0
0
mirror of https://github.com/zeromq/libzmq.git synced 2024-12-28 07:58:14 +08:00
libzmq/tests/test_proxy_steerable.cpp

516 lines
19 KiB
C++
Raw Normal View History

/* SPDX-License-Identifier: MPL-2.0 */
#include "testutil.hpp"
#include "testutil_unity.hpp"
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#define CONTENT_SIZE 13
#define CONTENT_SIZE_MAX 32
#define ROUTING_ID_SIZE 10
#define ROUTING_ID_SIZE_MAX 32
#define QT_WORKERS 3
#define QT_CLIENTS 3
#define is_verbose 0
#define TEST_SLEEP_MS 500
const char *proxy_control_address = "inproc://proxy_control";
struct thread_data
{
int id;
};
void *g_clients_pkts_out = NULL;
void *g_workers_pkts_out = NULL;
void *control_context = NULL; // worker control, not proxy control
int g_proxy_control_socktype =
ZMQ_PAIR; //or ZMQ_PAIR, ZMQ_SUB (without statistics)
void setUp ()
{
setup_test_context ();
}
// Asynchronous client-to-server (DEALER to ROUTER) - pure libzmq
//
// While this example runs in a single process, that is to make
// it easier to start and stop the example. Each task may have its own
// context and conceptually acts as a separate process. To have this
// behaviour, it is necessary to replace the inproc transport of the
// control socket by a tcp transport.
// This is our client task
// It connects to the server, and then sends a request once per second
// It collects responses as they arrive, and it prints them out. We will
// run several client tasks in parallel, each with a different random ID.
static void client_task (void *db_)
{
const thread_data *const databag = static_cast<const thread_data *> (db_);
// Endpoint socket gets random port to avoid test failing when port in use
void *endpoint = zmq_socket (get_test_context (), ZMQ_PAIR);
TEST_ASSERT_NOT_NULL (endpoint);
int linger = 0;
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (endpoint, ZMQ_LINGER, &linger, sizeof (linger)));
char endpoint_source[256];
snprintf (endpoint_source, 256 * sizeof (char), "inproc://endpoint%d",
databag->id);
TEST_ASSERT_SUCCESS_ERRNO (zmq_connect (endpoint, endpoint_source));
char *my_endpoint = s_recv (endpoint);
TEST_ASSERT_NOT_NULL (my_endpoint);
void *client = zmq_socket (get_test_context (), ZMQ_DEALER);
TEST_ASSERT_NOT_NULL (client);
// Control socket receives terminate command from main over inproc
void *control = zmq_socket (control_context, ZMQ_SUB);
TEST_ASSERT_NOT_NULL (control);
TEST_ASSERT_SUCCESS_ERRNO (zmq_setsockopt (control, ZMQ_SUBSCRIBE, "", 0));
linger = 0;
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (control, ZMQ_LINGER, &linger, sizeof (linger)));
TEST_ASSERT_SUCCESS_ERRNO (zmq_connect (control, "inproc://control"));
char content[CONTENT_SIZE_MAX] = {};
// Set random routing id to make tracing easier
char routing_id[ROUTING_ID_SIZE] = {};
snprintf (routing_id, ROUTING_ID_SIZE * sizeof (char), "%04X-%04X",
rand () % 0xFFFF, rand () % 0xFFFF);
TEST_ASSERT_SUCCESS_ERRNO (zmq_setsockopt (
client, ZMQ_ROUTING_ID, routing_id,
ROUTING_ID_SIZE)); // includes '\0' as an helper for printf
linger = 0;
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (client, ZMQ_LINGER, &linger, sizeof (linger)));
TEST_ASSERT_SUCCESS_ERRNO (zmq_connect (client, my_endpoint));
