googletest/test/gtest_unittest.cc

5170 lines
154 KiB
C++

// Copyright 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Author: wan@google.com (Zhanyong Wan)
//
// Tests for Google Test itself. This verifies that the basic constructs of
// Google Test work.
#include <gtest/gtest.h>
#include <gtest/gtest-spi.h>
// Indicates that this translation unit is part of Google Test's
// implementation. It must come before gtest-internal-inl.h is
// included, or there will be a compiler error. This trick is to
// prevent a user from accidentally including gtest-internal-inl.h in
// his code.
#define GTEST_IMPLEMENTATION
#include "src/gtest-internal-inl.h"
#undef GTEST_IMPLEMENTATION
#include <stdlib.h>
#if GTEST_HAS_PTHREAD
#include <pthread.h>
#endif // GTEST_HAS_PTHREAD
#ifdef GTEST_OS_LINUX
#include <string.h>
#include <signal.h>
#include <sys/stat.h>
#include <unistd.h>
#include <string>
#include <vector>
#endif // GTEST_OS_LINUX
namespace testing {
namespace internal {
const char* FormatTimeInMillisAsSeconds(TimeInMillis ms);
bool ParseInt32Flag(const char* str, const char* flag, Int32* value);
} // namespace internal
} // namespace testing
using testing::internal::FormatTimeInMillisAsSeconds;
using testing::internal::ParseInt32Flag;
namespace testing {
GTEST_DECLARE_string_(output);
GTEST_DECLARE_string_(color);
namespace internal {
bool ShouldUseColor(bool stdout_is_tty);
} // namespace internal
} // namespace testing
using testing::AssertionFailure;
using testing::AssertionResult;
using testing::AssertionSuccess;
using testing::DoubleLE;
using testing::FloatLE;
using testing::GTEST_FLAG(also_run_disabled_tests);
using testing::GTEST_FLAG(break_on_failure);
using testing::GTEST_FLAG(catch_exceptions);
using testing::GTEST_FLAG(death_test_use_fork);
using testing::GTEST_FLAG(color);
using testing::GTEST_FLAG(filter);
using testing::GTEST_FLAG(list_tests);
using testing::GTEST_FLAG(output);
using testing::GTEST_FLAG(print_time);
using testing::GTEST_FLAG(repeat);
using testing::GTEST_FLAG(show_internal_stack_frames);
using testing::GTEST_FLAG(stack_trace_depth);
using testing::IsNotSubstring;
using testing::IsSubstring;
using testing::Message;
using testing::ScopedFakeTestPartResultReporter;
using testing::StaticAssertTypeEq;
using testing::Test;
using testing::TestPartResult;
using testing::TestPartResultArray;
using testing::TPRT_FATAL_FAILURE;
using testing::TPRT_NONFATAL_FAILURE;
using testing::TPRT_SUCCESS;
using testing::UnitTest;
using testing::internal::kTestTypeIdInGoogleTest;
using testing::internal::AppendUserMessage;
using testing::internal::CodePointToUtf8;
using testing::internal::EqFailure;
using testing::internal::FloatingPoint;
using testing::internal::GetCurrentOsStackTraceExceptTop;
using testing::internal::GetFailedPartCount;
using testing::internal::GetTestTypeId;
using testing::internal::GetTypeId;
using testing::internal::GTestFlagSaver;
using testing::internal::Int32;
using testing::internal::List;
using testing::internal::ShouldUseColor;
using testing::internal::StreamableToString;
using testing::internal::String;
using testing::internal::TestProperty;
using testing::internal::TestResult;
using testing::internal::ThreadLocal;
using testing::internal::UnitTestImpl;
using testing::internal::WideStringToUtf8;
// This line tests that we can define tests in an unnamed namespace.
namespace {
// Tests GetTypeId.
TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
}
class SubClassOfTest : public Test {};
class AnotherSubClassOfTest : public Test {};
TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
}
// Verifies that GetTestTypeId() returns the same value, no matter it
// is called from inside Google Test or outside of it.
TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
}
// Tests FormatTimeInMillisAsSeconds().
TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
EXPECT_STREQ("0", FormatTimeInMillisAsSeconds(0));
}
TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
EXPECT_STREQ("0.003", FormatTimeInMillisAsSeconds(3));
EXPECT_STREQ("0.01", FormatTimeInMillisAsSeconds(10));
EXPECT_STREQ("0.2", FormatTimeInMillisAsSeconds(200));
EXPECT_STREQ("1.2", FormatTimeInMillisAsSeconds(1200));
EXPECT_STREQ("3", FormatTimeInMillisAsSeconds(3000));
}
TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
EXPECT_STREQ("-0.003", FormatTimeInMillisAsSeconds(-3));
EXPECT_STREQ("-0.01", FormatTimeInMillisAsSeconds(-10));
EXPECT_STREQ("-0.2", FormatTimeInMillisAsSeconds(-200));
EXPECT_STREQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
EXPECT_STREQ("-3", FormatTimeInMillisAsSeconds(-3000));
}
#ifndef GTEST_OS_SYMBIAN
// NULL testing does not work with Symbian compilers.
// Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
// pointer literal.
TEST(NullLiteralTest, IsTrueForNullLiterals) {
EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL));
EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0));
EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(1 - 1));
EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U));
EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L));
EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(false));
EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(true && false));
}
// Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
// pointer literal.
TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1));
EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0));
EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a'));
EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
}
#endif // GTEST_OS_SYMBIAN
//
// Tests CodePointToUtf8().
// Tests that the NUL character L'\0' is encoded correctly.
TEST(CodePointToUtf8Test, CanEncodeNul) {
char buffer[32];
EXPECT_STREQ("", CodePointToUtf8(L'\0', buffer));
}
// Tests that ASCII characters are encoded correctly.
TEST(CodePointToUtf8Test, CanEncodeAscii) {
char buffer[32];
EXPECT_STREQ("a", CodePointToUtf8(L'a', buffer));
EXPECT_STREQ("Z", CodePointToUtf8(L'Z', buffer));
EXPECT_STREQ("&", CodePointToUtf8(L'&', buffer));
EXPECT_STREQ("\x7F", CodePointToUtf8(L'\x7F', buffer));
}
// Tests that Unicode code-points that have 8 to 11 bits are encoded
// as 110xxxxx 10xxxxxx.
TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
char buffer[32];
// 000 1101 0011 => 110-00011 10-010011
EXPECT_STREQ("\xC3\x93", CodePointToUtf8(L'\xD3', buffer));
// 101 0111 0110 => 110-10101 10-110110
EXPECT_STREQ("\xD5\xB6", CodePointToUtf8(L'\x576', buffer));
}
// Tests that Unicode code-points that have 12 to 16 bits are encoded
// as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
char buffer[32];
// 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
EXPECT_STREQ("\xE0\xA3\x93", CodePointToUtf8(L'\x8D3', buffer));
// 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
EXPECT_STREQ("\xEC\x9D\x8D", CodePointToUtf8(L'\xC74D', buffer));
}
#ifndef GTEST_WIDE_STRING_USES_UTF16_
// Tests in this group require a wchar_t to hold > 16 bits, and thus
// are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
// 16-bit wide. This code may not compile on those systems.
// Tests that Unicode code-points that have 17 to 21 bits are encoded
// as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
char buffer[32];
// 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
EXPECT_STREQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3', buffer));
// 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
EXPECT_STREQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400', buffer));
// 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
EXPECT_STREQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634', buffer));
}
// Tests that encoding an invalid code-point generates the expected result.
TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
char buffer[32];
EXPECT_STREQ("(Invalid Unicode 0x1234ABCD)",
CodePointToUtf8(L'\x1234ABCD', buffer));
}
#endif // GTEST_WIDE_STRING_USES_UTF16_
// Tests WideStringToUtf8().
// Tests that the NUL character L'\0' is encoded correctly.
TEST(WideStringToUtf8Test, CanEncodeNul) {
EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
}
// Tests that ASCII strings are encoded correctly.
TEST(WideStringToUtf8Test, CanEncodeAscii) {
EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
}
// Tests that Unicode code-points that have 8 to 11 bits are encoded
// as 110xxxxx 10xxxxxx.
TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
// 000 1101 0011 => 110-00011 10-010011
EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
// 101 0111 0110 => 110-10101 10-110110
EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(L"\x576", 1).c_str());
EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(L"\x576", -1).c_str());
}
// Tests that Unicode code-points that have 12 to 16 bits are encoded
// as 1110xxxx 10xxxxxx 10xxxxxx.
TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
// 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(L"\x8D3", 1).c_str());
EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(L"\x8D3", -1).c_str());
// 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(L"\xC74D", 1).c_str());
EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(L"\xC74D", -1).c_str());
}
// Tests that the conversion stops when the function encounters \0 character.
TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
}
// Tests that the conversion stops when the function reaches the limit
// specified by the 'length' parameter.
TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
}
#ifndef GTEST_WIDE_STRING_USES_UTF16_
// Tests that Unicode code-points that have 17 to 21 bits are encoded
// as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
// on the systems using UTF-16 encoding.
TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
// 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
// 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
}
// Tests that encoding an invalid code-point generates the expected result.
TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
WideStringToUtf8(L"\xABCDFF", -1).c_str());
}
#else
// Tests that surrogate pairs are encoded correctly on the systems using
// UTF-16 encoding in the wide strings.
TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
EXPECT_STREQ("\xF0\x90\x90\x80",
WideStringToUtf8(L"\xD801\xDC00", -1).c_str());
}
// Tests that encoding an invalid UTF-16 surrogate pair
// generates the expected result.
TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
// Leading surrogate is at the end of the string.
EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(L"\xD800", -1).c_str());
// Leading surrogate is not followed by the trailing surrogate.
EXPECT_STREQ("\xED\xA0\x80$", WideStringToUtf8(L"\xD800$", -1).c_str());
// Trailing surrogate appearas without a leading surrogate.
EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(L"\xDC00PQR", -1).c_str());
}
#endif // GTEST_WIDE_STRING_USES_UTF16_
// Tests that codepoint concatenation works correctly.
#ifndef GTEST_WIDE_STRING_USES_UTF16_
TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
EXPECT_STREQ(
"\xF4\x88\x98\xB4"
"\xEC\x9D\x8D"
"\n"
"\xD5\xB6"
"\xE0\xA3\x93"
"\xF4\x88\x98\xB4",
WideStringToUtf8(L"\x108634\xC74D\n\x576\x8D3\x108634", -1).c_str());
}
#else
TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
EXPECT_STREQ(
"\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
WideStringToUtf8(L"\xC74D\n\x576\x8D3", -1).c_str());
}
#endif // GTEST_WIDE_STRING_USES_UTF16_
// Tests the List template class.
// Tests List::PushFront().
TEST(ListTest, PushFront) {
List<int> a;
ASSERT_EQ(0u, a.size());
// Calls PushFront() on an empty list.
a.PushFront(1);
ASSERT_EQ(1u, a.size());
EXPECT_EQ(1, a.Head()->element());
ASSERT_EQ(a.Head(), a.Last());
// Calls PushFront() on a singleton list.
a.PushFront(2);
ASSERT_EQ(2u, a.size());
EXPECT_EQ(2, a.Head()->element());
EXPECT_EQ(1, a.Last()->element());
// Calls PushFront() on a list with more than one elements.
a.PushFront(3);
ASSERT_EQ(3u, a.size());
EXPECT_EQ(3, a.Head()->element());
EXPECT_EQ(2, a.Head()->next()->element());
EXPECT_EQ(1, a.Last()->element());
}
// Tests List::PopFront().
TEST(ListTest, PopFront) {
List<int> a;
// Popping on an empty list should fail.
EXPECT_FALSE(a.PopFront(NULL));
// Popping again on an empty list should fail, and the result element
// shouldn't be overwritten.
int element = 1;
EXPECT_FALSE(a.PopFront(&element));
EXPECT_EQ(1, element);
a.PushFront(2);
a.PushFront(3);
// PopFront() should pop the element in the front of the list.
EXPECT_TRUE(a.PopFront(&element));
EXPECT_EQ(3, element);
// After popping the last element, the list should be empty.
EXPECT_TRUE(a.PopFront(NULL));
EXPECT_EQ(0u, a.size());
}
// Tests inserting at the beginning using List::InsertAfter().
TEST(ListTest, InsertAfterAtBeginning) {
List<int> a;
ASSERT_EQ(0u, a.size());
// Inserts into an empty list.
a.InsertAfter(NULL, 1);
ASSERT_EQ(1u, a.size());
EXPECT_EQ(1, a.Head()->element());
ASSERT_EQ(a.Head(), a.Last());
// Inserts at the beginning of a singleton list.
a.InsertAfter(NULL, 2);
ASSERT_EQ(2u, a.size());
EXPECT_EQ(2, a.Head()->element());
EXPECT_EQ(1, a.Last()->element());
// Inserts at the beginning of a list with more than one elements.
a.InsertAfter(NULL, 3);
ASSERT_EQ(3u, a.size());
EXPECT_EQ(3, a.Head()->element());
EXPECT_EQ(2, a.Head()->next()->element());
EXPECT_EQ(1, a.Last()->element());
}
// Tests inserting at a location other than the beginning using
// List::InsertAfter().
TEST(ListTest, InsertAfterNotAtBeginning) {
// Prepares a singleton list.
List<int> a;
a.PushBack(1);
// Inserts at the end of a singleton list.
a.InsertAfter(a.Last(), 2);
ASSERT_EQ(2u, a.size());
EXPECT_EQ(1, a.Head()->element());
EXPECT_EQ(2, a.Last()->element());
// Inserts at the end of a list with more than one elements.
a.InsertAfter(a.Last(), 3);
ASSERT_EQ(3u, a.size());
EXPECT_EQ(1, a.Head()->element());
EXPECT_EQ(2, a.Head()->next()->element());
EXPECT_EQ(3, a.Last()->element());
// Inserts in the middle of a list.
a.InsertAfter(a.Head(), 4);
ASSERT_EQ(4u, a.size());
EXPECT_EQ(1, a.Head()->element());
EXPECT_EQ(4, a.Head()->next()->element());
EXPECT_EQ(2, a.Head()->next()->next()->element());
EXPECT_EQ(3, a.Last()->element());
}
// Tests the String class.
// Tests String's constructors.
TEST(StringTest, Constructors) {
// Default ctor.
String s1;
// We aren't using EXPECT_EQ(NULL, s1.c_str()) because comparing
// pointers with NULL isn't supported on all platforms.
EXPECT_TRUE(NULL == s1.c_str());
// Implicitly constructs from a C-string.
String s2 = "Hi";
EXPECT_STREQ("Hi", s2.c_str());
// Constructs from a C-string and a length.
String s3("hello", 3);
EXPECT_STREQ("hel", s3.c_str());
// Copy ctor.
String s4 = s3;
EXPECT_STREQ("hel", s4.c_str());
}
#if GTEST_HAS_STD_STRING
TEST(StringTest, ConvertsFromStdString) {
// An empty std::string.
const std::string src1("");
const String dest1 = src1;
EXPECT_STREQ("", dest1.c_str());
// A normal std::string.
const std::string src2("Hi");
const String dest2 = src2;
EXPECT_STREQ("Hi", dest2.c_str());
// An std::string with an embedded NUL character.
const char src3[] = "Hello\0world.";
const String dest3 = std::string(src3, sizeof(src3));
EXPECT_STREQ("Hello", dest3.c_str());
}
TEST(StringTest, ConvertsToStdString) {
// An empty String.
const String src1("");
const std::string dest1 = src1;
EXPECT_EQ("", dest1);
// A normal String.
const String src2("Hi");
const std::string dest2 = src2;
EXPECT_EQ("Hi", dest2);
}
#endif // GTEST_HAS_STD_STRING
#if GTEST_HAS_GLOBAL_STRING
TEST(StringTest, ConvertsFromGlobalString) {
// An empty ::string.
const ::string src1("");
const String dest1 = src1;
EXPECT_STREQ("", dest1.c_str());
// A normal ::string.
const ::string src2("Hi");
const String dest2 = src2;
EXPECT_STREQ("Hi", dest2.c_str());
// An ::string with an embedded NUL character.
const char src3[] = "Hello\0world.";
const String dest3 = ::string(src3, sizeof(src3));
EXPECT_STREQ("Hello", dest3.c_str());
}
TEST(StringTest, ConvertsToGlobalString) {
// An empty String.
const String src1("");
const ::string dest1 = src1;
EXPECT_EQ("", dest1);
// A normal String.
const String src2("Hi");
const ::string dest2 = src2;
EXPECT_EQ("Hi", dest2);
}
#endif // GTEST_HAS_GLOBAL_STRING
// Tests String::ShowCString().
