include <pgm/pgm.h>
#include <iostream>
#include "pgm_receiver.hpp"
#include "err.hpp"
#include "stdint.hpp"
@ -58,20 +55,12 @@ int zmq::pgm_receiver_t::init (bool udp_encapsulation_, const char *network_)
void zmq::pgm_receiver_t::plug (i_inout *inout_)
{
// Allocate 2 fds one for socket second for waiting pipe.
// Retrieve PGM fds and start polling.
int socket_fd;
int waiting_pipe_fd;
// Fill socket_fd and waiting_pipe_fd from PGM transport
pgm_socket.get_receiver_fds (&socket_fd, &waiting_pipe_fd);
// Add socket_fd into poller.
socket_handle = add_fd (socket_fd);
// Add waiting_pipe_fd into poller.
pipe_handle = add_fd (waiting_pipe_fd);
// Set POLLIN for both handlers.
set_pollin (pipe_handle);
set_pollin (socket_handle);
@ -81,15 +70,16 @@ void zmq::pgm_receiver_t::plug (i_inout *inout_)
void zmq::pgm_receiver_t::unplug ()
{
// Delete decoders.
for (peer_t::iterator it = peers.begin (); it != peers.end (); it++) {
for (peers_t::iterator it = peers.begin (); it != peers.end (); it++) {
if (it->second.decoder != NULL)
delete it->second.decoder;
}
peers.clear ();
// Stop polling.
rm_fd (socket_handle);
rm_fd (pipe_handle);
inout = NULL;
}
@ -98,101 +88,77 @@ void zmq::pgm_receiver_t::revive ()
zmq_assert (false);
}
// POLLIN event from socket or waiting_pipe.
void zmq::pgm_receiver_t::in_event ()
{
// Iterator to peers map.
peer_t::iterator it;
// Data from PGM socket.
unsigned char *raw_data = NULL;
// Read data from the underlying pgm_socket.
unsigned char *data = NULL;
const pgm_tsi_t *tsi = NULL;
ssize_t nbytes = 0;
ssize_t received = pgm_socket.receive ((void**) &data, &tsi);
do {
// No data to process. This may happen if the packet received is
// neither ODATA nor ODATA.
if (received == 0)
return;
// Read data from underlying pgm_socket.
nbytes = pgm_socket.receive ((void**) &raw_data, &tsi);
// Find the peer based on its TSI.
peers_t::iterator it = peers.find (*tsi);
// No ODATA or RDATA.
if (!nbytes)
break;
// Fid TSI in peers list.
it = peers.find (*tsi);
// Data loss.
if (nbytes == -1) {
zmq_assert (it != peers.end ());
// Delete decoder and set joined to false.
it->second.joined = false;
if (it->second.decoder != NULL) {
delete it->second.decoder;
it->second.decoder = NULL;
}
break;
// Data loss. Delete decoder and mark the peer as disjoint.
if (received == -1) {
zmq_assert (it != peers.end ());
it->second.joined = false;
if (it->second.decoder != NULL) {
delete it->second.decoder;
it->second.decoder = NULL;
}
return;
}
// Read offset of the fist message in current APDU.
zmq_assert ((size_t) nbytes >= sizeof (uint16_t));
uint16_t apdu_offset = get_uint16 (raw_data);
// New peer. Add it to the list of know but unjoint peers.
if (it == peers.end ()) {
peer_info_t peer_info = {false, NULL};
it = peers.insert (std::make_pair (*tsi, peer_info)).first;
}
// Shift raw_data & decrease nbytes by the first message offset
// information (sizeof uint16_t).
raw_data += sizeof (uint16_t);
nbytes -= sizeof (uint16_t);
// Read the offset of the fist message in the current packet.
zmq_assert ((size_t) received >= sizeof (uint16_t));
uint16_t offset = get_uint16 (data);
data += sizeof (uint16_t);
received -= sizeof (uint16_t);
// New peer.
if (it == peers.end ()) {
peer_info_t peer_info = {false, NULL};
it = peers.insert (std::make_pair (*tsi, peer_info)).first;
}
// Join the stream if needed.
if (!it->second.joined) {
// There is not beginning of the message in current APDU and we
// are not joined jet -> throwing data.
if (apdu_offset == 0xFFFF && !it->second.joined) {
break;
}
// There is no beginning of the message in current packet.