zmq_pollitem_t items[] = {{client, 0, ZMQ_POLLIN, 0},
{control, 0, ZMQ_POLLIN, 0}};
int request_nbr = 0;
bool run = true;
bool enable_send = false;
while (run) {
// Tick once per 200 ms, pulling in arriving messages
int centitick;
for (centitick = 0; centitick < 20; centitick++) {
zmq_poll (items, 2, 10);
if (items[0].revents & ZMQ_POLLIN) {
int rcvmore;
size_t sz = sizeof (rcvmore);
int rc = TEST_ASSERT_SUCCESS_ERRNO (
zmq_recv (client, content, CONTENT_SIZE_MAX, 0));
TEST_ASSERT_EQUAL_INT (CONTENT_SIZE, rc);
if (is_verbose)
printf (
"client receive - routing_id = %s content = %s\n",
routing_id, content);
// Check that message is still the same
TEST_ASSERT_EQUAL_STRING_LEN ("request #", content, 9);
TEST_ASSERT_SUCCESS_ERRNO (
zmq_getsockopt (client, ZMQ_RCVMORE, &rcvmore, &sz));
TEST_ASSERT_FALSE (rcvmore);
}
if (items[1].revents & ZMQ_POLLIN) {
int rc = zmq_recv (control, content, CONTENT_SIZE_MAX, 0);
if (rc > 0) {
content[rc] = 0; // NULL-terminate the command string
if (is_verbose)
printf (
"client receive - routing_id = %s command = %s\n",
routing_id, content);
if (memcmp (content, "TERMINATE", 9) == 0) {
run = false;
} else if (memcmp (content, "STOP", 4) == 0) {
enable_send = false;
} else if (memcmp (content, "START", 5) == 0) {
enable_send = true;
}
break;
}
}
}
if (enable_send) {
snprintf (content, CONTENT_SIZE_MAX * sizeof (char),
"request #%03d", ++request_nbr); // CONTENT_SIZE
if (is_verbose)
printf ("client send - routing_id = %s request #%03d\n",
routing_id, request_nbr);
zmq_atomic_counter_inc (g_clients_pkts_out);
TEST_ASSERT_EQUAL_INT (CONTENT_SIZE,
zmq_send (client, content, CONTENT_SIZE, 0));
}
}
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (client));
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (control));
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (endpoint));
free (my_endpoint);
}
// This is our server task.
// It uses the multithreaded server model to deal requests out to a pool
// of workers and route replies back to clients. One worker can handle
// one request at a time but one client can talk to multiple workers at
// once.
static void server_worker (void * /*unused_*/);
void server_task (void * /*unused_*/)
{
// Frontend socket talks to clients over TCP
char my_endpoint[MAX_SOCKET_STRING];
void *frontend = zmq_socket (get_test_context (), ZMQ_ROUTER);
TEST_ASSERT_NOT_NULL (frontend);
int linger = 0;
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (frontend, ZMQ_LINGER, &linger, sizeof (linger)));
bind_loopback_ipv4 (frontend, my_endpoint, sizeof my_endpoint);
// Backend socket talks to workers over inproc
void *backend = zmq_socket (get_test_context (), ZMQ_DEALER);
TEST_ASSERT_NOT_NULL (backend);
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (backend, ZMQ_LINGER, &linger, sizeof (linger)));
TEST_ASSERT_SUCCESS_ERRNO (zmq_bind (backend, "inproc://backend"));
// Launch pool of worker threads, precise number is not critical
int thread_nbr;
void *threads[QT_WORKERS];
for (thread_nbr = 0; thread_nbr < QT_WORKERS; thread_nbr++)
threads[thread_nbr] = zmq_threadstart (&server_worker, NULL);
// Endpoint socket sends random port to avoid test failing when port in use
void *endpoint_receivers[QT_CLIENTS];