TEST(StringTest, ShowCString) {
EXPECT_STREQ("(null)", String::ShowCString(NULL));
EXPECT_STREQ("", String::ShowCString(""));
EXPECT_STREQ("foo", String::ShowCString("foo"));
}
// Tests String::ShowCStringQuoted().
TEST(StringTest, ShowCStringQuoted) {
EXPECT_STREQ("(null)",
String::ShowCStringQuoted(NULL).c_str());
EXPECT_STREQ("\"\"",
String::ShowCStringQuoted("").c_str());
EXPECT_STREQ("\"foo\"",
String::ShowCStringQuoted("foo").c_str());
}
// Tests String::operator==().
TEST(StringTest, Equals) {
const String null(NULL);
EXPECT_TRUE(null == NULL); // NOLINT
EXPECT_FALSE(null == ""); // NOLINT
EXPECT_FALSE(null == "bar"); // NOLINT
const String empty("");
EXPECT_FALSE(empty == NULL); // NOLINT
EXPECT_TRUE(empty == ""); // NOLINT
EXPECT_FALSE(empty == "bar"); // NOLINT
const String foo("foo");
EXPECT_FALSE(foo == NULL); // NOLINT
EXPECT_FALSE(foo == ""); // NOLINT
EXPECT_FALSE(foo == "bar"); // NOLINT
EXPECT_TRUE(foo == "foo"); // NOLINT
}
// Tests String::operator!=().
TEST(StringTest, NotEquals) {
const String null(NULL);
EXPECT_FALSE(null != NULL); // NOLINT
EXPECT_TRUE(null != ""); // NOLINT
EXPECT_TRUE(null != "bar"); // NOLINT
const String empty("");
EXPECT_TRUE(empty != NULL); // NOLINT
EXPECT_FALSE(empty != ""); // NOLINT
EXPECT_TRUE(empty != "bar"); // NOLINT
const String foo("foo");
EXPECT_TRUE(foo != NULL); // NOLINT
EXPECT_TRUE(foo != ""); // NOLINT
EXPECT_TRUE(foo != "bar"); // NOLINT
EXPECT_FALSE(foo != "foo"); // NOLINT
}
// Tests String::EndsWith().
TEST(StringTest, EndsWith) {
EXPECT_TRUE(String("foobar").EndsWith("bar"));
EXPECT_TRUE(String("foobar").EndsWith(""));
EXPECT_TRUE(String("").EndsWith(""));
EXPECT_FALSE(String("foobar").EndsWith("foo"));
EXPECT_FALSE(String("").EndsWith("foo"));
}
// Tests String::EndsWithCaseInsensitive().
TEST(StringTest, EndsWithCaseInsensitive) {
EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive("BAR"));
EXPECT_TRUE(String("foobaR").EndsWithCaseInsensitive("bar"));
EXPECT_TRUE(String("foobar").EndsWithCaseInsensitive(""));
EXPECT_TRUE(String("").EndsWithCaseInsensitive(""));
EXPECT_FALSE(String("Foobar").EndsWithCaseInsensitive("foo"));
EXPECT_FALSE(String("foobar").EndsWithCaseInsensitive("Foo"));
EXPECT_FALSE(String("").EndsWithCaseInsensitive("foo"));
}
// Tests String::CaseInsensitiveWideCStringEquals
TEST(StringTest, CaseInsensitiveWideCStringEquals) {
EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL));
EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(NULL, L""));
EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", NULL));
EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(NULL, L"foobar"));
EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", NULL));
EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
}
// Tests that NULL can be assigned to a String.
TEST(StringTest, CanBeAssignedNULL) {
const String src(NULL);
String dest;
dest = src;
EXPECT_STREQ(NULL, dest.c_str());
}
// Tests that the empty string "" can be assigned to a String.
TEST(StringTest, CanBeAssignedEmpty) {
const String src("");
String dest;
dest = src;
EXPECT_STREQ("", dest.c_str());
}
// Tests that a non-empty string can be assigned to a String.
TEST(StringTest, CanBeAssignedNonEmpty) {
const String src("hello");
String dest;
dest = src;
EXPECT_STREQ("hello", dest.c_str());
}
// Tests that a String can be assigned to itself.
TEST(StringTest, CanBeAssignedSelf) {
String dest("hello");
dest = dest;
EXPECT_STREQ("hello", dest.c_str());
}
#ifdef GTEST_OS_WINDOWS
// Tests String::ShowWideCString().
TEST(StringTest, ShowWideCString) {
EXPECT_STREQ("(null)",
String::ShowWideCString(NULL).c_str());
EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
}
// Tests String::ShowWideCStringQuoted().
TEST(StringTest, ShowWideCStringQuoted) {
EXPECT_STREQ("(null)",
String::ShowWideCStringQuoted(NULL).c_str());
EXPECT_STREQ("L\"\"",
String::ShowWideCStringQuoted(L"").c_str());
EXPECT_STREQ("L\"foo\"",
String::ShowWideCStringQuoted(L"foo").c_str());
}
#ifdef _WIN32_WCE
TEST(StringTest, AnsiAndUtf16Null) {
EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
}
TEST(StringTest, AnsiAndUtf16ConvertBasic) {
const char* ansi = String::Utf16ToAnsi(L"str");
EXPECT_STREQ("str", ansi);
delete [] ansi;
const WCHAR* utf16 = String::AnsiToUtf16("str");
EXPECT_TRUE(wcsncmp(L"str", utf16, 3) == 0);
delete [] utf16;
}
TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
EXPECT_STREQ(".:\\ \"*?", ansi);
delete [] ansi;
const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
EXPECT_TRUE(wcsncmp(L".:\\ \"*?", utf16, 3) == 0);
delete [] utf16;
}
#endif // _WIN32_WCE
#endif // GTEST_OS_WINDOWS
// Tests TestProperty construction.
TEST(TestPropertyTest, StringValue) {
TestProperty property("key", "1");
EXPECT_STREQ("key", property.key());
EXPECT_STREQ("1", property.value());
}
// Tests TestProperty replacing a value.
TEST(TestPropertyTest, ReplaceStringValue) {
TestProperty property("key", "1");
EXPECT_STREQ("1", property.value());
property.SetValue("2");
EXPECT_STREQ("2", property.value());
}
class ScopedFakeTestPartResultReporterTest : public Test {
protected:
enum FailureMode {
FATAL_FAILURE,
NONFATAL_FAILURE
};
static void AddFailure(FailureMode failure) {
if (failure == FATAL_FAILURE) {
FAIL() << "Expected fatal failure.";
} else {
ADD_FAILURE() << "Expected non-fatal failure.";
}
}
};
// Tests that ScopedFakeTestPartResultReporter intercepts test
// failures.
TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
TestPartResultArray results;
{
ScopedFakeTestPartResultReporter reporter(
ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
&results);
AddFailure(NONFATAL_FAILURE);
AddFailure(FATAL_FAILURE);
}
EXPECT_EQ(2, results.size());
EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
}
TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
TestPartResultArray results;
{
// Tests, that the deprecated constructor still works.
ScopedFakeTestPartResultReporter reporter(&results);
AddFailure(NONFATAL_FAILURE);
}
EXPECT_EQ(1, results.size());
}
#if GTEST_IS_THREADSAFE && GTEST_HAS_PTHREAD
class ScopedFakeTestPartResultReporterWithThreadsTest
: public ScopedFakeTestPartResultReporterTest {
protected:
static void AddFailureInOtherThread(FailureMode failure) {
pthread_t tid;
pthread_create(&tid,
NULL,
ScopedFakeTestPartResultReporterWithThreadsTest::
FailureThread,
&failure);
pthread_join(tid, NULL);
}
private:
static void* FailureThread(void* attr) {
FailureMode* failure = static_cast<FailureMode*>(attr);
AddFailure(*failure);
return NULL;
}
};
TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
InterceptsTestFailuresInAllThreads) {
TestPartResultArray results;
{
ScopedFakeTestPartResultReporter reporter(
ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
AddFailure(NONFATAL_FAILURE);
AddFailure(FATAL_FAILURE);
AddFailureInOtherThread(NONFATAL_FAILURE);
AddFailureInOtherThread(FATAL_FAILURE);
}
EXPECT_EQ(4, results.size());
EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
}
#endif // GTEST_IS_THREADSAFE && GTEST_HAS_PTHREAD
// Tests EXPECT_{,NON}FATAL_FAILURE{,ON_ALL_THREADS}.
typedef ScopedFakeTestPartResultReporterTest ExpectFailureTest;
TEST_F(ExpectFailureTest, ExpectFatalFaliure) {
EXPECT_FATAL_FAILURE(AddFailure(FATAL_FAILURE), "Expected fatal failure.");
}
TEST_F(ExpectFailureTest, ExpectNonFatalFailure) {
EXPECT_NONFATAL_FAILURE(AddFailure(NONFATAL_FAILURE),
"Expected non-fatal failure.");
}
TEST_F(ExpectFailureTest, ExpectFatalFailureOnAllThreads) {
EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailure(FATAL_FAILURE),
"Expected fatal failure.");
}
TEST_F(ExpectFailureTest, ExpectNonFatalFailureOnAllThreads) {
EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddFailure(NONFATAL_FAILURE),
"Expected non-fatal failure.");
}
// Tests that the EXPECT_{,NON}FATAL_FAILURE{,_ON_ALL_THREADS} accepts
// a statement that contains a macro which expands to code containing
// an unprotected comma.
static int global_var = 0;
#define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
TEST_F(ExpectFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
EXPECT_FATAL_FAILURE({
GTEST_USE_UNPROTECTED_COMMA_;
AddFailure(FATAL_FAILURE);
}, "");
EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
GTEST_USE_UNPROTECTED_COMMA_;
AddFailure(FATAL_FAILURE);
}, "");
EXPECT_NONFATAL_FAILURE({
GTEST_USE_UNPROTECTED_COMMA_;
AddFailure(NONFATAL_FAILURE);
}, "");
EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
GTEST_USE_UNPROTECTED_COMMA_;
AddFailure(NONFATAL_FAILURE);
}, "");
}
#if GTEST_IS_THREADSAFE && GTEST_HAS_PTHREAD
typedef ScopedFakeTestPartResultReporterWithThreadsTest
ExpectFailureWithThreadsTest;
TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
"Expected fatal failure.");
}
TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
}
#endif // GTEST_IS_THREADSAFE && GTEST_HAS_PTHREAD
// Tests the TestResult class
// The test fixture for testing TestResult.
class TestResultTest : public Test {
protected:
typedef List<TestPartResult> TPRList;
// We make use of 2 TestPartResult objects,
TestPartResult * pr1, * pr2;
// ... and 3 TestResult objects.
TestResult * r0, * r1, * r2;
virtual void SetUp() {
// pr1 is for success.
pr1 = new TestPartResult(TPRT_SUCCESS, "foo/bar.cc", 10, "Success!");
// pr2 is for fatal failure.
pr2 = new TestPartResult(TPRT_FATAL_FAILURE, "foo/bar.cc",
-1, // This line number means "unknown"
"Failure!");
// Creates the TestResult objects.
r0 = new TestResult();
r1 = new TestResult();
r2 = new TestResult();
// In order to test TestResult, we need to modify its internal
// state, in particular the TestPartResult list it holds.
// test_part_results() returns a const reference to this list.
// We cast it to a non-const object s.t. it can be modified (yes,
// this is a hack).
TPRList * list1, * list2;
list1 = const_cast<List<TestPartResult> *>(
& r1->test_part_results());
list2 = const_cast<List<TestPartResult> *>(
& r2->test_part_results());
// r0 is an empty TestResult.
// r1 contains a single SUCCESS TestPartResult.
list1->PushBack(*pr1);
// r2 contains a SUCCESS, and a FAILURE.
list2->PushBack(*pr1);
list2->PushBack(*pr2);
}
virtual void TearDown() {
delete pr1;
delete pr2;
delete r0;
delete r1;
delete r2;
}
};
// Tests TestResult::test_part_results()
TEST_F(TestResultTest, test_part_results) {
ASSERT_EQ(0u, r0->test_part_results().size());
ASSERT_EQ(1u, r1->test_part_results().size());
ASSERT_EQ(2u, r2->test_part_results().size());
}
// Tests TestResult::successful_part_count()
TEST_F(TestResultTest, successful_part_count) {
ASSERT_EQ(0u, r0->successful_part_count());
ASSERT_EQ(1u, r1->successful_part_count());
ASSERT_EQ(1u, r2->successful_part_count());
}
// Tests TestResult::failed_part_count()
TEST_F(TestResultTest, failed_part_count) {
ASSERT_EQ(0u, r0->failed_part_count());
ASSERT_EQ(0u, r1->failed_part_count());
ASSERT_EQ(1u, r2->failed_part_count());
}
// Tests testing::internal::GetFailedPartCount().
TEST_F(TestResultTest, GetFailedPartCount) {
ASSERT_EQ(0u, GetFailedPartCount(r0));
ASSERT_EQ(0u, GetFailedPartCount(r1));
ASSERT_EQ(1u, GetFailedPartCount(r2));
}
// Tests TestResult::total_part_count()
TEST_F(TestResultTest, total_part_count) {
ASSERT_EQ(0u, r0->total_part_count());
ASSERT_EQ(1u, r1->total_part_count());
ASSERT_EQ(2u, r2->total_part_count());
}
// Tests TestResult::Passed()
TEST_F(TestResultTest, Passed) {
ASSERT_TRUE(r0->Passed());
ASSERT_TRUE(r1->Passed());
ASSERT_FALSE(r2->Passed());
}
// Tests TestResult::Failed()
TEST_F(TestResultTest, Failed) {
ASSERT_FALSE(r0->Failed());
ASSERT_FALSE(r1->Failed());
ASSERT_TRUE(r2->Failed());
}
// Tests TestResult::test_properties() has no properties when none are added.
TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
TestResult test_result;
ASSERT_EQ(0u, test_result.test_properties().size());
}
// Tests TestResult::test_properties() has the expected property when added.
TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
TestResult test_result;
TestProperty property("key_1", "1");
test_result.RecordProperty(property);
const List<TestProperty>& properties = test_result.test_properties();
ASSERT_EQ(1u, properties.size());
TestProperty actual_property = properties.Head()->element();
EXPECT_STREQ("key_1", actual_property.key());
EXPECT_STREQ("1", actual_property.value());
}
// Tests TestResult::test_properties() has multiple properties when added.
TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
TestResult test_result;
TestProperty property_1("key_1", "1");
TestProperty property_2("key_2", "2");
test_result.RecordProperty(property_1);
test_result.RecordProperty(property_2);
const List<TestProperty>& properties = test_result.test_properties();
ASSERT_EQ(2u, properties.size());
TestProperty actual_property_1 = properties.Head()->element();
EXPECT_STREQ("key_1", actual_property_1.key());
EXPECT_STREQ("1", actual_property_1.value());
TestProperty actual_property_2 = properties.Last()->element();
EXPECT_STREQ("key_2", actual_property_2.key());
EXPECT_STREQ("2", actual_property_2.value());
}
// Tests TestResult::test_properties() overrides values for duplicate keys.
TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
TestResult test_result;
TestProperty property_1_1("key_1", "1");
TestProperty property_2_1("key_2", "2");
TestProperty property_1_2("key_1", "12");
TestProperty property_2_2("key_2", "22");
test_result.RecordProperty(property_1_1);
test_result.RecordProperty(property_2_1);
test_result.RecordProperty(property_1_2);
test_result.RecordProperty(property_2_2);
const List<TestProperty>& properties = test_result.test_properties();
ASSERT_EQ(2u, properties.size());
TestProperty actual_property_1 = properties.Head()->element();
EXPECT_STREQ("key_1", actual_property_1.key());
EXPECT_STREQ("12", actual_property_1.value());
TestProperty actual_property_2 = properties.Last()->element();
EXPECT_STREQ("key_2", actual_property_2.key());
EXPECT_STREQ("22", actual_property_2.value());
}
// When a property using a reserved key is supplied to this function, it tests
// that a non-fatal failure is added, a fatal failure is not added, and that the
// property is not recorded.
void ExpectNonFatalFailureRecordingPropertyWithReservedKey(const char* key) {
TestResult test_result;
TestProperty property("name", "1");
EXPECT_NONFATAL_FAILURE(test_result.RecordProperty(property), "Reserved key");
ASSERT_TRUE(test_result.test_properties().IsEmpty()) << "Not recorded";
}
// Attempting to recording a property with the Reserved literal "name"
// should add a non-fatal failure and the property should not be recorded.
TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledName) {
ExpectNonFatalFailureRecordingPropertyWithReservedKey("name");
}
// Attempting to recording a property with the Reserved literal "status"
// should add a non-fatal failure and the property should not be recorded.
TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledStatus) {
ExpectNonFatalFailureRecordingPropertyWithReservedKey("status");
}
// Attempting to recording a property with the Reserved literal "time"
// should add a non-fatal failure and the property should not be recorded.
TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledTime) {
ExpectNonFatalFailureRecordingPropertyWithReservedKey("time");
}
// Attempting to recording a property with the Reserved literal "classname"
// should add a non-fatal failure and the property should not be recorded.
TEST(TestResultPropertyTest, AddFailureWhenUsingReservedKeyCalledClassname) {
ExpectNonFatalFailureRecordingPropertyWithReservedKey("classname");
}
// Tests that GTestFlagSaver works on Windows and Mac.
class GTestFlagSaverTest : public Test {
protected:
// Saves the Google Test flags such that we can restore them later, and
// then sets them to their default values. This will be called
// before the first test in this test case is run.
static void SetUpTestCase() {
saver_ = new GTestFlagSaver;
GTEST_FLAG(also_run_disabled_tests) = false;
GTEST_FLAG(break_on_failure) = false;
GTEST_FLAG(catch_exceptions) = false;
GTEST_FLAG(death_test_use_fork) = false;
GTEST_FLAG(color) = "auto";
GTEST_FLAG(filter) = "";
GTEST_FLAG(list_tests) = false;
GTEST_FLAG(output) = "";
GTEST_FLAG(print_time) = false;
GTEST_FLAG(repeat) = 1;
}
// Restores the Google Test flags that the tests have modified. This will
// be called after the last test in this test case is run.
static void TearDownTestCase() {
delete saver_;
saver_ = NULL;
}
// Verifies that the Google Test flags have their default values, and then
// modifies each of them.
void VerifyAndModifyFlags() {
EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
EXPECT_FALSE(GTEST_FLAG(break_on_failure));
EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
EXPECT_FALSE(GTEST_FLAG(list_tests));
EXPECT_STREQ("", GTEST_FLAG(output).c_str());
EXPECT_FALSE(GTEST_FLAG(print_time));
EXPECT_EQ(1, GTEST_FLAG(repeat));
GTEST_FLAG(also_run_disabled_tests) = true;
GTEST_FLAG(break_on_failure) = true;
GTEST_FLAG(catch_exceptions) = true;
GTEST_FLAG(color) = "no";
GTEST_FLAG(death_test_use_fork) = true;
GTEST_FLAG(filter) = "abc";
GTEST_FLAG(list_tests) = true;
GTEST_FLAG(output) = "xml:foo.xml";
GTEST_FLAG(print_time) = true;
GTEST_FLAG(repeat) = 100;
}
private:
// For saving Google Test flags during this test case.
static GTestFlagSaver* saver_;
};
GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
// Google Test doesn't guarantee the order of tests. The following two
// tests are designed to work regardless of their order.
// Modifies the Google Test flags in the test body.
TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
VerifyAndModifyFlags();
}
// Verifies that the Google Test flags in the body of the previous test were
// restored to their original values.
TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
VerifyAndModifyFlags();
}
// Sets an environment variable with the given name to the given
// value. If the value argument is "", unsets the environment
// variable. The caller must ensure that both arguments are not NULL.
static void SetEnv(const char* name, const char* value) {
#ifdef _WIN32_WCE
// Environment variables are not supported on Windows CE.
return;
#elif defined(GTEST_OS_WINDOWS) // If we are on Windows proper.
_putenv((Message() << name << "=" << value).GetString().c_str());
#else
if (*value == '\0') {
unsetenv(name);
} else {
setenv(name, value, 1);
}
#endif
}
#ifndef _WIN32_WCE
// Environment variables are not supported on Windows CE.
using testing::internal::Int32FromGTestEnv;
// Tests Int32FromGTestEnv().
// Tests that Int32FromGTestEnv() returns the default value when the
// environment variable is not set.
TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", "");
EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
}
// Tests that Int32FromGTestEnv() returns the default value when the
// environment variable overflows as an Int32.
TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
printf("(expecting 2 warnings)\n");
SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", "12345678987654321");
EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", "-12345678987654321");
EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
}
// Tests that Int32FromGTestEnv() returns the default value when the
// environment variable does not represent a valid decimal integer.
TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
printf("(expecting 2 warnings)\n");
SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", "A1");
EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", "12X");
EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
}
// Tests that Int32FromGTestEnv() parses and returns the value of the
// environment variable when it represents a valid decimal integer in
// the range of an Int32.
TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", "123");
EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
SetEnv(GTEST_FLAG_PREFIX_UPPER "TEMP", "-321");
EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
}
#endif // !defined(_WIN32_WCE)
// Tests ParseInt32Flag().
// Tests that ParseInt32Flag() returns false and doesn't change the
// output value when the flag has wrong format
TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
Int32 value = 123;
EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
EXPECT_EQ(123, value);
EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
EXPECT_EQ(123, value);
}
// Tests that ParseInt32Flag() returns false and doesn't change the
// output value when the flag overflows as an Int32.
TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
printf("(expecting 2 warnings)\n");
Int32 value = 123;
EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
EXPECT_EQ(123, value);
EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
EXPECT_EQ(123, value);
}
// Tests that ParseInt32Flag() returns false and doesn't change the
// output value when the flag does not represent a valid decimal
// integer.
TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
printf("(expecting 2 warnings)\n");
Int32 value = 123;
EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
EXPECT_EQ(123, value);
EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
EXPECT_EQ(123, value);
}
// Tests that ParseInt32Flag() parses the value of the flag and
// returns true when the flag represents a valid decimal integer in
// the range of an Int32.
TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
Int32 value = 123;
EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX "abc=456", "abc", &value));
EXPECT_EQ(456, value);
EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX "abc=-789", "abc", &value));
EXPECT_EQ(-789, value);
}
// For the same reason we are not explicitly testing everything in the
// Test class, there are no separate tests for the following classes
// (except for some trivial cases):
//
// TestCase, UnitTest, UnitTestResultPrinter.
//
// Similarly, there are no separate tests for the following macros:
//
// TEST, TEST_F, RUN_ALL_TESTS
TEST(UnitTestTest, CanGetOriginalWorkingDir) {
ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
}
// This group of tests is for predicate assertions (ASSERT_PRED*, etc)
// of various arities. They do not attempt to be exhaustive. Rather,
// view them as smoke tests that can be easily reviewed and verified.
// A more complete set of tests for predicate assertions can be found
// in gtest_pred_impl_unittest.cc.
// First, some predicates and predicate-formatters needed by the tests.
// Returns true iff the argument is an even number.
bool IsEven(int n) {
return (n % 2) == 0;
}
// A functor that returns true iff the argument is an even number.
struct IsEvenFunctor {
bool operator()(int n) { return IsEven(n); }
};
// A predicate-formatter function that asserts the argument is an even
// number.
AssertionResult AssertIsEven(const char* expr, int n) {
if (IsEven(n)) {
return AssertionSuccess();
}
Message msg;
msg << expr << " evaluates to " << n << ", which is not even.";
return AssertionFailure(msg);
}
// A predicate-formatter functor that asserts the argument is an even
// number.
struct AssertIsEvenFunctor {
AssertionResult operator()(const char* expr, int n) {
return AssertIsEven(expr, n);
}
};
// Returns true iff the sum of the arguments is an even number.
bool SumIsEven2(int n1, int n2) {
return IsEven(n1 + n2);
}
// A functor that returns true iff the sum of the arguments is an even
// number.
struct SumIsEven3Functor {
bool operator()(int n1, int n2, int n3) {
return IsEven(n1 + n2 + n3);
}
};
// A predicate-formatter function that asserts the sum of the
// arguments is an even number.
AssertionResult AssertSumIsEven4(
const char* e1, const char* e2, const char* e3, const char* e4,
int n1, int n2, int n3, int n4) {
const int sum = n1 + n2 + n3 + n4;
if (IsEven(sum)) {
return AssertionSuccess();
}
Message msg;
msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
<< " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
<< ") evaluates to " << sum << ", which is not even.";
return AssertionFailure(msg);
}
// A predicate-formatter functor that asserts the sum of the arguments
// is an even number.
struct AssertSumIsEven5Functor {
AssertionResult operator()(
const char* e1, const char* e2, const char* e3, const char* e4,
const char* e5, int n1, int n2, int n3, int n4, int n5) {
const int sum = n1 + n2 + n3 + n4 + n5;
if (IsEven(sum)) {
return AssertionSuccess();
}
Message msg;
msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
<< " ("
<< n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
<< ") evaluates to " << sum << ", which is not even.";
return AssertionFailure(msg);
}
};
// Tests unary predicate assertions.
// Tests unary predicate assertions that don't use a custom formatter.
TEST(Pred1Test, WithoutFormat) {
// Success cases.
EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
ASSERT_PRED1(IsEven, 4);
// Failure cases.
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
}, "This failure is expected.");
EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
"evaluates to false");
}
// Tests unary predicate assertions that use a custom formatter.
TEST(Pred1Test, WithFormat) {
// Success cases.
EXPECT_PRED_FORMAT1(AssertIsEven, 2);
ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
<< "This failure is UNEXPECTED!";
// Failure cases.
const int n = 5;
EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
"n evaluates to 5, which is not even.");
EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
}, "This failure is expected.");
}
// Tests that unary predicate assertions evaluates their arguments
// exactly once.
TEST(Pred1Test, SingleEvaluationOnFailure) {
// A success case.
static int n = 0;
EXPECT_PRED1(IsEven, n++);
EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
// A failure case.
EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
<< "This failure is expected.";
}, "This failure is expected.");
EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
}
// Tests predicate assertions whose arity is >= 2.
// Tests predicate assertions that don't use a custom formatter.
TEST(PredTest, WithoutFormat) {
// Success cases.
ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
// Failure cases.
const int n1 = 1;
const int n2 = 2;
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
}, "This failure is expected.");
EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
}, "evaluates to false");
}
// Tests predicate assertions that use a custom formatter.
TEST(PredTest, WithFormat) {
// Success cases.
ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
"This failure is UNEXPECTED!";
EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
// Failure cases.
const int n1 = 1;
const int n2 = 2;
const int n3 = 4;
const int n4 = 6;
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
}, "evaluates to 13, which is not even.");
EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
<< "This failure is expected.";
}, "This failure is expected.");
}
// Tests that predicate assertions evaluates their arguments
// exactly once.
TEST(PredTest, SingleEvaluationOnFailure) {
// A success case.
int n1 = 0;
int n2 = 0;
EXPECT_PRED2(SumIsEven2, n1++, n2++);
EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
// Another success case.
n1 = n2 = 0;
int n3 = 0;
int n4 = 0;
int n5 = 0;
ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
n1++, n2++, n3++, n4++, n5++)
<< "This failure is UNEXPECTED!";
EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
// A failure case.
n1 = n2 = n3 = 0;
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
<< "This failure is expected.";
}, "This failure is expected.");
EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
// Another failure case.
n1 = n2 = n3 = n4 = 0;
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
}, "evaluates to 1, which is not even.");
EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
}
// Some helper functions for testing using overloaded/template
// functions with ASSERT_PREDn and EXPECT_PREDn.
bool IsPositive(int n) {
return n > 0;
}
bool IsPositive(double x) {
return x > 0;
}
template <typename T>
bool IsNegative(T x) {
return x < 0;
}
template <typename T1, typename T2>
bool GreaterThan(T1 x1, T2 x2) {
return x1 > x2;
}
// Tests that overloaded functions can be used in *_PRED* as long as
// their types are explicitly specified.
TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
EXPECT_PRED1(static_cast<bool (*)(int)>(IsPositive), 5); // NOLINT
ASSERT_PRED1(static_cast<bool (*)(double)>(IsPositive), 6.0); // NOLINT
}
// Tests that template functions can be used in *_PRED* as long as
// their types are explicitly specified.
TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
EXPECT_PRED1(IsNegative<int>, -5);
// Makes sure that we can handle templates with more than one
// parameter.
ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
}
// Some helper functions for testing using overloaded/template
// functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
AssertionResult IsPositiveFormat(const char* expr, int n) {
return n > 0 ? AssertionSuccess() :
AssertionFailure(Message() << "Failure");
}
AssertionResult IsPositiveFormat(const char* expr, double x) {
return x > 0 ? AssertionSuccess() :
AssertionFailure(Message() << "Failure");
}
template <typename T>
AssertionResult IsNegativeFormat(const char* expr, T x) {
return x < 0 ? AssertionSuccess() :
AssertionFailure(Message() << "Failure");
}
template <typename T1, typename T2>
AssertionResult EqualsFormat(const char* expr1, const char* expr2,
const T1& x1, const T2& x2) {
return x1 == x2 ? AssertionSuccess() :
AssertionFailure(Message() << "Failure");
}
// Tests that overloaded functions can be used in *_PRED_FORMAT*
// without explictly specifying their types.
TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
}
// Tests that template functions can be used in *_PRED_FORMAT* without
// explicitly specifying their types.
TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
}
// Tests string assertions.
// Tests ASSERT_STREQ with non-NULL arguments.
TEST(StringAssertionTest, ASSERT_STREQ) {
const char * const p1 = "good";
ASSERT_STREQ(p1, p1);
// Let p2 have the same content as p1, but be at a different address.
const char p2[] = "good";
ASSERT_STREQ(p1, p2);
EXPECT_FATAL_FAILURE(ASSERT_STREQ("bad", "good"),
"Expected: \"bad\"");
}
// Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest, ASSERT_STREQ_Null) {
ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
"non-null");
}
// Tests ASSERT_STREQ with NULL arguments.
TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
"non-null");
}
// Tests ASSERT_STRNE.
TEST(StringAssertionTest, ASSERT_STRNE) {
ASSERT_STRNE("hi", "Hi");
ASSERT_STRNE("Hi", NULL);
ASSERT_STRNE(NULL, "Hi");
ASSERT_STRNE("", NULL);
ASSERT_STRNE(NULL, "");
ASSERT_STRNE("", "Hi");
ASSERT_STRNE("Hi", "");
EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
"\"Hi\" vs \"Hi\"");
}
// Tests ASSERT_STRCASEEQ.
TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
ASSERT_STRCASEEQ("hi", "Hi");
ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
ASSERT_STRCASEEQ("", "");
EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
"(ignoring case)");
}
// Tests ASSERT_STRCASENE.
TEST(StringAssertionTest, ASSERT_STRCASENE) {
ASSERT_STRCASENE("hi1", "Hi2");
ASSERT_STRCASENE("Hi", NULL);
ASSERT_STRCASENE(NULL, "Hi");
ASSERT_STRCASENE("", NULL);
ASSERT_STRCASENE(NULL, "");
ASSERT_STRCASENE("", "Hi");
ASSERT_STRCASENE("Hi", "");
EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
"(ignoring case)");
}
// Tests *_STREQ on wide strings.