// Ignore the data.
if (offset == 0xffff)
return;
// Now is the possibility to join the stream.
if (!it->second.joined) {
zmq_assert (apdu_offset <= nbytes);
zmq_assert (it->second.decoder == NULL);
zmq_assert (offset <= received);
zmq_assert (it->second.decoder == NULL);
// We have to move data to the begining of the first message.
raw_data += apdu_offset;
nbytes -= apdu_offset;
// We have to move data to the begining of the first message.
data += offset;
received -= offset;
// Joined the stream.
it->second.joined = true;
// Mark the stream as joined.
it->second.joined = true;
// Create and connect decoder for joined peer.
it->second.decoder = new (std::nothrow) zmq_decoder_t (0, NULL, 0);
it->second.decoder->set_inout (inout);
}
// Create and connect decoder for the peer.
it->second.decoder = new (std::nothrow) zmq_decoder_t (0, NULL, 0);
it->second.decoder->set_inout (inout);
}
if (nbytes > 0) {
// Push all the data to the decoder.
// TODO: process_buffer may not process entire buffer!
it->second.decoder->process_buffer (raw_data, nbytes);
}
} while (nbytes > 0);
if (received) {
// Flush any messages decoder may have produced to the dispatcher.
inout->flush ();
// Push all the data to the decoder.
// TODO: process_buffer may not process entire buffer!
size_t processed = it->second.decoder->process_buffer (data, received);
zmq_assert (processed == received);
}
void zmq::pgm_receiver_t::out_event ()
{
zmq_assert (false);
// Flush any messages decoder may have produced.
inout->flush ();
}
}
#endif

View File

@ -29,7 +29,7 @@
#endif
#include <map>
#include <pgm/pgm.h>
#include <algorithm>
#include "io_object.hpp"
#include "i_engine.hpp"
@ -45,8 +45,6 @@ namespace zmq
public:
// Creates gm_engine. Underlying PGM connection is initialised
// using network_ parameter.
pgm_receiver_t (class io_thread_t *parent_, const options_t &options_);
~pgm_receiver_t ();
@ -59,11 +57,12 @@ namespace zmq
// i_poll_events interface implementation.
void in_event ();
void out_event ();
private:
// Map to hold TSI, joined and decoder for each peer.
// If joined is true we are already getting messages from the peer.
// It it's false, we are getting data but still we haven't seen
// beginning of a message.
struct peer_info_t
{
bool joined;
@ -84,8 +83,8 @@ namespace zmq
}
};
typedef std::map <pgm_tsi_t, peer_info_t, tsi_comp> peer_t;
peer_t peers;
typedef std::map <pgm_tsi_t, peer_info_t, tsi_comp> peers_t;
peers_t peers;
// PGM socket.
pgm_socket_t pgm_socket;

View File

@ -25,12 +25,13 @@
#include "windows.hpp"
#endif
#include <iostream>
#include <stdlib.h>
#include "io_thread.hpp"
#include "pgm_sender.hpp"
#include "err.hpp"
#include "wire.hpp"
#include "stdint.hpp"
zmq::pgm_sender_t::pgm_sender_t (io_thread_t *parent_,
const options_t &options_) :
@ -38,18 +39,21 @@ zmq::pgm_sender_t::pgm_sender_t (io_thread_t *parent_,
encoder (0, false),
pgm_socket (false, options_),
options (options_),
inout (NULL),
out_buffer (NULL),
out_buffer_size (0),
write_size (0),
write_pos (0),
first_message_offset (-1)
write_size (0)
{
}
int zmq::pgm_sender_t::init (bool udp_encapsulation_, const char *network_)
{
return pgm_socket.init (udp_encapsulation_, network_);
int rc = pgm_socket.init (udp_encapsulation_, network_);
if (rc != 0)
return rc;
out_buffer_size = pgm_socket.get_max_tsdu_size ();
out_buffer = (unsigned char*) malloc (out_buffer_size);
zmq_assert (out_buffer);
}
void zmq::pgm_sender_t::plug (i_inout *inout_)
@ -61,17 +65,11 @@ void zmq::pgm_sender_t::plug (i_inout *inout_)
encoder.set_inout (inout_);
// Fill fds from PGM transport.
pgm_socket.get_sender_fds
(&downlink_socket_fd, &uplink_socket_fd, &rdata_notify_fd);
// Add downlink_socket_fd into poller.
