0
0
mirror of https://github.com/zeromq/libzmq.git synced 2025-01-22 07:29:31 +08:00
libzmq/src/stream_engine.cpp

603 lines
18 KiB
C++
Raw Normal View History

/*
Copyright (c) 2009-2011 250bpm s.r.o.
Copyright (c) 2007-2009 iMatix Corporation
Copyright (c) 2007-2011 Other contributors as noted in the AUTHORS file
This file is part of 0MQ.
0MQ is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
0MQ is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "platform.hpp"
#if defined ZMQ_HAVE_WINDOWS
#include "windows.hpp"
#else
#include <unistd.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/tcp.h>
#include <netinet/in.h>
#include <netdb.h>
#include <fcntl.h>
#endif
#include <string.h>
#include <new>
#include "stream_engine.hpp"
#include "io_thread.hpp"
#include "session_base.hpp"
#include "encoder.hpp"
#include "decoder.hpp"
#include "v1_encoder.hpp"
#include "v1_decoder.hpp"
#include "config.hpp"
#include "err.hpp"
#include "ip.hpp"
#include "likely.hpp"
#include "wire.hpp"
zmq::stream_engine_t::stream_engine_t (fd_t fd_, const options_t &options_, const std::string &endpoint_) :
s (fd_),
inpos (NULL),
insize (0),
decoder (NULL),
input_error (false),
outpos (NULL),
outsize (0),
encoder (NULL),
handshaking (true),
greeting_bytes_read (0),
greeting_size (0),
session (NULL),
options (options_),
2012-08-04 12:39:46 +02:00
endpoint (endpoint_),
plugged (false)
{
// Put the socket into non-blocking mode.
unblock_socket (s);
// Set the socket buffer limits for the underlying socket.
if (options.sndbuf) {
int rc = setsockopt (s, SOL_SOCKET, SO_SNDBUF,
(char*) &options.sndbuf, sizeof (int));
#ifdef ZMQ_HAVE_WINDOWS
wsa_assert (rc != SOCKET_ERROR);
#else
errno_assert (rc == 0);
#endif
}
if (options.rcvbuf) {
int rc = setsockopt (s, SOL_SOCKET, SO_RCVBUF,
(char*) &options.rcvbuf, sizeof (int));
#ifdef ZMQ_HAVE_WINDOWS
wsa_assert (rc != SOCKET_ERROR);
#else
errno_assert (rc == 0);
#endif
}
2012-06-06 15:08:00 +02:00
#ifdef SO_NOSIGPIPE
// Make sure that SIGPIPE signal is not generated when writing to a
// connection that was already closed by the peer.
int set = 1;
int rc = setsockopt (s, SOL_SOCKET, SO_NOSIGPIPE, &set, sizeof (int));
errno_assert (rc == 0);
#endif
}
zmq::stream_engine_t::~stream_engine_t ()
{
zmq_assert (!plugged);
if (s != retired_fd) {
#ifdef ZMQ_HAVE_WINDOWS
int rc = closesocket (s);
wsa_assert (rc != SOCKET_ERROR);
#else
int rc = close (s);
errno_assert (rc == 0);
#endif
s = retired_fd;
}
if (encoder != NULL)
delete encoder;
if (decoder != NULL)
delete decoder;
}
void zmq::stream_engine_t::plug (io_thread_t *io_thread_,
session_base_t *session_)
{
zmq_assert (!plugged);
plugged = true;
// Connect to session object.
zmq_assert (!session);
zmq_assert (session_);
session = session_;
// Connect to I/O threads poller object.
io_object_t::plug (io_thread_);
handle = add_fd (s);
// We need to detect whether our peer is using the versioned
// protocol. The detection is done in two steps. First, we read
// first two bytes and check if the long format of length is in use.
// If so, we receive and check the 'flags' field. If the rightmost bit
// is 1, the peer is using versioned protocol.
greeting_size = 2;
// Send the 'length' and 'flags' fields of the identity message.