char endpoint_source[256];
for (int i = 0; i < QT_CLIENTS; ++i) {
endpoint_receivers[i] = zmq_socket (get_test_context (), ZMQ_PAIR);
TEST_ASSERT_NOT_NULL (endpoint_receivers[i]);
TEST_ASSERT_SUCCESS_ERRNO (zmq_setsockopt (
endpoint_receivers[i], ZMQ_LINGER, &linger, sizeof (linger)));
snprintf (endpoint_source, 256 * sizeof (char), "inproc://endpoint%d",
i);
TEST_ASSERT_SUCCESS_ERRNO (
zmq_bind (endpoint_receivers[i], endpoint_source));
}
for (int i = 0; i < QT_CLIENTS; ++i) {
send_string_expect_success (endpoint_receivers[i], my_endpoint, 0);
}
// Proxy control socket
void *proxy_control =
zmq_socket (get_test_context (), g_proxy_control_socktype);
TEST_ASSERT_NOT_NULL (proxy_control);
TEST_ASSERT_SUCCESS_ERRNO (zmq_bind (proxy_control, proxy_control_address));
if (g_proxy_control_socktype == ZMQ_SUB) {
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (proxy_control, ZMQ_SUBSCRIBE, "", 0));
}
// Connect backend to frontend via a steerable proxy
int rc = zmq_proxy_steerable (frontend, backend, NULL, proxy_control);
TEST_ASSERT_EQUAL_INT (0, rc);
for (thread_nbr = 0; thread_nbr < QT_WORKERS; thread_nbr++) {
zmq_threadclose (threads[thread_nbr]);
}
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (frontend));
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (backend));
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (proxy_control));
for (int i = 0; i < QT_CLIENTS; ++i) {
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (endpoint_receivers[i]));
}
}
// Each worker task works on one request at a time and sends a random number
// of replies back, with random delays between replies:
// The comments in the first column, if suppressed, makes it a poller version
static void server_worker (void * /*unused_*/)
{
void *worker = zmq_socket (get_test_context (), ZMQ_DEALER);
TEST_ASSERT_NOT_NULL (worker);
int linger = 0;
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (worker, ZMQ_LINGER, &linger, sizeof (linger)));
TEST_ASSERT_SUCCESS_ERRNO (zmq_connect (worker, "inproc://backend"));
// Control socket receives terminate command from main over inproc
void *control = zmq_socket (control_context, ZMQ_SUB);
TEST_ASSERT_NOT_NULL (control);
TEST_ASSERT_SUCCESS_ERRNO (zmq_setsockopt (control, ZMQ_SUBSCRIBE, "", 0));
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (control, ZMQ_LINGER, &linger, sizeof (linger)));
TEST_ASSERT_SUCCESS_ERRNO (zmq_connect (control, "inproc://control"));
char content[CONTENT_SIZE_MAX] =
{}; // bigger than what we need to check that
char routing_id[ROUTING_ID_SIZE_MAX] =
{}; // the size received is the size sent
zmq_pollitem_t items[] = {{control, 0, ZMQ_POLLIN, 0},
{worker, 0, ZMQ_POLLIN, 0}};
bool keep_sending = true;
while (true) {
zmq_poll (items, 2, 100);
if (items[0].revents & ZMQ_POLLIN) {
//Commands over the worker control socket
int rc = zmq_recv (control, content, CONTENT_SIZE_MAX, 0);
if (rc > 0) {
content[rc] = 0; // NULL-terminate the command string
if (is_verbose)
printf ("server_worker receives command = %s\n", content);
if (memcmp (content, "TERMINATE", 9) == 0)
break;
if (memcmp (content, "STOP", 4) == 0)
keep_sending = false;
}
}
if (items[1].revents & ZMQ_POLLIN) {
// The DEALER socket gives us the reply envelope and message