TEST(StringAssertionTest, STREQ_Wide) {
// NULL strings.
ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
// Empty strings.
ASSERT_STREQ(L"", L"");
// Non-null vs NULL.
EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
"non-null");
// Equal strings.
EXPECT_STREQ(L"Hi", L"Hi");
// Unequal strings.
EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
"Abc");
// Strings containing wide characters.
EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
"abc");
}
// Tests *_STRNE on wide strings.
TEST(StringAssertionTest, STRNE_Wide) {
// NULL strings.
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
}, "");
// Empty strings.
EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
"L\"\"");
// Non-null vs NULL.
ASSERT_STRNE(L"non-null", NULL);
// Equal strings.
EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
"L\"Hi\"");
// Unequal strings.
EXPECT_STRNE(L"abc", L"Abc");
// Strings containing wide characters.
EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
"abc");
}
// Tests for ::testing::IsSubstring().
// Tests that IsSubstring() returns the correct result when the input
// argument type is const char*.
TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
EXPECT_FALSE(IsSubstring("", "", "b", NULL));
EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
}
// Tests that IsSubstring() returns the correct result when the input
// argument type is const wchar_t*.
TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
EXPECT_FALSE(IsSubstring("", "", NULL, L"a"));
EXPECT_FALSE(IsSubstring("", "", L"b", NULL));
EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
}
// Tests that IsSubstring() generates the correct message when the input
// argument type is const char*.
TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
EXPECT_STREQ("Value of: needle_expr\n"
" Actual: \"needle\"\n"
"Expected: a substring of haystack_expr\n"
"Which is: \"haystack\"",
IsSubstring("needle_expr", "haystack_expr",
"needle", "haystack").failure_message());
}
#if GTEST_HAS_STD_STRING
// Tests that IsSubstring returns the correct result when the input
// argument type is ::std::string.
TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
}
#endif // GTEST_HAS_STD_STRING
#if GTEST_HAS_STD_WSTRING
// Tests that IsSubstring returns the correct result when the input
// argument type is ::std::wstring.
TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
}
// Tests that IsSubstring() generates the correct message when the input
// argument type is ::std::wstring.
TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
EXPECT_STREQ("Value of: needle_expr\n"
" Actual: L\"needle\"\n"
"Expected: a substring of haystack_expr\n"
"Which is: L\"haystack\"",
IsSubstring(
"needle_expr", "haystack_expr",
::std::wstring(L"needle"), L"haystack").failure_message());
}
#endif // GTEST_HAS_STD_WSTRING
// Tests for ::testing::IsNotSubstring().
// Tests that IsNotSubstring() returns the correct result when the input
// argument type is const char*.
TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
}
// Tests that IsNotSubstring() returns the correct result when the input
// argument type is const wchar_t*.
TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
}
// Tests that IsNotSubstring() generates the correct message when the input
// argument type is const wchar_t*.
TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
EXPECT_STREQ("Value of: needle_expr\n"
" Actual: L\"needle\"\n"
"Expected: not a substring of haystack_expr\n"
"Which is: L\"two needles\"",
IsNotSubstring(
"needle_expr", "haystack_expr",
L"needle", L"two needles").failure_message());
}
#if GTEST_HAS_STD_STRING
// Tests that IsNotSubstring returns the correct result when the input
// argument type is ::std::string.
TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
}
// Tests that IsNotSubstring() generates the correct message when the input
// argument type is ::std::string.
TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
EXPECT_STREQ("Value of: needle_expr\n"
" Actual: \"needle\"\n"
"Expected: not a substring of haystack_expr\n"
"Which is: \"two needles\"",
IsNotSubstring(
"needle_expr", "haystack_expr",
::std::string("needle"), "two needles").failure_message());
}
#endif // GTEST_HAS_STD_STRING
#if GTEST_HAS_STD_WSTRING
// Tests that IsNotSubstring returns the correct result when the input
// argument type is ::std::wstring.
TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
EXPECT_FALSE(
IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
}
#endif // GTEST_HAS_STD_WSTRING
// Tests floating-point assertions.
template <typename RawType>
class FloatingPointTest : public Test {
protected:
typedef typename testing::internal::FloatingPoint<RawType> Floating;
typedef typename Floating::Bits Bits;
virtual void SetUp() {
const size_t max_ulps = Floating::kMaxUlps;
// The bits that represent 0.0.
const Bits zero_bits = Floating(0).bits();
// Makes some numbers close to 0.0.
close_to_positive_zero_ = Floating::ReinterpretBits(zero_bits + max_ulps/2);
close_to_negative_zero_ = -Floating::ReinterpretBits(
zero_bits + max_ulps - max_ulps/2);
further_from_negative_zero_ = -Floating::ReinterpretBits(
zero_bits + max_ulps + 1 - max_ulps/2);
// The bits that represent 1.0.
const Bits one_bits = Floating(1).bits();
// Makes some numbers close to 1.0.
close_to_one_ = Floating::ReinterpretBits(one_bits + max_ulps);
further_from_one_ = Floating::ReinterpretBits(one_bits + max_ulps + 1);
// +infinity.
infinity_ = Floating::Infinity();
// The bits that represent +infinity.
const Bits infinity_bits = Floating(infinity_).bits();
// Makes some numbers close to infinity.
close_to_infinity_ = Floating::ReinterpretBits(infinity_bits - max_ulps);
further_from_infinity_ = Floating::ReinterpretBits(
infinity_bits - max_ulps - 1);
// Makes some NAN's.
nan1_ = Floating::ReinterpretBits(Floating::kExponentBitMask | 1);
nan2_ = Floating::ReinterpretBits(Floating::kExponentBitMask | 200);
}
void TestSize() {
EXPECT_EQ(sizeof(RawType), sizeof(Bits));
}
// Pre-calculated numbers to be used by the tests.
static RawType close_to_positive_zero_;
static RawType close_to_negative_zero_;
static RawType further_from_negative_zero_;
static RawType close_to_one_;
static RawType further_from_one_;
static RawType infinity_;
static RawType close_to_infinity_;
static RawType further_from_infinity_;
static RawType nan1_;
static RawType nan2_;
};
template <typename RawType>
RawType FloatingPointTest<RawType>::close_to_positive_zero_;
template <typename RawType>
RawType FloatingPointTest<RawType>::close_to_negative_zero_;
template <typename RawType>
RawType FloatingPointTest<RawType>::further_from_negative_zero_;
template <typename RawType>
RawType FloatingPointTest<RawType>::close_to_one_;
template <typename RawType>
RawType FloatingPointTest<RawType>::further_from_one_;
template <typename RawType>
RawType FloatingPointTest<RawType>::infinity_;
template <typename RawType>
RawType FloatingPointTest<RawType>::close_to_infinity_;
template <typename RawType>
RawType FloatingPointTest<RawType>::further_from_infinity_;
template <typename RawType>
RawType FloatingPointTest<RawType>::nan1_;
template <typename RawType>
RawType FloatingPointTest<RawType>::nan2_;
// Instantiates FloatingPointTest for testing *_FLOAT_EQ.
typedef FloatingPointTest<float> FloatTest;
// Tests that the size of Float::Bits matches the size of float.
TEST_F(FloatTest, Size) {
TestSize();
}
// Tests comparing with +0 and -0.
TEST_F(FloatTest, Zeros) {
EXPECT_FLOAT_EQ(0.0, -0.0);
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
"1.0");
EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
"1.5");
}
// Tests comparing numbers close to 0.
//
// This ensures that *_FLOAT_EQ handles the sign correctly and no
// overflow occurs when comparing numbers whose absolute value is very
// small.
TEST_F(FloatTest, AlmostZeros) {
EXPECT_FLOAT_EQ(0.0, close_to_positive_zero_);
EXPECT_FLOAT_EQ(-0.0, close_to_negative_zero_);
EXPECT_FLOAT_EQ(close_to_positive_zero_, close_to_negative_zero_);
EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_FLOAT_EQ(close_to_positive_zero_, further_from_negative_zero_);
}, "further_from_negative_zero_");
}
// Tests comparing numbers close to each other.
TEST_F(FloatTest, SmallDiff) {
EXPECT_FLOAT_EQ(1.0, close_to_one_);
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, further_from_one_),
"further_from_one_");
}
// Tests comparing numbers far apart.
TEST_F(FloatTest, LargeDiff) {
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
"3.0");
}
// Tests comparing with infinity.
//
// This ensures that no overflow occurs when comparing numbers whose
// absolute value is very large.
TEST_F(FloatTest, Infinity) {
EXPECT_FLOAT_EQ(infinity_, close_to_infinity_);
EXPECT_FLOAT_EQ(-infinity_, -close_to_infinity_);
#ifndef GTEST_OS_SYMBIAN
// Nokia's STLport crashes if we try to output infinity or NaN.
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(infinity_, -infinity_),
"-infinity_");
// This is interesting as the representations of infinity_ and nan1_
// are only 1 DLP apart.
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(infinity_, nan1_),
"nan1_");
#endif // ! GTEST_OS_SYMBIAN
}
// Tests that comparing with NAN always returns false.
TEST_F(FloatTest, NaN) {
#ifndef GTEST_OS_SYMBIAN
// Nokia's STLport crashes if we try to output infinity or NaN.
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(nan1_, nan1_),
"nan1_");
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(nan1_, nan2_),
"nan2_");
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, nan1_),
"nan1_");
EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(nan1_, infinity_),
"infinity_");
#endif // ! GTEST_OS_SYMBIAN
}
// Tests that *_FLOAT_EQ are reflexive.
TEST_F(FloatTest, Reflexive) {
EXPECT_FLOAT_EQ(0.0, 0.0);
EXPECT_FLOAT_EQ(1.0, 1.0);
ASSERT_FLOAT_EQ(infinity_, infinity_);
}
// Tests that *_FLOAT_EQ are commutative.
TEST_F(FloatTest, Commutative) {
// We already tested EXPECT_FLOAT_EQ(1.0, close_to_one_).
EXPECT_FLOAT_EQ(close_to_one_, 1.0);
// We already tested EXPECT_FLOAT_EQ(1.0, further_from_one_).
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(further_from_one_, 1.0),
"1.0");
}
// Tests EXPECT_NEAR.
TEST_F(FloatTest, EXPECT_NEAR) {
EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
EXPECT_NEAR(2.0f, 3.0f, 1.0f);
EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.2f, 0.1f), // NOLINT
"The difference between 1.0f and 1.2f is 0.2, "
"which exceeds 0.1f");
// To work around a bug in gcc 2.95.0, there is intentionally no
// space after the first comma in the previous line.
}
// Tests ASSERT_NEAR.
TEST_F(FloatTest, ASSERT_NEAR) {
ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
ASSERT_NEAR(2.0f, 3.0f, 1.0f);
EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.2f, 0.1f), // NOLINT
"The difference between 1.0f and 1.2f is 0.2, "
"which exceeds 0.1f");
// To work around a bug in gcc 2.95.0, there is intentionally no
// space after the first comma in the previous line.
}
// Tests the cases where FloatLE() should succeed.
TEST_F(FloatTest, FloatLESucceeds) {
EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f); // When val1 < val2,
ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f); // val1 == val2,
// or when val1 is greater than, but almost equals to, val2.
EXPECT_PRED_FORMAT2(FloatLE, close_to_positive_zero_, 0.0f);
}
// Tests the cases where FloatLE() should fail.
TEST_F(FloatTest, FloatLEFails) {
// When val1 is greater than val2 by a large margin,
EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
"(2.0f) <= (1.0f)");
// or by a small yet non-negligible margin,
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED_FORMAT2(FloatLE, further_from_one_, 1.0f);
}, "(further_from_one_) <= (1.0f)");
#ifndef GTEST_OS_SYMBIAN
// Nokia's STLport crashes if we try to output infinity or NaN.
// or when either val1 or val2 is NaN.
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED_FORMAT2(FloatLE, nan1_, infinity_);
}, "(nan1_) <= (infinity_)");
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED_FORMAT2(FloatLE, -infinity_, nan1_);
}, "(-infinity_) <= (nan1_)");
EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_PRED_FORMAT2(FloatLE, nan1_, nan1_);
}, "(nan1_) <= (nan1_)");
#endif // ! GTEST_OS_SYMBIAN
}
// Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
typedef FloatingPointTest<double> DoubleTest;
// Tests that the size of Double::Bits matches the size of double.
TEST_F(DoubleTest, Size) {
TestSize();
}
// Tests comparing with +0 and -0.
TEST_F(DoubleTest, Zeros) {
EXPECT_DOUBLE_EQ(0.0, -0.0);
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
"1.0");
EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
"1.0");
}
// Tests comparing numbers close to 0.
//
// This ensures that *_DOUBLE_EQ handles the sign correctly and no
// overflow occurs when comparing numbers whose absolute value is very
// small.
TEST_F(DoubleTest, AlmostZeros) {
EXPECT_DOUBLE_EQ(0.0, close_to_positive_zero_);
EXPECT_DOUBLE_EQ(-0.0, close_to_negative_zero_);
EXPECT_DOUBLE_EQ(close_to_positive_zero_, close_to_negative_zero_);
EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_DOUBLE_EQ(close_to_positive_zero_, further_from_negative_zero_);
}, "further_from_negative_zero_");
}
// Tests comparing numbers close to each other.
TEST_F(DoubleTest, SmallDiff) {
EXPECT_DOUBLE_EQ(1.0, close_to_one_);
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, further_from_one_),
"further_from_one_");
}
// Tests comparing numbers far apart.
TEST_F(DoubleTest, LargeDiff) {
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
"3.0");
}
// Tests comparing with infinity.
//
// This ensures that no overflow occurs when comparing numbers whose
// absolute value is very large.
TEST_F(DoubleTest, Infinity) {
EXPECT_DOUBLE_EQ(infinity_, close_to_infinity_);
EXPECT_DOUBLE_EQ(-infinity_, -close_to_infinity_);
#ifndef GTEST_OS_SYMBIAN
// Nokia's STLport crashes if we try to output infinity or NaN.
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(infinity_, -infinity_),
"-infinity_");
// This is interesting as the representations of infinity_ and nan1_
// are only 1 DLP apart.
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(infinity_, nan1_),
"nan1_");
#endif // ! GTEST_OS_SYMBIAN
}
// Tests that comparing with NAN always returns false.
TEST_F(DoubleTest, NaN) {
#ifndef GTEST_OS_SYMBIAN
// Nokia's STLport crashes if we try to output infinity or NaN.
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(nan1_, nan1_),
"nan1_");
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(nan1_, nan2_), "nan2_");
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, nan1_), "nan1_");
EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(nan1_, infinity_), "infinity_");
#endif // ! GTEST_OS_SYMBIAN
}
// Tests that *_DOUBLE_EQ are reflexive.
TEST_F(DoubleTest, Reflexive) {
EXPECT_DOUBLE_EQ(0.0, 0.0);
EXPECT_DOUBLE_EQ(1.0, 1.0);
#ifndef GTEST_OS_SYMBIAN
// Nokia's STLport crashes if we try to output infinity or NaN.
ASSERT_DOUBLE_EQ(infinity_, infinity_);
#endif // ! GTEST_OS_SYMBIAN
}
// Tests that *_DOUBLE_EQ are commutative.
TEST_F(DoubleTest, Commutative) {
// We already tested EXPECT_DOUBLE_EQ(1.0, close_to_one_).
EXPECT_DOUBLE_EQ(close_to_one_, 1.0);
// We already tested EXPECT_DOUBLE_EQ(1.0, further_from_one_).
EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(further_from_one_, 1.0), "1.0");
}
// Tests EXPECT_NEAR.
TEST_F(DoubleTest, EXPECT_NEAR) {
EXPECT_NEAR(-1.0, -1.1, 0.2);
EXPECT_NEAR(2.0, 3.0, 1.0);
EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.2, 0.1), // NOLINT
"The difference between 1.0 and 1.2 is 0.2, "
"which exceeds 0.1");
// To work around a bug in gcc 2.95.0, there is intentionally no
// space after the first comma in the previous statement.
}
// Tests ASSERT_NEAR.