// The 'length' field is encoded in the long format.
outpos = greeting_output_buffer;
outpos [outsize++] = 0xff;
put_uint64 (&outpos [outsize], options.identity_size + 1);
outsize += 8;
outpos [outsize++] = 0x7f;
set_pollin (handle);
set_pollout (handle);
// Flush all the data that may have been already received downstream.
in_event ();
}
void zmq::stream_engine_t::unplug ()
{
zmq_assert (plugged);
plugged = false;
// Cancel all fd subscriptions.
rm_fd (handle);
// Disconnect from I/O threads poller object.
io_object_t::unplug ();
// Disconnect from session object.
if (encoder)
encoder->set_msg_source (NULL);
if (decoder)
decoder->set_msg_sink (NULL);
session = NULL;
}
void zmq::stream_engine_t::terminate ()
{
unplug ();
delete this;
}
void zmq::stream_engine_t::in_event ()
{
// If still handshaking, receive and prcess the greeting message.
if (unlikely (handshaking))
if (!handshake ())
return;
zmq_assert (decoder);
bool disconnection = false;
// If there's no data to process in the buffer...
if (!insize) {
// Retrieve the buffer and read as much data as possible.
// Note that buffer can be arbitrarily large. However, we assume
// the underlying TCP layer has fixed buffer size and thus the
// number of bytes read will be always limited.
decoder->get_buffer (&inpos, &insize);
insize = read (inpos, insize);
// Check whether the peer has closed the connection.
if (insize == (size_t) -1) {
insize = 0;
disconnection = true;
}
}
// Push the data to the decoder.
size_t processed = decoder->process_buffer (inpos, insize);
if (unlikely (processed == (size_t) -1)) {
disconnection = true;
}
else {
// Stop polling for input if we got stuck.
2012-05-27 14:51:12 +02:00
if (processed < insize)
reset_pollin (handle);
// Adjust the buffer.
inpos += processed;
insize -= processed;
}
// Flush all messages the decoder may have produced.
2012-05-27 14:51:12 +02:00
session->flush ();
// Input error has occurred. If the last decoded
// message has already been accepted, we terminate
// the engine immediately. Otherwise, we stop
// waiting for input events and postpone the termination
// until after the session has accepted the message.
2012-05-27 14:51:12 +02:00
if (disconnection) {
input_error = true;
if (decoder->stalled ())
reset_pollin (handle);
else
error ();
}
}
void zmq::stream_engine_t::out_event ()
{
// If write buffer is empty, try to read new data from the encoder.
if (!outsize) {
outpos = NULL;
zmq_assert (encoder);
encoder->get_data (&outpos, &outsize);
// If there is no data to send, stop polling for output.
if (outsize == 0) {
reset_pollout (handle);
return;
}
}
// If there are any data to write in write buffer, write as much as
// possible to the socket. Note that amount of data to write can be
// arbitratily large. However, we assume that underlying TCP layer has
// limited transmission buffer and thus the actual number of bytes
// written should be reasonably modest.
int nbytes = write (outpos, outsize);
// IO error has occurred. We stop waiting for output events.
// The engine is not terminated until we detect input error;
// this is necessary to prevent losing incomming messages.
if (nbytes == -1) {
reset_pollout (handle);
return;
}
outpos += nbytes;
outsize -= nbytes;
// If we are still handshaking and there are no data
// to send, stop polling for output.
if (unlikely (handshaking))
if (outsize == 0)
reset_pollout (handle);
}
void zmq::stream_engine_t::activate_out ()
{
set_pollout (handle);
// Speculative write: The assumption is that at the moment new message
// was sent by the user the socket is probably available for writing.
// Thus we try to write the data to socket avoiding polling for POLLOUT.
// Consequently, the latency should be better in request/reply scenarios.
out_event ();
}
void zmq::stream_engine_t::activate_in ()
{
if (input_error) {
// There was an input error but the engine could not
// be terminated (due to the stalled decoder).
// Flush the pending message and terminate the engine now.
zmq_assert (decoder);
decoder->process_buffer (inpos, 0);
zmq_assert (!decoder->stalled ());
session->flush ();
error ();
return;
}
set_pollin (handle);
// Speculative read.
in_event ();
}
int zmq::stream_engine_t::receive_greeting ()
{
zmq_assert (greeting_bytes_read < greeting_size);
while (greeting_bytes_read < greeting_size) {
const int n = read (greeting + greeting_bytes_read,
greeting_size - greeting_bytes_read);
if (n == -1)
return -1;
if (n == 0)
return 0;
greeting_bytes_read += n;
if (greeting_bytes_read < greeting_size)
continue;
if (greeting_size == 2) {
// We have received the first two bytes from the peer.