// Fill fds from PGM transport and add them to the poller.
pgm_socket.get_sender_fds (&downlink_socket_fd, &uplink_socket_fd,
&rdata_notify_fd);
handle = add_fd (downlink_socket_fd);
// Add uplink_socket_fd into the poller.
uplink_handle = add_fd (uplink_socket_fd);
// Add rdata_notify_fd into the poller.
rdata_notify_handle = add_fd (rdata_notify_fd);
// Set POLLIN. We wont never want to stop polling for uplink = we never
@ -81,8 +79,6 @@ void zmq::pgm_sender_t::plug (i_inout *inout_)
// Set POLLOUT for downlink_socket_handle.
set_pollout (handle);
inout = inout_;
}
void zmq::pgm_sender_t::unplug ()
@ -91,7 +87,6 @@ void zmq::pgm_sender_t::unplug ()
rm_fd (uplink_handle);
rm_fd (rdata_notify_handle);
encoder.set_inout (NULL);
inout = NULL;
}
void zmq::pgm_sender_t::revive ()
@ -103,14 +98,14 @@ void zmq::pgm_sender_t::revive ()
zmq::pgm_sender_t::~pgm_sender_t ()
{
if (out_buffer) {
pgm_socket.free_buffer (out_buffer);
free (out_buffer);
out_buffer = NULL;
}
}
// In event on sender side means NAK or SPMR receiving from some peer.
void zmq::pgm_sender_t::in_event ()
{
// In event on sender side means NAK or SPMR receiving from some peer.
pgm_socket.process_upstream ();
}
@ -118,55 +113,36 @@ void zmq::pgm_sender_t::out_event ()
{
// POLLOUT event from send socket. If write buffer is empty,
// try to read new data from the encoder.
if (write_pos == write_size) {
if (write_size == 0) {
// Get buffer if we do not have already one.
if (!out_buffer) {
out_buffer = (unsigned char*)
pgm_socket.get_buffer (&out_buffer_size);
}
assert (out_buffer_size > 0);
// First two bytes /sizeof (uint16_t)/ are used to store message
// offset in following steps.
// First two bytes (sizeof uint16_t) are used to store message
// offset in following steps. Note that by passing our buffer to
// the get data function we prevent it from returning its own buffer.
unsigned char *bf = out_buffer + sizeof (uint16_t);
write_size = out_buffer_size - sizeof (uint16_t);
encoder.get_data (&bf, &write_size, &first_message_offset);
write_pos = 0;
size_t bfsz = out_buffer_size - sizeof (uint16_t);
int offset = -1;
encoder.get_data (&bf, &bfsz, &offset);
// If there are no data to write stop polling for output.
if (!write_size) {
if (!bfsz) {
reset_pollout (handle);
} else {
// Addning uint16_t for offset in a case when encoder returned > 0B.
write_size += sizeof (uint16_t);
return;
}
// Put offset information in the buffer.
write_size = bfsz + sizeof (uint16_t);
put_uint16 (out_buffer, offset == -1 ? 0xffff : (uint16_t) offset);
}
// If there are any data to write, write them into the socket.
// Note that all data has to written in one write_one_pkt_with_offset call.
if (write_pos < write_size) {
size_t nbytes = write_one_pkt_with_offset (out_buffer + write_pos,
write_size - write_pos, (uint16_t) first_message_offset);
// Send the data.
size_t nbytes = pgm_socket.send (out_buffer, write_size);
// We can write either all data or 0 which means rate limit reached.
zmq_assert (write_size - write_pos == nbytes || nbytes == 0);
write_pos += nbytes;
}
// We can write either all data or 0 which means rate limit reached.
if (nbytes == write_size)
write_size = 0;
else
zmq_assert (nbytes == 0);
}
size_t zmq::pgm_sender_t::write_one_pkt_with_offset (unsigned char *data_,
size_t size_, uint16_t offset_)
{
// Put offset information in the buffer.
put_uint16 (data_, offset_);
// Send data.
size_t nbytes = pgm_socket.send (data_, size_);
return nbytes;
}
#endif

View File

@ -42,6 +42,7 @@ namespace zmq
{
public:
pgm_sender_t (class io_thread_t *parent_, const options_t &options_);
~pgm_sender_t ();
@ -58,12 +59,6 @@ namespace zmq
private:
// Send one APDU with first message offset information.