int rc = zmq_recv (worker, routing_id, ROUTING_ID_SIZE_MAX, 0);
if (rc != ROUTING_ID_SIZE) {
continue;
}
routing_id[rc] = 0; //null terminate
rc = zmq_recv (worker, content, CONTENT_SIZE_MAX, 0);
TEST_ASSERT_EQUAL_INT (CONTENT_SIZE, rc);
content[rc] = 0; //null terminate
if (is_verbose)
printf ("server receive - routing_id = %s content = %s\n",
routing_id, content);
// Send 0..4 replies back
if (keep_sending) {
int reply, replies = rand () % 5;
for (reply = 0; reply < replies; reply++) {
// Sleep for some fraction of a second
msleep (rand () % 10 + 1);
// Send message from server to client
if (is_verbose)
printf ("server send - routing_id = %s reply\n",
routing_id);
zmq_atomic_counter_inc (g_workers_pkts_out);
rc = zmq_send (worker, routing_id, ROUTING_ID_SIZE,
ZMQ_SNDMORE);
TEST_ASSERT_EQUAL_INT (ROUTING_ID_SIZE, rc);
rc = zmq_send (worker, content, CONTENT_SIZE, 0);
TEST_ASSERT_EQUAL_INT (CONTENT_SIZE, rc);
}
}
}
}
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (worker));
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (control));
}
// If STATISTICS is received, the proxy will reply on the control socket
// sending a multipart message with 8 frames, each with an unsigned integer
// 64-bit wide that provide in the following order:
//
// - 0/frn: number of messages received by the frontend socket
//
// - 1/frb: number of bytes received by the frontend socket
//
// - 2/fsn: number of messages sent out the frontend socket
//
// - 3/fsb: number of bytes sent out the frontend socket
//
// - 4/brn: number of messages received by the backend socket
//
// - 5/brb: number of bytes received by the backend socket
//
// - 6/bsn: number of messages sent out the backend socket
//
// - 7/bsb: number of bytes sent out the backend socket
uint64_t read_stat_value (void *proxy_control)
{
zmq_msg_t stats_msg;
TEST_ASSERT_SUCCESS_ERRNO (zmq_msg_init (&stats_msg));
TEST_ASSERT_SUCCESS_ERRNO (zmq_msg_recv (&stats_msg, proxy_control, 0));
TEST_ASSERT_EQUAL_INT (sizeof (uint64_t), zmq_msg_size (&stats_msg));
uint64_t val = *(uint64_t *) zmq_msg_data (&stats_msg);
TEST_ASSERT_SUCCESS_ERRNO (zmq_msg_close (&stats_msg));
return val;
}
//return total bytes proxied, so we can test PAUSE/RESUME
uint64_t statistics (void *proxy_control, const char *runctx)
{
if (is_verbose) {
printf ("steer: sending STATISTICS - %s\n", runctx);
}
TEST_ASSERT_SUCCESS_ERRNO (zmq_send (proxy_control, "STATISTICS", 10, 0));
uint64_t total_bytes_proxied = 0;
for (int count = 0; count < 8; ++count) {
uint64_t val = read_stat_value (proxy_control);
if (is_verbose) {
if (count == 0) {
printf ("stats: client pkts out: %d worker pkts out: %d { ",
zmq_atomic_counter_value (g_clients_pkts_out),
zmq_atomic_counter_value (g_workers_pkts_out));
}
printf ("%" PRIu64 " ", val);
if (count == 7) {
printf ("}\n");
}
}
switch (count) {
case 3: //bytes sent on frontend
case 7: //bytes sent on backend
total_bytes_proxied += val;
}
}
int rcvmore;
size_t sz = sizeof (rcvmore);
zmq_getsockopt (proxy_control, ZMQ_RCVMORE, &rcvmore, &sz);
TEST_ASSERT_EQUAL_INT (rcvmore, 0);
return total_bytes_proxied;
}
// The main thread simply starts several clients and a server, and then
// waits for the server to finish.