// If the first byte is not 0xff, we know that the
// peer is using unversioned protocol.
if (greeting [0] != 0xff)
break;
// This may still be a long identity message (either
// 254 or 255 bytes long). We need to receive 8 more
// bytes so we can inspect the potential 'flags' field.
greeting_size = 10;
}
else
if (greeting_size == 10) {
// Inspect the rightmost bit of the 10th byte (which coincides
// with the 'flags' field if a regular message was sent).
// Zero indicates this is a header of identity message
// (i.e. the peer is using the unversioned protocol).
if (!(greeting [9] & 0x01))
break;
// This is truly a handshake and we can now send the rest of
// the greeting message out.
if (outsize == 0)
set_pollout (handle);
zmq_assert (outpos != NULL);
outpos [outsize++] = 1; // Protocol version
outpos [outsize++] = 1; // Remaining length (1 byte for v1)
outpos [outsize++] = options.type; // Socket type
// Read the 'version' and 'remaining_length' fields.
greeting_size = 12;
}
else
if (greeting_size == 12) {
// We have received the greeting message up to
// the 'remaining_length' field. Receive the remaining
// bytes of the greeting.
greeting_size += greeting [11];
}
}
return 0;
}
bool zmq::stream_engine_t::handshake ()
{
zmq_assert (handshaking);
zmq_assert (greeting_bytes_read < greeting_size);
int rc = receive_greeting ();
if (rc == -1) {
error ();
return false;
}
if (greeting_bytes_read < greeting_size)
return false;
// We have received either a header of identity message
// or the whole greeting.
zmq_assert (greeting [0] != 0xff || greeting_bytes_read >= 10);
// POsition of the version field in the greeting.
const size_t version_pos = 10;
// Is the peer using the unversioned protocol?
// If so, we send and receive rests of identity
// messages.
if (greeting [0] != 0xff || !(greeting [9] & 0x01)) {
encoder = new (std::nothrow) encoder_t (out_batch_size);
alloc_assert (encoder);
encoder->set_msg_source (session);
decoder = new (std::nothrow) decoder_t (in_batch_size, options.maxmsgsize);
alloc_assert (decoder);
decoder->set_msg_sink (session);
// We have already sent the message header.
// Since there is no way to tell the encoder to
// skip the message header, we simply throw that
// header data away.
const size_t header_size = options.identity_size + 1 >= 255 ? 10 : 2;
unsigned char tmp [10], *bufferp = tmp;
size_t buffer_size = header_size;
encoder->get_data (&bufferp, &buffer_size);
zmq_assert (buffer_size == header_size);
// Make sure the decoder sees the data we have already received.
inpos = greeting;
insize = greeting_bytes_read;
// To allow for interoperability with peers that do not forward
// their subscriptions, we inject a phony subsription
// message into the incomming message stream. To put this
// message right after the identity message, we temporarily
// divert the message stream from session to ourselves.
if (options.type == ZMQ_PUB || options.type == ZMQ_XPUB)
decoder->set_msg_sink (this);
}
else
if (greeting [version_pos] == 0) {
// ZMTP/1.0 framing.
encoder = new (std::nothrow) encoder_t (out_batch_size);
alloc_assert (encoder);
encoder->set_msg_source (session);
decoder = new (std::nothrow) decoder_t (in_batch_size, options.maxmsgsize);
alloc_assert (decoder);
decoder->set_msg_sink (session);
}
else {
// v1 framing protocol.
encoder = new (std::nothrow) v1_encoder_t (out_batch_size, session);
alloc_assert (encoder);
decoder = new (std::nothrow)
v1_decoder_t (in_batch_size, options.maxmsgsize, session);
alloc_assert (decoder);
}
// Start polling for output if necessary.
if (outsize == 0)
set_pollout (handle);
// Handshaking was successful.
// Switch into the normal message flow.
handshaking = false;
return true;
}
int zmq::stream_engine_t::push_msg (msg_t *msg_)
{
zmq_assert (options.type == ZMQ_PUB || options.type == ZMQ_XPUB);
// The first message is identity.