// Note that first 2 bytes in data_ are used to store the offset_
// and thus user data has to start at data_ + sizeof (uint16_t).
size_t write_one_pkt_with_offset (unsigned char *data_, size_t size_,
uint16_t offset_);
// Message encoder.
zmq_encoder_t encoder;
@ -78,20 +73,15 @@ namespace zmq
handle_t uplink_handle;
handle_t rdata_notify_handle;
// Parent session.
i_inout *inout;
// Output buffer from pgm_socket.
unsigned char *out_buffer;
// Output buffer size.
size_t out_buffer_size;
// Number of bytes in the buffer to be written to the socket.
// If zero, there are no data to be sent.
size_t write_size;
size_t write_pos;
// Offset of the first mesage in data chunk taken from encoder.
int first_message_offset;
pgm_sender_t (const pgm_sender_t&);
void operator = (const pgm_sender_t&);

View File

@ -31,34 +31,32 @@
#define CONFIG_HAVE_POLL
#endif
#include <pgm/pgm.h>
#include <stdlib.h>
#include <string>
#include <iostream>
#include "options.hpp"
#include "pgm_socket.hpp"
#include "config.hpp"
#include "err.hpp"
#include "uuid.hpp"
#include "stdint.hpp"
zmq::pgm_socket_t::pgm_socket_t (bool receiver_, const options_t &options_) :
transport (NULL),
options (options_),
receiver (receiver_),
port_number (0),
udp_encapsulation (false),
pgm_msgv (NULL),
nbytes_rec (0),
nbytes_processed (0),
pgm_msgv_processed (0),
pgm_msgv_len (0)
{
}
int zmq::pgm_socket_t::init (bool udp_encapsulation_, const char *network_)
{
udp_encapsulation = udp_encapsulation_;
// Can not open transport before destroying old one.
zmq_assert (transport == NULL);
// Parse port number.
const char *port_delim = strchr (network_, ':');
@ -67,44 +65,21 @@ int zmq::pgm_socket_t::init (bool udp_encapsulation_, const char *network_)
return -1;
}
port_number = atoi (port_delim + 1);
uint16_t port_number = atoi (port_delim + 1);
char network [256];
if (port_delim - network_ >= (int) sizeof (network) - 1) {
errno = EINVAL;
return -1;
}
memset (network, '\0', sizeof (network));
memcpy (network, network_, port_delim - network_);
// Open PGM transport.
int rc = open_transport ();
if (rc != 0)
return -1;
// For receiver transport preallocate pgm_msgv array.
// in_batch_size configured in confing.hpp
if (receiver) {
pgm_msgv_len = get_max_apdu_at_once (in_batch_size);
// TODO: use malloc instead of new
pgm_msgv = new pgm_msgv_t [pgm_msgv_len];
}
return 0;
}
int zmq::pgm_socket_t::open_transport ()
{
// Can not open transport before destroying old one.
zmq_assert (transport == NULL);
// Zero counter used in msgrecv.
nbytes_rec = 0;
nbytes_processed = 0;
pgm_msgv_processed = 0;
// TODO: Converting bool to int? Not nice.
int pgm_ok = true;
GError *pgm_error = NULL;
// Init PGM transport.