void steer (void *proxy_control, const char *command, const char *runctx)
{
if (is_verbose) {
printf ("steer: sending %s - %s\n", command, runctx);
}
TEST_ASSERT_SUCCESS_ERRNO (
zmq_send (proxy_control, command, strlen (command), 0));
if (g_proxy_control_socktype == ZMQ_REP) {
//expect an empty reply from REP for commands that need no response
zmq_msg_t stats_msg;
TEST_ASSERT_SUCCESS_ERRNO (zmq_msg_init (&stats_msg));
TEST_ASSERT_SUCCESS_ERRNO (zmq_msg_recv (&stats_msg, proxy_control, 0));
TEST_ASSERT_EQUAL_INT (zmq_msg_size (&stats_msg), 0);
TEST_ASSERT (!zmq_msg_get (&stats_msg, ZMQ_MORE));
TEST_ASSERT_SUCCESS_ERRNO (zmq_msg_close (&stats_msg));
}
}
void test_proxy_steerable ()
{
int linger = 0;
void *threads[QT_CLIENTS + 1];
g_clients_pkts_out = zmq_atomic_counter_new ();
g_workers_pkts_out = zmq_atomic_counter_new ();
control_context = zmq_ctx_new ();
TEST_ASSERT_NOT_NULL (control_context);
// Worker control socket receives terminate command from main over inproc
void *control = zmq_socket (control_context, ZMQ_PUB);
linger = 0;
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (control, ZMQ_LINGER, &linger, sizeof (linger)));
TEST_ASSERT_SUCCESS_ERRNO (zmq_bind (control, "inproc://control"));
struct thread_data databags[QT_CLIENTS + 1];
for (int i = 0; i < QT_CLIENTS; i++) {
databags[i].id = i;
threads[i] = zmq_threadstart (&client_task, &databags[i]);
}
threads[QT_CLIENTS] = zmq_threadstart (&server_task, NULL);
msleep (TEST_SLEEP_MS); // setup time
// Proxy control socket
int control_socktype = ZMQ_PAIR;
switch (g_proxy_control_socktype) {
case ZMQ_REP:
control_socktype = ZMQ_REQ;
break;
case ZMQ_SUB:
control_socktype = ZMQ_PUB;
break;
default:
break;
}
void *proxy_control = zmq_socket (get_test_context (), control_socktype);
TEST_ASSERT_NOT_NULL (proxy_control);
linger = 0;
TEST_ASSERT_SUCCESS_ERRNO (
zmq_setsockopt (proxy_control, ZMQ_LINGER, &linger, sizeof (linger)));
TEST_ASSERT_SUCCESS_ERRNO (
zmq_connect (proxy_control, proxy_control_address));
TEST_ASSERT (
statistics (proxy_control, "should be all 0s before clients start") == 0);
send_string_expect_success (control, "START", 0);
msleep (TEST_SLEEP_MS); // Run for some time
TEST_ASSERT (statistics (proxy_control, "started clients") > 0);
steer (proxy_control, "PAUSE", "pausing proxying after 500ms");
uint64_t bytes = statistics (proxy_control, "post-pause");
msleep (TEST_SLEEP_MS); // Paused for some time
//check no more bytes have been proxied while paused
TEST_ASSERT (statistics (proxy_control, "post-pause") == bytes);
steer (proxy_control, "RESUME", "resuming proxying after another 500ms");
msleep (TEST_SLEEP_MS); // Resumed for a while
TEST_ASSERT (statistics (proxy_control, "ran for a while") > bytes);
if (is_verbose)
printf ("stopping all clients and server workers\n");
send_string_expect_success (control, "STOP", 0);
statistics (proxy_control, "stopped clients and workers");
msleep (TEST_SLEEP_MS); // Wait for all clients and workers to STOP
if (is_verbose)
printf ("shutting down all clients and server workers\n");
send_string_expect_success (control, "TERMINATE", 0);
msleep (TEST_SLEEP_MS);
statistics (proxy_control, "terminate clients and server workers");
msleep (TEST_SLEEP_MS); // Wait for all clients and workers to terminate
steer (proxy_control, "TERMINATE", "terminate proxy");
for (int i = 0; i < QT_CLIENTS + 1; i++)
zmq_threadclose (threads[i]);
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (control));
TEST_ASSERT_SUCCESS_ERRNO (zmq_ctx_destroy (control_context));
TEST_ASSERT_SUCCESS_ERRNO (zmq_close (proxy_control));
teardown_test_context ();
}
int main (void)
{
setup_test_environment (360);
UNITY_BEGIN ();
RUN_TEST (test_proxy_steerable);
return UNITY_END ();
}