// Let the session process it.
int rc = session->push_msg (msg_);
errno_assert (rc == 0);
// Inject the subscription message so that the ZMQ 2.x peer
// receives our messages.
rc = msg_->init_size (1);
errno_assert (rc == 0);
*(unsigned char*) msg_->data () = 1;
rc = session->push_msg (msg_);
session->flush ();
// Once we have injected the subscription message, we can
// Divert the message flow back to the session.
zmq_assert (decoder);
decoder->set_msg_sink (session);
return rc;
}
void zmq::stream_engine_t::error ()
{
zmq_assert (session);
session->monitor_event (ZMQ_EVENT_DISCONNECTED, endpoint.c_str(), s);
session->detach ();
unplug ();
delete this;
}
int zmq::stream_engine_t::write (const void *data_, size_t size_)
{
#ifdef ZMQ_HAVE_WINDOWS
int nbytes = send (s, (char*) data_, (int) size_, 0);
// If not a single byte can be written to the socket in non-blocking mode
// we'll get an error (this may happen during the speculative write).
if (nbytes == SOCKET_ERROR && WSAGetLastError () == WSAEWOULDBLOCK)
return 0;
// Signalise peer failure.
if (nbytes == SOCKET_ERROR && (
WSAGetLastError () == WSAENETDOWN ||
WSAGetLastError () == WSAENETRESET ||
WSAGetLastError () == WSAEHOSTUNREACH ||
WSAGetLastError () == WSAECONNABORTED ||
WSAGetLastError () == WSAETIMEDOUT ||
WSAGetLastError () == WSAECONNRESET))
return -1;
wsa_assert (nbytes != SOCKET_ERROR);
2012-05-27 22:51:56 +02:00
return nbytes;
#else
ssize_t nbytes = send (s, data_, size_, 0);
// Several errors are OK. When speculative write is being done we may not
// be able to write a single byte from the socket. Also, SIGSTOP issued
// by a debugging tool can result in EINTR error.
if (nbytes == -1 && (errno == EAGAIN || errno == EWOULDBLOCK ||
errno == EINTR))
return 0;
// Signalise peer failure.
if (nbytes == -1 && (errno == ECONNRESET || errno == EPIPE ||
errno == ETIMEDOUT))
return -1;
errno_assert (nbytes != -1);
return (size_t) nbytes;
#endif
}
int zmq::stream_engine_t::read (void *data_, size_t size_)
{
#ifdef ZMQ_HAVE_WINDOWS
int nbytes = recv (s, (char*) data_, (int) size_, 0);
// If not a single byte can be read from the socket in non-blocking mode
// we'll get an error (this may happen during the speculative read).
if (nbytes == SOCKET_ERROR && WSAGetLastError () == WSAEWOULDBLOCK)
return 0;
// Connection failure.
if (nbytes == SOCKET_ERROR && (
WSAGetLastError () == WSAENETDOWN ||
WSAGetLastError () == WSAENETRESET ||
WSAGetLastError () == WSAECONNABORTED ||
WSAGetLastError () == WSAETIMEDOUT ||
WSAGetLastError () == WSAECONNRESET ||
WSAGetLastError () == WSAECONNREFUSED ||
WSAGetLastError () == WSAENOTCONN))
return -1;
wsa_assert (nbytes != SOCKET_ERROR);
// Orderly shutdown by the other peer.
if (nbytes == 0)
return -1;
2012-05-27 22:51:56 +02:00
return nbytes;
#else
ssize_t nbytes = recv (s, data_, size_, 0);
// Several errors are OK. When speculative read is being done we may not
// be able to read a single byte from the socket. Also, SIGSTOP issued
// by a debugging tool can result in EINTR error.
if (nbytes == -1 && (errno == EAGAIN || errno == EWOULDBLOCK ||
errno == EINTR))
return 0;
// Signalise peer failure.
if (nbytes == -1 && (errno == ECONNRESET || errno == ECONNREFUSED ||
errno == ETIMEDOUT || errno == EHOSTUNREACH || errno == ENOTCONN))
return -1;
errno_assert (nbytes != -1);
// Orderly shutdown by the peer.
if (nbytes == 0)
return -1;
return (size_t) nbytes;
#endif
}