@ -135,8 +110,7 @@ int zmq::pgm_socket_t::open_transport ()
}
rc = pgm_gsi_create_from_string (&gsi, gsi_base.c_str (), -1);
if (rc != pgm_ok) {
if (rc != TRUE) {
errno = EINVAL;
return -1;
}
@ -167,7 +141,7 @@ int zmq::pgm_socket_t::open_transport ()
res->ti_dport = port_number;
// If we are using UDP encapsulation update gsr or res.
if (udp_encapsulation) {
if (udp_encapsulation_) {
res->ti_udp_encap_ucast_port = port_number;
res->ti_udp_encap_mcast_port = port_number;
}
@ -192,14 +166,14 @@ int zmq::pgm_socket_t::open_transport ()
// Set maximum transport protocol data unit size (TPDU).
rc = pgm_transport_set_max_tpdu (transport, pgm_max_tpdu);
if (rc != pgm_ok) {
if (rc != TRUE) {
errno = EINVAL;
return -1;
}
// Set maximum number of network hops to cross.
rc = pgm_transport_set_hops (transport, 16);
if (rc != pgm_ok) {
if (rc != TRUE) {
errno = EINVAL;
return -1;
}
@ -212,46 +186,45 @@ int zmq::pgm_socket_t::open_transport ()
if (receiver) {
// Receiver transport.
// Receiver transport.
// Set transport->can_send_data = FALSE.
// Note that NAKs are still generated by the transport.
rc = pgm_transport_set_recv_only (transport, true, false);
zmq_assert (rc == pgm_ok);
zmq_assert (rc == TRUE);
if (options.rcvbuf) {
rc = pgm_transport_set_rcvbuf (transport, (int) options.rcvbuf);
if (rc != pgm_ok)
if (rc != TRUE)
return -1;
}
// Set NAK transmit back-off interval [us].
rc = pgm_transport_set_nak_bo_ivl (transport, 50 * 1000);
zmq_assert (rc == pgm_ok);
zmq_assert (rc == TRUE);
// Set timeout before repeating NAK [us].
rc = pgm_transport_set_nak_rpt_ivl (transport, 200 * 1000);
zmq_assert (rc == pgm_ok);
zmq_assert (rc == TRUE);
// Set timeout for receiving RDATA.
rc = pgm_transport_set_nak_rdata_ivl (transport, 200 * 1000);
zmq_assert (rc == pgm_ok);
zmq_assert (rc == TRUE);
// Set retries for NAK without NCF/DATA (NAK_DATA_RETRIES).
rc = pgm_transport_set_nak_data_retries (transport, 5);
zmq_assert (rc == pgm_ok);
zmq_assert (rc == TRUE);
// Set retries for NCF after NAK (NAK_NCF_RETRIES).
rc = pgm_transport_set_nak_ncf_retries (transport, 2);
zmq_assert (rc == pgm_ok);
zmq_assert (rc == TRUE);
// Set timeout for removing a dead peer [us].
rc = pgm_transport_set_peer_expiry (transport, 5 * 8192 * 1000);
zmq_assert (rc == pgm_ok);
zmq_assert (rc == TRUE);
// Set expiration time of SPM Requests [us].
rc = pgm_transport_set_spmr_expiry (transport, 25 * 1000);
zmq_assert (rc == pgm_ok);
zmq_assert (rc == TRUE);
// Set the size of the receive window.
// Data rate is in [B/s]. options.rate is in [kb/s].
@ -261,7 +234,7 @@ int zmq::pgm_socket_t::open_transport ()
}
rc = pgm_transport_set_rxw_max_rte (transport,
options.rate * 1000 / 8);
if (rc != pgm_ok) {
if (rc != TRUE) {
errno = EINVAL;
return -1;
}
@ -272,7 +245,7 @@ int zmq::pgm_socket_t::open_transport ()
return -1;
}
rc = pgm_transport_set_rxw_secs (transport, options.recovery_ivl);
if (rc != pgm_ok) {
if (rc != TRUE) {
errno = EINVAL;
return -1;
}
@ -281,13 +254,13 @@ int zmq::pgm_socket_t::open_transport ()
// Sender transport.
// Set transport->can_recv = FALSE, waiting_pipe will not be read.