TEST_F(DoubleTest, ASSERT_NEAR) {
ASSERT_NEAR(-1.0, -1.1, 0.2);
ASSERT_NEAR(2.0, 3.0, 1.0);
EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.2, 0.1), // NOLINT
"The difference between 1.0 and 1.2 is 0.2, "
"which exceeds 0.1");
// To work around a bug in gcc 2.95.0, there is intentionally no
// space after the first comma in the previous statement.
}
// Tests the cases where DoubleLE() should succeed.
TEST_F(DoubleTest, DoubleLESucceeds) {
EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0); // When val1 < val2,
ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0); // val1 == val2,
// or when val1 is greater than, but almost equals to, val2.
EXPECT_PRED_FORMAT2(DoubleLE, close_to_positive_zero_, 0.0);
}
// Tests the cases where DoubleLE() should fail.
TEST_F(DoubleTest, DoubleLEFails) {
// When val1 is greater than val2 by a large margin,
EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
"(2.0) <= (1.0)");
// or by a small yet non-negligible margin,
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED_FORMAT2(DoubleLE, further_from_one_, 1.0);
}, "(further_from_one_) <= (1.0)");
#ifndef GTEST_OS_SYMBIAN
// Nokia's STLport crashes if we try to output infinity or NaN.
// or when either val1 or val2 is NaN.
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED_FORMAT2(DoubleLE, nan1_, infinity_);
}, "(nan1_) <= (infinity_)");
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_PRED_FORMAT2(DoubleLE, -infinity_, nan1_);
}, " (-infinity_) <= (nan1_)");
EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_PRED_FORMAT2(DoubleLE, nan1_, nan1_);
}, "(nan1_) <= (nan1_)");
#endif // ! GTEST_OS_SYMBIAN
}
// Verifies that a test or test case whose name starts with DISABLED_ is
// not run.
// A test whose name starts with DISABLED_.
// Should not run.
TEST(DisabledTest, DISABLED_TestShouldNotRun) {
FAIL() << "Unexpected failure: Disabled test should not be run.";
}
// A test whose name does not start with DISABLED_.
// Should run.
TEST(DisabledTest, NotDISABLED_TestShouldRun) {
EXPECT_EQ(1, 1);
}
// A test case whose name starts with DISABLED_.
// Should not run.
TEST(DISABLED_TestCase, TestShouldNotRun) {
FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
}
// A test case and test whose names start with DISABLED_.
// Should not run.
TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
}
// Check that when all tests in a test case are disabled, SetupTestCase() and
// TearDownTestCase() are not called.
class DisabledTestsTest : public Test {
protected:
static void SetUpTestCase() {
FAIL() << "Unexpected failure: All tests disabled in test case. "
"SetupTestCase() should not be called.";
}
static void TearDownTestCase() {
FAIL() << "Unexpected failure: All tests disabled in test case. "
"TearDownTestCase() should not be called.";
}
};
TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
FAIL() << "Unexpected failure: Disabled test should not be run.";
}
TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
FAIL() << "Unexpected failure: Disabled test should not be run.";
}
// Tests that disabled typed tests aren't run.
#ifdef GTEST_HAS_TYPED_TEST
template <typename T>
class TypedTest : public Test {
};
typedef testing::Types<int, double> NumericTypes;
TYPED_TEST_CASE(TypedTest, NumericTypes);
TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
FAIL() << "Unexpected failure: Disabled typed test should not run.";
}
template <typename T>
class DISABLED_TypedTest : public Test {
};
TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
FAIL() << "Unexpected failure: Disabled typed test should not run.";
}
#endif // GTEST_HAS_TYPED_TEST
// Tests that disabled type-parameterized tests aren't run.
#ifdef GTEST_HAS_TYPED_TEST_P
template <typename T>
class TypedTestP : public Test {
};
TYPED_TEST_CASE_P(TypedTestP);
TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
FAIL() << "Unexpected failure: "
<< "Disabled type-parameterized test should not run.";
}
REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
template <typename T>
class DISABLED_TypedTestP : public Test {
};
TYPED_TEST_CASE_P(DISABLED_TypedTestP);
TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
FAIL() << "Unexpected failure: "
<< "Disabled type-parameterized test should not run.";
}
REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
#endif // GTEST_HAS_TYPED_TEST_P
// Tests that assertion macros evaluate their arguments exactly once.
class SingleEvaluationTest : public Test {
protected:
SingleEvaluationTest() {
p1_ = s1_;
p2_ = s2_;
a_ = 0;
b_ = 0;
}
// This helper function is needed by the FailedASSERT_STREQ test
// below.
static void CompareAndIncrementCharPtrs() {
ASSERT_STREQ(p1_++, p2_++);
}
// This helper function is needed by the FailedASSERT_NE test below.
static void CompareAndIncrementInts() {
ASSERT_NE(a_++, b_++);
}
static const char* const s1_;
static const char* const s2_;
static const char* p1_;
static const char* p2_;
static int a_;
static int b_;
};
const char* const SingleEvaluationTest::s1_ = "01234";
const char* const SingleEvaluationTest::s2_ = "abcde";
const char* SingleEvaluationTest::p1_;
const char* SingleEvaluationTest::p2_;
int SingleEvaluationTest::a_;
int SingleEvaluationTest::b_;
// Tests that when ASSERT_STREQ fails, it evaluates its arguments
// exactly once.
TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
EXPECT_FATAL_FAILURE(CompareAndIncrementCharPtrs(),
"p2_++");
EXPECT_EQ(s1_ + 1, p1_);
EXPECT_EQ(s2_ + 1, p2_);
}
// Tests that string assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest, ASSERT_STR) {
// successful EXPECT_STRNE
EXPECT_STRNE(p1_++, p2_++);
EXPECT_EQ(s1_ + 1, p1_);
EXPECT_EQ(s2_ + 1, p2_);
// failed EXPECT_STRCASEEQ
EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
"ignoring case");
EXPECT_EQ(s1_ + 2, p1_);
EXPECT_EQ(s2_ + 2, p2_);
}
// Tests that when ASSERT_NE fails, it evaluates its arguments exactly
// once.
TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
EXPECT_FATAL_FAILURE(CompareAndIncrementInts(), "(a_++) != (b_++)");
EXPECT_EQ(1, a_);
EXPECT_EQ(1, b_);
}
// Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest, OtherCases) {
// successful EXPECT_TRUE
EXPECT_TRUE(0 == a_++); // NOLINT
EXPECT_EQ(1, a_);
// failed EXPECT_TRUE
EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
EXPECT_EQ(2, a_);
// successful EXPECT_GT
EXPECT_GT(a_++, b_++);
EXPECT_EQ(3, a_);
EXPECT_EQ(1, b_);
// failed EXPECT_LT
EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
EXPECT_EQ(4, a_);
EXPECT_EQ(2, b_);
// successful ASSERT_TRUE
ASSERT_TRUE(0 < a_++); // NOLINT
EXPECT_EQ(5, a_);
// successful ASSERT_GT
ASSERT_GT(a_++, b_++);
EXPECT_EQ(6, a_);
EXPECT_EQ(3, b_);
}
#if GTEST_HAS_EXCEPTIONS
void ThrowAnInteger() {
throw 1;
}
// Tests that assertion arguments are evaluated exactly once.
TEST_F(SingleEvaluationTest, ExceptionTests) {
// successful EXPECT_THROW
EXPECT_THROW({ // NOLINT
a_++;
ThrowAnInteger();
}, int);
EXPECT_EQ(1, a_);
// failed EXPECT_THROW, throws different
EXPECT_NONFATAL_FAILURE(EXPECT_THROW({ // NOLINT
a_++;
ThrowAnInteger();
}, bool), "throws a different type");
EXPECT_EQ(2, a_);
// failed EXPECT_THROW, throws nothing
EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
EXPECT_EQ(3, a_);
// successful EXPECT_NO_THROW
EXPECT_NO_THROW(a_++);
EXPECT_EQ(4, a_);
// failed EXPECT_NO_THROW
EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({ // NOLINT
a_++;
ThrowAnInteger();
}), "it throws");
EXPECT_EQ(5, a_);
// successful EXPECT_ANY_THROW
EXPECT_ANY_THROW({ // NOLINT
a_++;
ThrowAnInteger();
});
EXPECT_EQ(6, a_);
// failed EXPECT_ANY_THROW
EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
EXPECT_EQ(7, a_);
}
#endif // GTEST_HAS_EXCEPTIONS
// Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
class NoFatalFailureTest : public Test {
protected:
void Succeeds() {}
void FailsNonFatal() {
ADD_FAILURE() << "some non-fatal failure";
}
void Fails() {
FAIL() << "some fatal failure";
}
void DoAssertNoFatalFailureOnFails() {
ASSERT_NO_FATAL_FAILURE(Fails());
ADD_FAILURE() << "shold not reach here.";
}
void DoExpectNoFatalFailureOnFails() {
EXPECT_NO_FATAL_FAILURE(Fails());
ADD_FAILURE() << "other failure";
}
};
TEST_F(NoFatalFailureTest, NoFailure) {
EXPECT_NO_FATAL_FAILURE(Succeeds());
ASSERT_NO_FATAL_FAILURE(Succeeds());
}
TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
EXPECT_NONFATAL_FAILURE(
EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
"some non-fatal failure");
EXPECT_NONFATAL_FAILURE(
ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
"some non-fatal failure");
}
TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
TestPartResultArray gtest_failures;
{
ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
DoAssertNoFatalFailureOnFails();
}
ASSERT_EQ(2, gtest_failures.size());
EXPECT_EQ(testing::TPRT_FATAL_FAILURE,
gtest_failures.GetTestPartResult(0).type());
EXPECT_EQ(testing::TPRT_FATAL_FAILURE,
gtest_failures.GetTestPartResult(1).type());
EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
gtest_failures.GetTestPartResult(0).message());
EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
gtest_failures.GetTestPartResult(1).message());
}
TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
TestPartResultArray gtest_failures;
{
ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
DoExpectNoFatalFailureOnFails();
}
ASSERT_EQ(3, gtest_failures.size());
EXPECT_EQ(testing::TPRT_FATAL_FAILURE,
gtest_failures.GetTestPartResult(0).type());
EXPECT_EQ(testing::TPRT_NONFATAL_FAILURE,
gtest_failures.GetTestPartResult(1).type());
EXPECT_EQ(testing::TPRT_NONFATAL_FAILURE,
gtest_failures.GetTestPartResult(2).type());
EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
gtest_failures.GetTestPartResult(0).message());
EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
gtest_failures.GetTestPartResult(1).message());
EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
gtest_failures.GetTestPartResult(2).message());
}
TEST_F(NoFatalFailureTest, MessageIsStreamable) {
TestPartResultArray gtest_failures;
{
ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
}
ASSERT_EQ(2, gtest_failures.size());
EXPECT_EQ(testing::TPRT_NONFATAL_FAILURE,
gtest_failures.GetTestPartResult(0).type());
EXPECT_EQ(testing::TPRT_NONFATAL_FAILURE,
gtest_failures.GetTestPartResult(1).type());
EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
gtest_failures.GetTestPartResult(0).message());
EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
gtest_failures.GetTestPartResult(1).message());
}
// Tests non-string assertions.
// Tests EqFailure(), used for implementing *EQ* assertions.
TEST(AssertionTest, EqFailure) {
const String foo_val("5"), bar_val("6");
const String msg1(
EqFailure("foo", "bar", foo_val, bar_val, false)
.failure_message());
EXPECT_STREQ(
"Value of: bar\n"
" Actual: 6\n"
"Expected: foo\n"
"Which is: 5",
msg1.c_str());
const String msg2(
EqFailure("foo", "6", foo_val, bar_val, false)
.failure_message());
EXPECT_STREQ(
"Value of: 6\n"
"Expected: foo\n"
"Which is: 5",
msg2.c_str());
const String msg3(
EqFailure("5", "bar", foo_val, bar_val, false)
.failure_message());
EXPECT_STREQ(
"Value of: bar\n"
" Actual: 6\n"
"Expected: 5",
msg3.c_str());
const String msg4(
EqFailure("5", "6", foo_val, bar_val, false).failure_message());
EXPECT_STREQ(
"Value of: 6\n"
"Expected: 5",
msg4.c_str());
const String msg5(
EqFailure("foo", "bar",
String("\"x\""), String("\"y\""),
true).failure_message());
EXPECT_STREQ(
"Value of: bar\n"
" Actual: \"y\"\n"
"Expected: foo (ignoring case)\n"
"Which is: \"x\"",
msg5.c_str());
}
// Tests AppendUserMessage(), used for implementing the *EQ* macros.
TEST(AssertionTest, AppendUserMessage) {
const String foo("foo");
Message msg;
EXPECT_STREQ("foo",
AppendUserMessage(foo, msg).c_str());
msg << "bar";
EXPECT_STREQ("foo\nbar",
AppendUserMessage(foo, msg).c_str());
}
// Tests ASSERT_TRUE.
TEST(AssertionTest, ASSERT_TRUE) {
ASSERT_TRUE(2 > 1); // NOLINT
EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
"2 < 1");
}
// Tests ASSERT_FALSE.
TEST(AssertionTest, ASSERT_FALSE) {
ASSERT_FALSE(2 < 1); // NOLINT
EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
"Value of: 2 > 1\n"
" Actual: true\n"
"Expected: false");
}
// Tests using ASSERT_EQ on double values. The purpose is to make
// sure that the specialization we did for integer and anonymous enums
// isn't used for double arguments.
TEST(ExpectTest, ASSERT_EQ_Double) {
// A success.
ASSERT_EQ(5.6, 5.6);
// A failure.
EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
"5.1");
}
// Tests ASSERT_EQ.
TEST(AssertionTest, ASSERT_EQ) {
ASSERT_EQ(5, 2 + 3);
EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
"Value of: 2*3\n"
" Actual: 6\n"
"Expected: 5");
}
// Tests ASSERT_EQ(NULL, pointer).
#ifndef GTEST_OS_SYMBIAN
// The NULL-detection template magic fails to compile with
// the Nokia compiler and crashes the ARM compiler, hence
// not testing on Symbian.
TEST(AssertionTest, ASSERT_EQ_NULL) {
// A success.
const char* p = NULL;
ASSERT_EQ(NULL, p);
// A failure.
static int n = 0;
EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
"Value of: &n\n");
}
#endif // GTEST_OS_SYMBIAN
// Tests ASSERT_EQ(0, non_pointer). Since the literal 0 can be
// treated as a null pointer by the compiler, we need to make sure
// that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
// ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest, ASSERT_EQ_0) {
int n = 0;
// A success.
ASSERT_EQ(0, n);
// A failure.
EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
"Expected: 0");
}
// Tests ASSERT_NE.
TEST(AssertionTest, ASSERT_NE) {
ASSERT_NE(6, 7);
EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
"Expected: ('a') != ('a'), "
"actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
}
// Tests ASSERT_LE.
TEST(AssertionTest, ASSERT_LE) {
ASSERT_LE(2, 3);
ASSERT_LE(2, 2);
EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
"Expected: (2) <= (0), actual: 2 vs 0");
}
// Tests ASSERT_LT.
TEST(AssertionTest, ASSERT_LT) {
ASSERT_LT(2, 3);
EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
"Expected: (2) < (2), actual: 2 vs 2");
}
// Tests ASSERT_GE.
TEST(AssertionTest, ASSERT_GE) {
ASSERT_GE(2, 1);
ASSERT_GE(2, 2);
EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
"Expected: (2) >= (3), actual: 2 vs 3");
}
// Tests ASSERT_GT.
TEST(AssertionTest, ASSERT_GT) {
ASSERT_GT(2, 1);
EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
"Expected: (2) > (2), actual: 2 vs 2");
}
#if GTEST_HAS_EXCEPTIONS
// Tests ASSERT_THROW.
TEST(AssertionTest, ASSERT_THROW) {
ASSERT_THROW(ThrowAnInteger(), int);
EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool),
"Expected: ThrowAnInteger() throws an exception of type"\
" bool.\n Actual: it throws a different type.");
EXPECT_FATAL_FAILURE(ASSERT_THROW(1, bool),
"Expected: 1 throws an exception of type bool.\n"\
" Actual: it throws nothing.");
}
// Tests ASSERT_NO_THROW.
TEST(AssertionTest, ASSERT_NO_THROW) {
ASSERT_NO_THROW(1);
EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
"Expected: ThrowAnInteger() doesn't throw an exception."\
"\n Actual: it throws.");
}
// Tests ASSERT_ANY_THROW.
TEST(AssertionTest, ASSERT_ANY_THROW) {
ASSERT_ANY_THROW(ThrowAnInteger());
EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(1),
"Expected: 1 throws an exception.\n Actual: it "\
"doesn't.");
}
#endif // GTEST_HAS_EXCEPTIONS
// Makes sure we deal with the precedence of <<. This test should
// compile.
TEST(AssertionTest, AssertPrecedence) {
ASSERT_EQ(1 < 2, true);
ASSERT_EQ(true && false, false);
}
// A subroutine used by the following test.
void TestEq1(int x) {
ASSERT_EQ(1, x);
}
// Tests calling a test subroutine that's not part of a fixture.
TEST(AssertionTest, NonFixtureSubroutine) {
EXPECT_FATAL_FAILURE(TestEq1(2),
"Value of: x");
}
// An uncopyable class.
class Uncopyable {
public:
explicit Uncopyable(int value) : value_(value) {}
int value() const { return value_; }
bool operator==(const Uncopyable& rhs) const {
return value() == rhs.value();
}
private:
// This constructor deliberately has no implementation, as we don't
// want this class to be copyable.
Uncopyable(const Uncopyable&); // NOLINT
int value_;
};
::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
return os << value.value();
}
bool IsPositiveUncopyable(const Uncopyable& x) {
return x.value() > 0;
}
// A subroutine used by the following test.
void TestAssertNonPositive() {
Uncopyable y(-1);
ASSERT_PRED1(IsPositiveUncopyable, y);
}
// A subroutine used by the following test.
void TestAssertEqualsUncopyable() {
Uncopyable x(5);
Uncopyable y(-1);
ASSERT_EQ(x, y);
}
// Tests that uncopyable objects can be used in assertions.
TEST(AssertionTest, AssertWorksWithUncopyableObject) {
Uncopyable x(5);
ASSERT_PRED1(IsPositiveUncopyable, x);
ASSERT_EQ(x, x);
EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
"IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
"Value of: y\n Actual: -1\nExpected: x\nWhich is: 5");
}
// Tests that uncopyable objects can be used in expects.
TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
Uncopyable x(5);
EXPECT_PRED1(IsPositiveUncopyable, x);
Uncopyable y(-1);
EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
"IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
EXPECT_EQ(x, x);
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
"Value of: y\n Actual: -1\nExpected: x\nWhich is: 5");
}
// The version of gcc used in XCode 2.2 has a bug and doesn't allow
// anonymous enums in assertions. Therefore the following test is
// done only on Linux and Windows.
#if defined(GTEST_OS_LINUX) || defined(GTEST_OS_WINDOWS)
// Tests using assertions with anonymous enums.
enum {
CASE_A = -1,
#ifdef GTEST_OS_LINUX
// We want to test the case where the size of the anonymous enum is
// larger than sizeof(int), to make sure our implementation of the
// assertions doesn't truncate the enums. However, MSVC
// (incorrectly) doesn't allow an enum value to exceed the range of
// an int, so this has to be conditionally compiled.
//
// On Linux, CASE_B and CASE_A have the same value when truncated to
// int size. We want to test whether this will confuse the
// assertions.
CASE_B = testing::internal::kMaxBiggestInt,
#else
CASE_B = INT_MAX,
#endif // GTEST_OS_LINUX
};
TEST(AssertionTest, AnonymousEnum) {
#ifdef GTEST_OS_LINUX
EXPECT_EQ(static_cast<int>(CASE_A), static_cast<int>(CASE_B));
#endif // GTEST_OS_LINUX
EXPECT_EQ(CASE_A, CASE_A);
EXPECT_NE(CASE_A, CASE_B);
EXPECT_LT(CASE_A, CASE_B);
EXPECT_LE(CASE_A, CASE_B);
EXPECT_GT(CASE_B, CASE_A);
EXPECT_GE(CASE_A, CASE_A);
EXPECT_NONFATAL_FAILURE(EXPECT_GE(CASE_A, CASE_B),
"(CASE_A) >= (CASE_B)");
ASSERT_EQ(CASE_A, CASE_A);
ASSERT_NE(CASE_A, CASE_B);
ASSERT_LT(CASE_A, CASE_B);
ASSERT_LE(CASE_A, CASE_B);
ASSERT_GT(CASE_B, CASE_A);
ASSERT_GE(CASE_A, CASE_A);
EXPECT_FATAL_FAILURE(ASSERT_EQ(CASE_A, CASE_B),
"Value of: CASE_B");
}
#endif // defined(GTEST_OS_LINUX) || defined(GTEST_OS_WINDOWS)
#if defined(GTEST_OS_WINDOWS)
static HRESULT UnexpectedHRESULTFailure() {
return E_UNEXPECTED;
}
static HRESULT OkHRESULTSuccess() {
return S_OK;
}
static HRESULT FalseHRESULTSuccess() {
return S_FALSE;
}
// HRESULT assertion tests test both zero and non-zero
// success codes as well as failure message for each.
//
// Windows CE doesn't support message texts.
TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
EXPECT_HRESULT_SUCCEEDED(S_OK);
EXPECT_HRESULT_SUCCEEDED(S_FALSE);
EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
"Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
" Actual: 0x8000FFFF");
}
TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
ASSERT_HRESULT_SUCCEEDED(S_OK);
ASSERT_HRESULT_SUCCEEDED(S_FALSE);
EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
"Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
" Actual: 0x8000FFFF");
}
TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
EXPECT_HRESULT_FAILED(E_UNEXPECTED);
EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
"Expected: (OkHRESULTSuccess()) fails.\n"
" Actual: 0x00000000");
EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
"Expected: (FalseHRESULTSuccess()) fails.\n"
" Actual: 0x00000001");
}
TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
ASSERT_HRESULT_FAILED(E_UNEXPECTED);
EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
"Expected: (OkHRESULTSuccess()) fails.\n"
" Actual: 0x00000000");
EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
"Expected: (FalseHRESULTSuccess()) fails.\n"
" Actual: 0x00000001");
}
// Tests that streaming to the HRESULT macros works.
TEST(HRESULTAssertionTest, Streaming) {
EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
EXPECT_NONFATAL_FAILURE(
EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(
ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
"expected failure");
EXPECT_NONFATAL_FAILURE(
EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(
ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
"expected failure");
}
#endif // defined(GTEST_OS_WINDOWS)
// Tests that the assertion macros behave like single statements.
TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
if (false)
ASSERT_TRUE(false) << "This should never be executed; "
"It's a compilation test only.";
if (true)
EXPECT_FALSE(false);
else
;
if (false)
ASSERT_LT(1, 3);
if (false)
;
else
EXPECT_GT(3, 2) << "";
}
#if GTEST_HAS_EXCEPTIONS
TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
if (false)
EXPECT_THROW(1, bool);
if (true)
EXPECT_THROW(ThrowAnInteger(), int);
else
;
if (false)
EXPECT_NO_THROW(ThrowAnInteger());
if (true)
EXPECT_NO_THROW(1);
else
;
if (false)
EXPECT_ANY_THROW(1);
if (true)
EXPECT_ANY_THROW(ThrowAnInteger());
else
;
}
#endif // GTEST_HAS_EXCEPTIONS
TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
if (false)
EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
<< "It's a compilation test only.";
else
;
if (false)
ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
else
;
if (true)
EXPECT_NO_FATAL_FAILURE(SUCCEED());
else
;
if (false)
;
else
ASSERT_NO_FATAL_FAILURE(SUCCEED());
}
// Tests that the assertion macros work well with switch statements.
TEST(AssertionSyntaxTest, WorksWithSwitch) {
switch (0) {
case 1:
break;
default:
ASSERT_TRUE(true);
}
switch (0)
case 0:
EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
// Binary assertions are implemented using a different code path
// than the Boolean assertions. Hence we test them separately.
switch (0) {
case 1:
default:
ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
}
switch (0)
case 0:
EXPECT_NE(1, 2);
}
#if GTEST_HAS_EXCEPTIONS
void ThrowAString() {
throw "String";
}
// Test that the exception assertion macros compile and work with const
// type qualifier.
TEST(AssertionSyntaxTest, WorksWithConst) {
ASSERT_THROW(ThrowAString(), const char*);
EXPECT_THROW(ThrowAString(), const char*);
}
#endif // GTEST_HAS_EXCEPTIONS
} // namespace
// Returns the number of successful parts in the current test.
static size_t GetSuccessfulPartCount() {
return UnitTest::GetInstance()->impl()->current_test_result()->
successful_part_count();
}
namespace testing {
// Tests that Google Test tracks SUCCEED*.
TEST(SuccessfulAssertionTest, SUCCEED) {
SUCCEED();
SUCCEED() << "OK";
EXPECT_EQ(2u, GetSuccessfulPartCount());
}
// Tests that Google Test doesn't track successful EXPECT_*.
TEST(SuccessfulAssertionTest, EXPECT) {
EXPECT_TRUE(true);
EXPECT_EQ(0u, GetSuccessfulPartCount());
}
// Tests that Google Test doesn't track successful EXPECT_STR*.
TEST(SuccessfulAssertionTest, EXPECT_STR) {
EXPECT_STREQ("", "");
EXPECT_EQ(0u, GetSuccessfulPartCount());
}
// Tests that Google Test doesn't track successful ASSERT_*.
TEST(SuccessfulAssertionTest, ASSERT) {
ASSERT_TRUE(true);
EXPECT_EQ(0u, GetSuccessfulPartCount());
}
// Tests that Google Test doesn't track successful ASSERT_STR*.
TEST(SuccessfulAssertionTest, ASSERT_STR) {
ASSERT_STREQ("", "");
EXPECT_EQ(0u, GetSuccessfulPartCount());
}
} // namespace testing
namespace {
// Tests EXPECT_TRUE.
TEST(ExpectTest, EXPECT_TRUE) {
EXPECT_TRUE(2 > 1); // NOLINT
EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
"Value of: 2 < 1\n"
" Actual: false\n"
"Expected: true");
EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
"2 > 3");
}
// Tests EXPECT_FALSE.
TEST(ExpectTest, EXPECT_FALSE) {
EXPECT_FALSE(2 < 1); // NOLINT
EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
"Value of: 2 > 1\n"
" Actual: true\n"
"Expected: false");
EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
"2 < 3");
}
// Tests EXPECT_EQ.
TEST(ExpectTest, EXPECT_EQ) {
EXPECT_EQ(5, 2 + 3);
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
"Value of: 2*3\n"
" Actual: 6\n"
"Expected: 5");
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
"2 - 3");
}
// Tests using EXPECT_EQ on double values. The purpose is to make
// sure that the specialization we did for integer and anonymous enums
// isn't used for double arguments.
TEST(ExpectTest, EXPECT_EQ_Double) {
// A success.
EXPECT_EQ(5.6, 5.6);
// A failure.
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
"5.1");
}
#ifndef GTEST_OS_SYMBIAN
// Tests EXPECT_EQ(NULL, pointer).
TEST(ExpectTest, EXPECT_EQ_NULL) {
// A success.
const char* p = NULL;
EXPECT_EQ(NULL, p);
// A failure.
int n = 0;
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n),
"Value of: &n\n");
}
#endif // GTEST_OS_SYMBIAN
// Tests EXPECT_EQ(0, non_pointer). Since the literal 0 can be
// treated as a null pointer by the compiler, we need to make sure
// that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
// EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
TEST(ExpectTest, EXPECT_EQ_0) {
int n = 0;
// A success.
EXPECT_EQ(0, n);
// A failure.
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
"Expected: 0");
}
// Tests EXPECT_NE.
TEST(ExpectTest, EXPECT_NE) {
EXPECT_NE(6, 7);
EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
"Expected: ('a') != ('a'), "
"actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
"2");
char* const p0 = NULL;
EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
"p0");
// Only way to get the Nokia compiler to compile the cast
// is to have a separate void* variable first. Putting
// the two casts on the same line doesn't work, neither does
// a direct C-style to char*.
void* pv1 = (void*)0x1234; // NOLINT
char* const p1 = reinterpret_cast<char*>(pv1);
EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
"p1");
}
// Tests EXPECT_LE.
TEST(ExpectTest, EXPECT_LE) {
EXPECT_LE(2, 3);
EXPECT_LE(2, 2);
EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
"Expected: (2) <= (0), actual: 2 vs 0");
EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
"(1.1) <= (0.9)");
}
// Tests EXPECT_LT.
TEST(ExpectTest, EXPECT_LT) {
EXPECT_LT(2, 3);
EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
"Expected: (2) < (2), actual: 2 vs 2");
EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
"(2) < (1)");
}
// Tests EXPECT_GE.
TEST(ExpectTest, EXPECT_GE) {
EXPECT_GE(2, 1);
EXPECT_GE(2, 2);
EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
"Expected: (2) >= (3), actual: 2 vs 3");
EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
"(0.9) >= (1.1)");
}
// Tests EXPECT_GT.
TEST(ExpectTest, EXPECT_GT) {
EXPECT_GT(2, 1);
EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
"Expected: (2) > (2), actual: 2 vs 2");
EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
"(2) > (3)");
}
#if GTEST_HAS_EXCEPTIONS
// Tests EXPECT_THROW.
TEST(ExpectTest, EXPECT_THROW) {
EXPECT_THROW(ThrowAnInteger(), int);
EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
"Expected: ThrowAnInteger() throws an exception of "\
"type bool.\n Actual: it throws a different type.");
EXPECT_NONFATAL_FAILURE(EXPECT_THROW(1, bool),
"Expected: 1 throws an exception of type bool.\n"\
" Actual: it throws nothing.");
}
// Tests EXPECT_NO_THROW.
TEST(ExpectTest, EXPECT_NO_THROW) {
EXPECT_NO_THROW(1);
EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
"Expected: ThrowAnInteger() doesn't throw an "\
"exception.\n Actual: it throws.");
}
// Tests EXPECT_ANY_THROW.
TEST(ExpectTest, EXPECT_ANY_THROW) {
EXPECT_ANY_THROW(ThrowAnInteger());
EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(1),
"Expected: 1 throws an exception.\n Actual: it "\
"doesn't.");
}
#endif // GTEST_HAS_EXCEPTIONS
// Make sure we deal with the precedence of <<.
TEST(ExpectTest, ExpectPrecedence) {
EXPECT_EQ(1 < 2, true);
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
"Value of: true && false");
}
// Tests the StreamableToString() function.
// Tests using StreamableToString() on a scalar.
TEST(StreamableToStringTest, Scalar) {
EXPECT_STREQ("5", StreamableToString(5).c_str());
}
// Tests using StreamableToString() on a non-char pointer.
TEST(StreamableToStringTest, Pointer) {
int n = 0;
int* p = &n;
EXPECT_STRNE("(null)", StreamableToString(p).c_str());
}
// Tests using StreamableToString() on a NULL non-char pointer.
TEST(StreamableToStringTest, NullPointer) {
int* p = NULL;
EXPECT_STREQ("(null)", StreamableToString(p).c_str());
}
// Tests using StreamableToString() on a C string.
TEST(StreamableToStringTest, CString) {
EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
}
// Tests using StreamableToString() on a NULL C string.
TEST(StreamableToStringTest, NullCString) {
char* p = NULL;
EXPECT_STREQ("(null)", StreamableToString(p).c_str());
}
// Tests using streamable values as assertion messages.
#if GTEST_HAS_STD_STRING
// Tests using std::string as an assertion message.
TEST(StreamableTest, string) {
static const std::string str(
"This failure message is a std::string, and is expected.");
EXPECT_FATAL_FAILURE(FAIL() << str,
str.c_str());
}
// Tests that we can output strings containing embedded NULs.
// Limited to Linux because we can only do this with std::string's.