// Waiting pipe won't be read.
rc = pgm_transport_set_send_only (transport, TRUE);
zmq_assert (rc == pgm_ok);
zmq_assert (rc == TRUE);
if (options.sndbuf) {
rc = pgm_transport_set_sndbuf (transport, (int) options.sndbuf);
if (rc != pgm_ok)
if (rc != TRUE)
return -1;
}
@ -299,7 +272,7 @@ int zmq::pgm_socket_t::open_transport ()
}
rc = pgm_transport_set_txw_max_rte (transport,
options.rate * 1000 / 8);
if (rc != pgm_ok) {
if (rc != TRUE) {
errno = EINVAL;
return -1;
}
@ -310,14 +283,14 @@ int zmq::pgm_socket_t::open_transport ()
return -1;
}
rc = pgm_transport_set_txw_secs (transport, options.recovery_ivl);
if (rc != pgm_ok) {
if (rc != TRUE) {
errno = EINVAL;
return -1;
}
// Set interval of background SPM packets [us].
rc = pgm_transport_set_ambient_spm (transport, 8192 * 1000);
zmq_assert (rc == pgm_ok);
zmq_assert (rc == TRUE);
// Set intervals of data flushing SPM packets [us].
guint spm_heartbeat[] = {4 * 1000, 4 * 1000, 8 * 1000, 16 * 1000,
@ -325,13 +298,13 @@ int zmq::pgm_socket_t::open_transport ()
1024 * 1000, 2048 * 1000, 4096 * 1000, 8192 * 1000};
rc = pgm_transport_set_heartbeat_spm (transport, spm_heartbeat,
G_N_ELEMENTS(spm_heartbeat));
zmq_assert (rc == pgm_ok);
zmq_assert (rc == TRUE);
}
// Enable multicast loopback.
if (options.use_multicast_loop) {
rc = pgm_transport_set_multicast_loop (transport, true);
zmq_assert (rc == pgm_ok);
zmq_assert (rc == TRUE);
}
// Bind a transport to the specified network devices.
@ -354,28 +327,28 @@ int zmq::pgm_socket_t::open_transport ()
zmq_assert (false);
}
// For receiver transport preallocate pgm_msgv array.
// TODO: ?
if (receiver) {
zmq_assert (in_batch_size > 0);
size_t max_tsdu_size = get_max_tsdu_size ();
pgm_msgv_len = (int) in_batch_size / max_tsdu_size;
if ((int) in_batch_size % max_tsdu_size)
pgm_msgv_len++;
zmq_assert (pgm_msgv_len);
pgm_msgv = (pgm_msgv_t*) malloc (sizeof (pgm_msgv_t) * pgm_msgv_len);
}
return 0;
}
zmq::pgm_socket_t::~pgm_socket_t ()
{
// Celanup.
if (pgm_msgv) {
delete [] pgm_msgv;
}
if (transport)
close_transport ();
}
void zmq::pgm_socket_t::close_transport ()
{
// transport has to be valid.
zmq_assert (transport);
pgm_transport_destroy (transport, TRUE);
transport = NULL;
if (pgm_msgv)
free (pgm_msgv);
if (transport)
pgm_transport_destroy (transport, TRUE);
}
// Get receiver fds. recv_fd is from transport->recv_sock
@ -401,7 +374,7 @@ void zmq::pgm_socket_t::get_receiver_fds (int *receive_fd_,
// Get fds and store them into user allocated memory.
// sender_fd is from pgm_transport->send_sock.
// receive_fd_ is from transport->recv_sock.
// rdata_notify_fd_ is from transport->rdata_notify (PGM2 only).
// rdata_notify_fd_ is from transport->rdata_notify.
void zmq::pgm_socket_t::get_sender_fds (int *send_fd_, int *receive_fd_,
int *rdata_notify_fd_)
{
@ -445,52 +418,9 @@ size_t zmq::pgm_socket_t::send (unsigned char *data_, size_t data_len_)
// Return max TSDU size without fragmentation from current PGM transport.
size_t zmq::pgm_socket_t::get_max_tsdu_size ()
{
return (size_t)pgm_transport_max_tsdu (transport, false);
return (size_t) pgm_transport_max_tsdu (transport, false);
}
// Returns how many APDUs are needed to fill reading buffer.
size_t zmq::pgm_socket_t::get_max_apdu_at_once (size_t readbuf_size_)
{
zmq_assert (readbuf_size_ > 0);
// Read max TSDU size without fragmentation.
size_t max_tsdu_size = get_max_tsdu_size ();
// Calculate number of APDUs needed to fill the reading buffer.
size_t apdu_count = (int)readbuf_size_ / max_tsdu_size;
if ((int) readbuf_size_ % max_tsdu_size)
apdu_count ++;
// Have to have at least one APDU.
zmq_assert (apdu_count);
return apdu_count;
}
// Allocate buffer for one packet from the transmit window, The memory buffer
// is owned by the transmit window and so must be returned to the window with
// content via pgm_transport_send() calls or unused with pgm_packetv_free1().
void *zmq::pgm_socket_t::get_buffer (size_t *size_)
{
// Store size.