TEST(StreamableTest, stringWithEmbeddedNUL) {
static const char char_array_with_nul[] =
"Here's a NUL\0 and some more string";
static const std::string string_with_nul(char_array_with_nul,
sizeof(char_array_with_nul)
- 1); // drops the trailing NUL
EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
"Here's a NUL\\0 and some more string");
}
#endif // GTEST_HAS_STD_STRING
// Tests that we can output a NUL char.
TEST(StreamableTest, NULChar) {
EXPECT_FATAL_FAILURE({ // NOLINT
FAIL() << "A NUL" << '\0' << " and some more string";
}, "A NUL\\0 and some more string");
}
// Tests using int as an assertion message.
TEST(StreamableTest, int) {
EXPECT_FATAL_FAILURE(FAIL() << 900913,
"900913");
}
// Tests using NULL char pointer as an assertion message.
//
// In MSVC, streaming a NULL char * causes access violation. Google Test
// implemented a workaround (substituting "(null)" for NULL). This
// tests whether the workaround works.
TEST(StreamableTest, NullCharPtr) {
EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
"(null)");
}
// Tests that basic IO manipulators (endl, ends, and flush) can be
// streamed to testing::Message.
TEST(StreamableTest, BasicIoManip) {
EXPECT_FATAL_FAILURE({ // NOLINT
FAIL() << "Line 1." << std::endl
<< "A NUL char " << std::ends << std::flush << " in line 2.";
}, "Line 1.\nA NUL char \\0 in line 2.");
}
// Tests the macros that haven't been covered so far.
void AddFailureHelper(bool* aborted) {
*aborted = true;
ADD_FAILURE() << "Failure";
*aborted = false;
}
// Tests ADD_FAILURE.
TEST(MacroTest, ADD_FAILURE) {
bool aborted = true;
EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
"Failure");
EXPECT_FALSE(aborted);
}
// Tests FAIL.
TEST(MacroTest, FAIL) {
EXPECT_FATAL_FAILURE(FAIL(),
"Failed");
EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
"Intentional failure.");
}
// Tests SUCCEED
TEST(MacroTest, SUCCEED) {
SUCCEED();
SUCCEED() << "Explicit success.";
}
// Tests for EXPECT_EQ() and ASSERT_EQ().
//
// These tests fail *intentionally*, s.t. the failure messages can be
// generated and tested.
//
// We have different tests for different argument types.
// Tests using bool values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, Bool) {
EXPECT_EQ(true, true);
EXPECT_FATAL_FAILURE(ASSERT_EQ(false, true),
"Value of: true");
}
// Tests using int values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, Int) {
ASSERT_EQ(32, 32);
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
"33");
}
// Tests using time_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, Time_T) {
EXPECT_EQ(static_cast<time_t>(0),
static_cast<time_t>(0));
EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
static_cast<time_t>(1234)),
"1234");
}
// Tests using char values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, Char) {
ASSERT_EQ('z', 'z');
const char ch = 'b';
EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
"ch");
EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
"ch");
}
// Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, WideChar) {
EXPECT_EQ(L'b', L'b');
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
"Value of: L'x'\n"
" Actual: L'x' (120, 0x78)\n"
"Expected: L'\0'\n"
"Which is: L'\0' (0, 0x0)");
static wchar_t wchar;
wchar = L'b';
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
"wchar");
wchar = L'\x8119';
EXPECT_FATAL_FAILURE(ASSERT_EQ(L'\x8120', wchar),
"Value of: wchar");
}
#if GTEST_HAS_STD_STRING
// Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, StdString) {
// Compares a const char* to an std::string that has identical
// content.
ASSERT_EQ("Test", ::std::string("Test"));
// Compares two identical std::strings.
static const ::std::string str1("A * in the middle");
static const ::std::string str2(str1);
EXPECT_EQ(str1, str2);
// Compares a const char* to an std::string that has different
// content
EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
"::std::string(\"test\")");
// Compares an std::string to a char* that has different content.
char* const p1 = const_cast<char*>("foo");
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
"p1");
// Compares two std::strings that have different contents, one of
// which having a NUL character in the middle. This should fail.
static ::std::string str3(str1);
str3.at(2) = '\0';
EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
"Value of: str3\n"
" Actual: \"A \\0 in the middle\"");
}
#endif // GTEST_HAS_STD_STRING
#if GTEST_HAS_STD_WSTRING
// Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, StdWideString) {
// Compares an std::wstring to a const wchar_t* that has identical
// content.
EXPECT_EQ(::std::wstring(L"Test\x8119"), L"Test\x8119");
// Compares two identical std::wstrings.
const ::std::wstring wstr1(L"A * in the middle");
const ::std::wstring wstr2(wstr1);
ASSERT_EQ(wstr1, wstr2);
// Compares an std::wstring to a const wchar_t* that has different
// content.
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_EQ(::std::wstring(L"Test\x8119"), L"Test\x8120");
}, "L\"Test\\x8120\"");
// Compares two std::wstrings that have different contents, one of
// which having a NUL character in the middle.
::std::wstring wstr3(wstr1);
wstr3.at(2) = L'\0';
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
"wstr3");
// Compares a wchar_t* to an std::wstring that has different
// content.
EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
}, "");
}
#endif // GTEST_HAS_STD_WSTRING
#if GTEST_HAS_GLOBAL_STRING
// Tests using ::string values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, GlobalString) {
// Compares a const char* to a ::string that has identical content.
EXPECT_EQ("Test", ::string("Test"));
// Compares two identical ::strings.
const ::string str1("A * in the middle");
const ::string str2(str1);
ASSERT_EQ(str1, str2);
// Compares a ::string to a const char* that has different content.
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
"test");
// Compares two ::strings that have different contents, one of which
// having a NUL character in the middle.
::string str3(str1);
str3.at(2) = '\0';
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
"str3");
// Compares a ::string to a char* that has different content.
EXPECT_FATAL_FAILURE({ // NOLINT
ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
}, "");
}
#endif // GTEST_HAS_GLOBAL_STRING
#if GTEST_HAS_GLOBAL_WSTRING
// Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, GlobalWideString) {
// Compares a const wchar_t* to a ::wstring that has identical content.
ASSERT_EQ(L"Test\x8119", ::wstring(L"Test\x8119"));
// Compares two identical ::wstrings.
static const ::wstring wstr1(L"A * in the middle");
static const ::wstring wstr2(wstr1);
EXPECT_EQ(wstr1, wstr2);
// Compares a const wchar_t* to a ::wstring that has different
// content.
EXPECT_NONFATAL_FAILURE({ // NOLINT
EXPECT_EQ(L"Test\x8120", ::wstring(L"Test\x8119"));
}, "Test\\x8119");
// Compares a wchar_t* to a ::wstring that has different content.
wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
"bar");
// Compares two ::wstrings that have different contents, one of which
// having a NUL character in the middle.
static ::wstring wstr3;
wstr3 = wstr1;
wstr3.at(2) = L'\0';
EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
"wstr3");
}
#endif // GTEST_HAS_GLOBAL_WSTRING
// Tests using char pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, CharPointer) {
char* const p0 = NULL;
// Only way to get the Nokia compiler to compile the cast
// is to have a separate void* variable first. Putting
// the two casts on the same line doesn't work, neither does
// a direct C-style to char*.
void* pv1 = (void*)0x1234; // NOLINT
void* pv2 = (void*)0xABC0; // NOLINT
char* const p1 = reinterpret_cast<char*>(pv1);
char* const p2 = reinterpret_cast<char*>(pv2);
ASSERT_EQ(p1, p1);
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
"Value of: p2");
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
"p2");
EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
reinterpret_cast<char*>(0xABC0)),
"ABC0");
}
// Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, WideCharPointer) {
wchar_t* const p0 = NULL;
// Only way to get the Nokia compiler to compile the cast
// is to have a separate void* variable first. Putting
// the two casts on the same line doesn't work, neither does
// a direct C-style to char*.
void* pv1 = (void*)0x1234; // NOLINT
void* pv2 = (void*)0xABC0; // NOLINT
wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
EXPECT_EQ(p0, p0);
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
"Value of: p2");
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
"p2");
void* pv3 = (void*)0x1234; // NOLINT
void* pv4 = (void*)0xABC0; // NOLINT
const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
"p4");
}
// Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
TEST(EqAssertionTest, OtherPointer) {
ASSERT_EQ(static_cast<const int*>(NULL),
static_cast<const int*>(NULL));
EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
reinterpret_cast<const int*>(0x1234)),
"0x1234");
}
// Tests the FRIEND_TEST macro.
// This class has a private member we want to test. We will test it
// both in a TEST and in a TEST_F.
class Foo {
public:
Foo() {}
private:
int Bar() const { return 1; }
// Declares the friend tests that can access the private member
// Bar().
FRIEND_TEST(FRIEND_TEST_Test, TEST);
FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
};
// Tests that the FRIEND_TEST declaration allows a TEST to access a
// class's private members. This should compile.
TEST(FRIEND_TEST_Test, TEST) {
ASSERT_EQ(1, Foo().Bar());
}
// The fixture needed to test using FRIEND_TEST with TEST_F.
class FRIEND_TEST_Test2 : public Test {
protected:
Foo foo;
};
// Tests that the FRIEND_TEST declaration allows a TEST_F to access a
// class's private members. This should compile.
TEST_F(FRIEND_TEST_Test2, TEST_F) {
ASSERT_EQ(1, foo.Bar());
}
// Tests the life cycle of Test objects.
// The test fixture for testing the life cycle of Test objects.
//
// This class counts the number of live test objects that uses this
// fixture.
class TestLifeCycleTest : public Test {
protected:
// Constructor. Increments the number of test objects that uses
// this fixture.
TestLifeCycleTest() { count_++; }
// Destructor. Decrements the number of test objects that uses this
// fixture.
~TestLifeCycleTest() { count_--; }
// Returns the number of live test objects that uses this fixture.
int count() const { return count_; }
private:
static int count_;
};
int TestLifeCycleTest::count_ = 0;
// Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest, Test1) {
// There should be only one test object in this test case that's
// currently alive.
ASSERT_EQ(1, count());
}
// Tests the life cycle of test objects.
TEST_F(TestLifeCycleTest, Test2) {
// After Test1 is done and Test2 is started, there should still be
// only one live test object, as the object for Test1 should've been
// deleted.
ASSERT_EQ(1, count());
}
} // namespace
// Tests streaming a user type whose definition and operator << are
// both in the global namespace.
class Base {
public:
explicit Base(int x) : x_(x) {}
int x() const { return x_; }
private:
int x_;
};
std::ostream& operator<<(std::ostream& os,
const Base& val) {
return os << val.x();
}
std::ostream& operator<<(std::ostream& os,
const Base* pointer) {
return os << "(" << pointer->x() << ")";
}
TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
Message msg;
Base a(1);
msg << a << &a; // Uses ::operator<<.
EXPECT_STREQ("1(1)", msg.GetString().c_str());
}
// Tests streaming a user type whose definition and operator<< are
// both in an unnamed namespace.
namespace {
class MyTypeInUnnamedNameSpace : public Base {
public:
explicit MyTypeInUnnamedNameSpace(int x): Base(x) {}
};
std::ostream& operator<<(std::ostream& os,
const MyTypeInUnnamedNameSpace& val) {
return os << val.x();
}
std::ostream& operator<<(std::ostream& os,
const MyTypeInUnnamedNameSpace* pointer) {
return os << "(" << pointer->x() << ")";
}
} // namespace
TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
Message msg;
MyTypeInUnnamedNameSpace a(1);
msg << a << &a; // Uses <unnamed_namespace>::operator<<.
EXPECT_STREQ("1(1)", msg.GetString().c_str());
}
// Tests streaming a user type whose definition and operator<< are
// both in a user namespace.
namespace namespace1 {
class MyTypeInNameSpace1 : public Base {
public:
explicit MyTypeInNameSpace1(int x): Base(x) {}
};
std::ostream& operator<<(std::ostream& os,
const MyTypeInNameSpace1& val) {
return os << val.x();
}
std::ostream& operator<<(std::ostream& os,
const MyTypeInNameSpace1* pointer) {
return os << "(" << pointer->x() << ")";
}
} // namespace namespace1
TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
Message msg;
namespace1::MyTypeInNameSpace1 a(1);
msg << a << &a; // Uses namespace1::operator<<.
EXPECT_STREQ("1(1)", msg.GetString().c_str());
}
// Tests streaming a user type whose definition is in a user namespace
// but whose operator<< is in the global namespace.
namespace namespace2 {
class MyTypeInNameSpace2 : public ::Base {
public:
explicit MyTypeInNameSpace2(int x): Base(x) {}
};
} // namespace namespace2
std::ostream& operator<<(std::ostream& os,
const namespace2::MyTypeInNameSpace2& val) {
return os << val.x();
}
std::ostream& operator<<(std::ostream& os,
const namespace2::MyTypeInNameSpace2* pointer) {
return os << "(" << pointer->x() << ")";
}
TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
Message msg;
namespace2::MyTypeInNameSpace2 a(1);
msg << a << &a; // Uses ::operator<<.
EXPECT_STREQ("1(1)", msg.GetString().c_str());
}
// Tests streaming NULL pointers to testing::Message.
TEST(MessageTest, NullPointers) {
Message msg;
char* const p1 = NULL;
unsigned char* const p2 = NULL;
int* p3 = NULL;
double* p4 = NULL;
bool* p5 = NULL;
Message* p6 = NULL;
msg << p1 << p2 << p3 << p4 << p5 << p6;
ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
msg.GetString().c_str());
}
// Tests streaming wide strings to testing::Message.
TEST(MessageTest, WideStrings) {
// Streams a NULL of type const wchar_t*.
const wchar_t* const_wstr = NULL;
EXPECT_STREQ("(null)",
(Message() << const_wstr).GetString().c_str());
// Streams a NULL of type wchar_t*.
wchar_t* wstr = NULL;
EXPECT_STREQ("(null)",
(Message() << wstr).GetString().c_str());
// Streams a non-NULL of type const wchar_t*.
const_wstr = L"abc\x8119";
EXPECT_STREQ("abc\xe8\x84\x99",
(Message() << const_wstr).GetString().c_str());
// Streams a non-NULL of type wchar_t*.
wstr = const_cast<wchar_t*>(const_wstr);
EXPECT_STREQ("abc\xe8\x84\x99",
(Message() << wstr).GetString().c_str());
}
// This line tests that we can define tests in the testing namespace.
namespace testing {
// Tests the TestInfo class.
class TestInfoTest : public Test {
protected:
static TestInfo * GetTestInfo(const char* test_name) {
return UnitTest::GetInstance()->impl()->
GetTestCase("TestInfoTest", "", NULL, NULL)->
GetTestInfo(test_name);
}
static const TestResult* GetTestResult(
const TestInfo* test_info) {
return test_info->result();
}
};
// Tests TestInfo::test_case_name() and TestInfo::name().
TEST_F(TestInfoTest, Names) {
TestInfo * const test_info = GetTestInfo("Names");
ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
ASSERT_STREQ("Names", test_info->name());
}
// Tests TestInfo::result().
TEST_F(TestInfoTest, result) {
TestInfo * const test_info = GetTestInfo("result");
// Initially, there is no TestPartResult for this test.
ASSERT_EQ(0u, GetTestResult(test_info)->total_part_count());
// After the previous assertion, there is still none.
ASSERT_EQ(0u, GetTestResult(test_info)->total_part_count());
}
// Tests setting up and tearing down a test case.
class SetUpTestCaseTest : public Test {
protected:
// This will be called once before the first test in this test case
// is run.
static void SetUpTestCase() {
printf("Setting up the test case . . .\n");
// Initializes some shared resource. In this simple example, we
// just create a C string. More complex stuff can be done if
// desired.
shared_resource_ = "123";
// Increments the number of test cases that have been set up.
counter_++;
// SetUpTestCase() should be called only once.
EXPECT_EQ(1, counter_);
}
// This will be called once after the last test in this test case is
// run.
static void TearDownTestCase() {
printf("Tearing down the test case . . .\n");
// Decrements the number of test cases that have been set up.
counter_--;
// TearDownTestCase() should be called only once.