*size_ = get_max_tsdu_size ();
// Allocate buffer.
// TODO: use malloc instead of new
unsigned char *apdu_buff = new unsigned char [*size_];
zmq_assert (apdu_buff);
return apdu_buff;
}
// Return an unused packet allocated from the transmit window
// via pgm_packetv_alloc().
void zmq::pgm_socket_t::free_buffer (void *data_)
{
delete [] (unsigned char*) data_;
}
// pgm_transport_recvmsgv is called to fill the pgm_msgv array up to
// pgm_msgv_len. In subsequent calls data from pgm_msgv structure are
// returned.
@ -525,9 +455,7 @@ ssize_t zmq::pgm_socket_t::receive (void **raw_data_, const pgm_tsi_t **tsi_)
const PGMIOStatus status = pgm_recvmsgv (transport, pgm_msgv,
pgm_msgv_len, MSG_DONTWAIT, &nbytes_rec, &pgm_error);
if (status == PGM_IO_STATUS_ERROR) {
zmq_assert (false);
}
zmq_assert (status != PGM_IO_STATUS_ERROR);
// In a case when no ODATA/RDATA fired POLLIN event (SPM...)
// pgm_recvmsg returns ?.
@ -591,9 +519,7 @@ void zmq::pgm_socket_t::process_upstream ()
PGMIOStatus status = pgm_recvmsgv (transport, &dummy_msg,
1, MSG_DONTWAIT, &dummy_bytes, &pgm_error);
if (status == PGM_IO_STATUS_ERROR) {
zmq_assert (false);
}
zmq_assert (status != PGM_IO_STATUS_ERROR);
// No data should be returned.
zmq_assert (dummy_bytes == 0 && (status == PGM_IO_STATUS_TIMER_PENDING ||

View File

@ -30,7 +30,6 @@
#include <pgm/pgm.h>
#include "stdint.hpp"
#include "options.hpp"
namespace zmq
@ -62,11 +61,8 @@ namespace zmq
// Send data as one APDU, transmit window owned memory.
size_t send (unsigned char *data_, size_t data_len_);
// Allocates one slice for packet in tx window.
void *get_buffer (size_t *size_);
// Fees memory allocated by get_buffer.
void free_buffer (void *data_);
// Returns max tsdu size without fragmentation.
size_t get_max_tsdu_size ();
// Receive data from pgm socket.
ssize_t receive (void **data_, const pgm_tsi_t **tsi_);
@ -76,21 +72,9 @@ namespace zmq
void process_upstream ();
private:
// Open PGM transport.
int open_transport ();
// Close transport.
void close_transport ();
// OpenPGM transport
pgm_transport_t* transport;
// Returns max tsdu size without fragmentation.
size_t get_max_tsdu_size ();
// Returns maximum count of apdus which fills readbuf_size_
size_t get_max_apdu_at_once (size_t readbuf_size_);
// Associated socket options.
options_t options;
@ -98,19 +82,13 @@ namespace zmq
// true when pgm_socket should create receiving side.
bool receiver;
// TIBCO Rendezvous format network info.
char network [256];
// PGM transport port number.
uint16_t port_number;
// If we are using UDP encapsulation.
bool udp_encapsulation;
// Array of pgm_msgv_t structures to store received data
// Array of pgm_msgv_t structures to store received data
// from the socket (pgm_transport_recvmsgv).
pgm_msgv_t *pgm_msgv;
// Size of pgm_msgv array.
size_t pgm_msgv_len;
// How many bytes were read from pgm socket.
size_t nbytes_rec;
@ -119,9 +97,6 @@ namespace zmq
// How many messages from pgm_msgv were already sent up.
size_t pgm_msgv_processed;
// Size of pgm_msgv array.
size_t pgm_msgv_len;
};
}
#endif