EXPECT_EQ(0, counter_);
// Cleans up the shared resource.
shared_resource_ = NULL;
}
// This will be called before each test in this test case.
virtual void SetUp() {
// SetUpTestCase() should be called only once, so counter_ should
// always be 1.
EXPECT_EQ(1, counter_);
}
// Number of test cases that have been set up.
static int counter_;
// Some resource to be shared by all tests in this test case.
static const char* shared_resource_;
};
int SetUpTestCaseTest::counter_ = 0;
const char* SetUpTestCaseTest::shared_resource_ = NULL;
// A test that uses the shared resource.
TEST_F(SetUpTestCaseTest, Test1) {
EXPECT_STRNE(NULL, shared_resource_);
}
// Another test that uses the shared resource.
TEST_F(SetUpTestCaseTest, Test2) {
EXPECT_STREQ("123", shared_resource_);
}
// The InitGoogleTestTest test case tests testing::InitGoogleTest().
// The Flags struct stores a copy of all Google Test flags.
struct Flags {
// Constructs a Flags struct where each flag has its default value.
Flags() : also_run_disabled_tests(false),
break_on_failure(false),
catch_exceptions(false),
death_test_use_fork(false),
filter(""),
list_tests(false),
output(""),
print_time(false),
repeat(1) {}
// Factory methods.
// Creates a Flags struct where the gtest_also_run_disabled_tests flag has
// the given value.
static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
Flags flags;
flags.also_run_disabled_tests = also_run_disabled_tests;
return flags;
}
// Creates a Flags struct where the gtest_break_on_failure flag has
// the given value.
static Flags BreakOnFailure(bool break_on_failure) {
Flags flags;
flags.break_on_failure = break_on_failure;
return flags;
}
// Creates a Flags struct where the gtest_catch_exceptions flag has
// the given value.
static Flags CatchExceptions(bool catch_exceptions) {
Flags flags;
flags.catch_exceptions = catch_exceptions;
return flags;
}
// Creates a Flags struct where the gtest_death_test_use_fork flag has
// the given value.
static Flags DeathTestUseFork(bool death_test_use_fork) {
Flags flags;
flags.death_test_use_fork = death_test_use_fork;
return flags;
}
// Creates a Flags struct where the gtest_filter flag has the given
// value.
static Flags Filter(const char* filter) {
Flags flags;
flags.filter = filter;
return flags;
}
// Creates a Flags struct where the gtest_list_tests flag has the
// given value.
static Flags ListTests(bool list_tests) {
Flags flags;
flags.list_tests = list_tests;
return flags;
}
// Creates a Flags struct where the gtest_output flag has the given
// value.
static Flags Output(const char* output) {
Flags flags;
flags.output = output;
return flags;
}
// Creates a Flags struct where the gtest_print_time flag has the given
// value.
static Flags PrintTime(bool print_time) {
Flags flags;
flags.print_time = print_time;
return flags;
}
// Creates a Flags struct where the gtest_repeat flag has the given
// value.
static Flags Repeat(Int32 repeat) {
Flags flags;
flags.repeat = repeat;
return flags;
}
// These fields store the flag values.
bool also_run_disabled_tests;
bool break_on_failure;
bool catch_exceptions;
bool death_test_use_fork;
const char* filter;
bool list_tests;
const char* output;
bool print_time;
Int32 repeat;
};
// Fixture for testing InitGoogleTest().
class InitGoogleTestTest : public Test {
protected:
// Clears the flags before each test.
virtual void SetUp() {
GTEST_FLAG(also_run_disabled_tests) = false;
GTEST_FLAG(break_on_failure) = false;
GTEST_FLAG(catch_exceptions) = false;
GTEST_FLAG(death_test_use_fork) = false;
GTEST_FLAG(filter) = "";
GTEST_FLAG(list_tests) = false;
GTEST_FLAG(output) = "";
GTEST_FLAG(print_time) = false;
GTEST_FLAG(repeat) = 1;
}
// Asserts that two narrow or wide string arrays are equal.
template <typename CharType>
static void AssertStringArrayEq(size_t size1, CharType** array1,
size_t size2, CharType** array2) {
ASSERT_EQ(size1, size2) << " Array sizes different.";
for (size_t i = 0; i != size1; i++) {
ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
}
}
// Verifies that the flag values match the expected values.
static void CheckFlags(const Flags& expected) {
EXPECT_EQ(expected.also_run_disabled_tests,
GTEST_FLAG(also_run_disabled_tests));
EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
}
// Parses a command line (specified by argc1 and argv1), then
// verifies that the flag values are expected and that the
// recognized flags are removed from the command line.
template <typename CharType>
static void TestParsingFlags(int argc1, const CharType** argv1,
int argc2, const CharType** argv2,
const Flags& expected) {
// Parses the command line.
internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
// Verifies the flag values.
CheckFlags(expected);
// Verifies that the recognized flags are removed from the command
// line.
AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
}
// This macro wraps TestParsingFlags s.t. the user doesn't need
// to specify the array sizes.
#define TEST_PARSING_FLAGS(argv1, argv2, expected) \
TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
sizeof(argv2)/sizeof(*argv2) - 1, argv2, expected)
};
// Tests parsing an empty command line.
TEST_F(InitGoogleTestTest, Empty) {
const char* argv[] = {
NULL
};
const char* argv2[] = {
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags());
}
// Tests parsing a command line that has no flag.
TEST_F(InitGoogleTestTest, NoFlag) {
const char* argv[] = {
"foo.exe",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags());
}
// Tests parsing a bad --gtest_filter flag.
TEST_F(InitGoogleTestTest, FilterBad) {
const char* argv[] = {
"foo.exe",
"--gtest_filter",
NULL
};
const char* argv2[] = {
"foo.exe",
"--gtest_filter",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::Filter(""));
}
// Tests parsing an empty --gtest_filter flag.
TEST_F(InitGoogleTestTest, FilterEmpty) {
const char* argv[] = {
"foo.exe",
"--gtest_filter=",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::Filter(""));
}
// Tests parsing a non-empty --gtest_filter flag.
TEST_F(InitGoogleTestTest, FilterNonEmpty) {
const char* argv[] = {
"foo.exe",
"--gtest_filter=abc",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::Filter("abc"));
}
// Tests parsing --gtest_break_on_failure.
TEST_F(InitGoogleTestTest, BreakOnFailureNoDef) {
const char* argv[] = {
"foo.exe",
"--gtest_break_on_failure",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::BreakOnFailure(true));
}
// Tests parsing --gtest_break_on_failure=0.
TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
const char* argv[] = {
"foo.exe",
"--gtest_break_on_failure=0",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::BreakOnFailure(false));
}
// Tests parsing --gtest_break_on_failure=f.
TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
const char* argv[] = {
"foo.exe",
"--gtest_break_on_failure=f",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::BreakOnFailure(false));
}
// Tests parsing --gtest_break_on_failure=F.
TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
const char* argv[] = {
"foo.exe",
"--gtest_break_on_failure=F",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::BreakOnFailure(false));
}
// Tests parsing a --gtest_break_on_failure flag that has a "true"
// definition.
TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
const char* argv[] = {
"foo.exe",
"--gtest_break_on_failure=1",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::BreakOnFailure(true));
}
// Tests parsing --gtest_catch_exceptions.
TEST_F(InitGoogleTestTest, CatchExceptions) {
const char* argv[] = {
"foo.exe",
"--gtest_catch_exceptions",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::CatchExceptions(true));
}
// Tests parsing --gtest_death_test_use_fork.
TEST_F(InitGoogleTestTest, DeathTestUseFork) {
const char* argv[] = {
"foo.exe",
"--gtest_death_test_use_fork",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::DeathTestUseFork(true));
}
// Tests having the same flag twice with different values. The
// expected behavior is that the one coming last takes precedence.
TEST_F(InitGoogleTestTest, DuplicatedFlags) {
const char* argv[] = {
"foo.exe",
"--gtest_filter=a",
"--gtest_filter=b",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::Filter("b"));
}
// Tests having an unrecognized flag on the command line.
TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
const char* argv[] = {
"foo.exe",
"--gtest_break_on_failure",
"bar", // Unrecognized by Google Test.
"--gtest_filter=b",
NULL
};
const char* argv2[] = {
"foo.exe",
"bar",
NULL
};
Flags flags;
flags.break_on_failure = true;
flags.filter = "b";
TEST_PARSING_FLAGS(argv, argv2, flags);
}
// Tests having a --gtest_list_tests flag
TEST_F(InitGoogleTestTest, ListTestsFlag) {
const char* argv[] = {
"foo.exe",
"--gtest_list_tests",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::ListTests(true));
}
// Tests having a --gtest_list_tests flag with a "true" value
TEST_F(InitGoogleTestTest, ListTestsTrue) {
const char* argv[] = {
"foo.exe",
"--gtest_list_tests=1",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::ListTests(true));
}
// Tests having a --gtest_list_tests flag with a "false" value
TEST_F(InitGoogleTestTest, ListTestsFalse) {
const char* argv[] = {
"foo.exe",
"--gtest_list_tests=0",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::ListTests(false));
}
// Tests parsing --gtest_list_tests=f.
TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
const char* argv[] = {
"foo.exe",
"--gtest_list_tests=f",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::ListTests(false));
}
// Tests parsing --gtest_break_on_failure=F.
TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
const char* argv[] = {
"foo.exe",
"--gtest_list_tests=F",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::ListTests(false));
}
// Tests parsing --gtest_output (invalid).
TEST_F(InitGoogleTestTest, OutputEmpty) {
const char* argv[] = {
"foo.exe",
"--gtest_output",
NULL
};
const char* argv2[] = {
"foo.exe",
"--gtest_output",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags());
}
// Tests parsing --gtest_output=xml
TEST_F(InitGoogleTestTest, OutputXml) {
const char* argv[] = {
"foo.exe",
"--gtest_output=xml",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::Output("xml"));
}
// Tests parsing --gtest_output=xml:file
TEST_F(InitGoogleTestTest, OutputXmlFile) {
const char* argv[] = {
"foo.exe",
"--gtest_output=xml:file",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::Output("xml:file"));
}
// Tests parsing --gtest_output=xml:directory/path/
TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
const char* argv[] = {
"foo.exe",
"--gtest_output=xml:directory/path/",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::Output("xml:directory/path/"));
}
// Tests having a --gtest_print_time flag
TEST_F(InitGoogleTestTest, PrintTimeFlag) {
const char* argv[] = {
"foo.exe",
"--gtest_print_time",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::PrintTime(true));
}
// Tests having a --gtest_print_time flag with a "true" value
TEST_F(InitGoogleTestTest, PrintTimeTrue) {
const char* argv[] = {
"foo.exe",
"--gtest_print_time=1",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::PrintTime(true));
}
// Tests having a --gtest_print_time flag with a "false" value
TEST_F(InitGoogleTestTest, PrintTimeFalse) {
const char* argv[] = {
"foo.exe",
"--gtest_print_time=0",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::PrintTime(false));
}
// Tests parsing --gtest_print_time=f.
TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
const char* argv[] = {
"foo.exe",
"--gtest_print_time=f",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::PrintTime(false));
}
// Tests parsing --gtest_print_time=F.
TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
const char* argv[] = {
"foo.exe",
"--gtest_print_time=F",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::PrintTime(false));
}
// Tests parsing --gtest_repeat=number
TEST_F(InitGoogleTestTest, Repeat) {
const char* argv[] = {
"foo.exe",
"--gtest_repeat=1000",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::Repeat(1000));
}
// Tests having a --gtest_also_run_disabled_tests flag
TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) {
const char* argv[] = {
"foo.exe",
"--gtest_also_run_disabled_tests",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::AlsoRunDisabledTests(true));
}
// Tests having a --gtest_also_run_disabled_tests flag with a "true" value
TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) {
const char* argv[] = {
"foo.exe",
"--gtest_also_run_disabled_tests=1",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::AlsoRunDisabledTests(true));
}
// Tests having a --gtest_also_run_disabled_tests flag with a "false" value
TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) {
const char* argv[] = {
"foo.exe",
"--gtest_also_run_disabled_tests=0",
NULL
};
const char* argv2[] = {
"foo.exe",
NULL
};
TEST_PARSING_FLAGS(argv, argv2, Flags::AlsoRunDisabledTests(false));
}
#ifdef GTEST_OS_WINDOWS
// Tests parsing wide strings.
TEST_F(InitGoogleTestTest, WideStrings) {
const wchar_t* argv[] = {
L"foo.exe",
L"--gtest_filter=Foo*",
L"--gtest_list_tests=1",
L"--gtest_break_on_failure",
L"--non_gtest_flag",
NULL
};
const wchar_t* argv2[] = {
L"foo.exe",
L"--non_gtest_flag",
NULL
};
Flags expected_flags;
expected_flags.break_on_failure = true;
expected_flags.filter = "Foo*";
expected_flags.list_tests = true;
TEST_PARSING_FLAGS(argv, argv2, expected_flags);
}
#endif // GTEST_OS_WINDOWS
// Tests current_test_info() in UnitTest.
class CurrentTestInfoTest : public Test {
protected:
// Tests that current_test_info() returns NULL before the first test in
// the test case is run.
static void SetUpTestCase() {
// There should be no tests running at this point.
const TestInfo* test_info =
UnitTest::GetInstance()->current_test_info();
EXPECT_EQ(NULL, test_info)
<< "There should be no tests running at this point.";
}
// Tests that current_test_info() returns NULL after the last test in
// the test case has run.
static void TearDownTestCase() {
const TestInfo* test_info =
UnitTest::GetInstance()->current_test_info();
EXPECT_EQ(NULL, test_info)
<< "There should be no tests running at this point.";
}
};
// Tests that current_test_info() returns TestInfo for currently running
// test by checking the expected test name against the actual one.
TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
const TestInfo* test_info =
UnitTest::GetInstance()->current_test_info();
ASSERT_TRUE(NULL != test_info)
<< "There is a test running so we should have a valid TestInfo.";
EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
<< "Expected the name of the currently running test case.";
EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
<< "Expected the name of the currently running test.";
}
// Tests that current_test_info() returns TestInfo for currently running
// test by checking the expected test name against the actual one. We
// use this test to see that the TestInfo object actually changed from
// the previous invocation.
TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
const TestInfo* test_info =
UnitTest::GetInstance()->current_test_info();
ASSERT_TRUE(NULL != test_info)
<< "There is a test running so we should have a valid TestInfo.";
EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
<< "Expected the name of the currently running test case.";
EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
<< "Expected the name of the currently running test.";
}
} // namespace testing
// These two lines test that we can define tests in a namespace that
// has the name "testing" and is nested in another namespace.
namespace my_namespace {
namespace testing {
// Makes sure that TEST knows to use ::testing::Test instead of
// ::my_namespace::testing::Test.
class Test {};
// Makes sure that an assertion knows to use ::testing::Message instead of
// ::my_namespace::testing::Message.
class Message {};
// Makes sure that an assertion knows to use
// ::testing::AssertionResult instead of
// ::my_namespace::testing::AssertionResult.
class AssertionResult {};
// Tests that an assertion that should succeed works as expected.
TEST(NestedTestingNamespaceTest, Success) {
EXPECT_EQ(1, 1) << "This shouldn't fail.";
}
// Tests that an assertion that should fail works as expected.
TEST(NestedTestingNamespaceTest, Failure) {
EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
"This failure is expected.");
}
} // namespace testing
} // namespace my_namespace
// Tests that one can call superclass SetUp and TearDown methods--
// that is, that they are not private.
// No tests are based on this fixture; the test "passes" if it compiles
// successfully.
class ProtectedFixtureMethodsTest : public Test {
protected:
virtual void SetUp() {
Test::SetUp();
}
virtual void TearDown() {
Test::TearDown();
}
};
// StreamingAssertionsTest tests the streaming versions of a representative
// sample of assertions.
TEST(StreamingAssertionsTest, Unconditional) {
SUCCEED() << "expected success";
EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
"expected failure");
}
TEST(StreamingAssertionsTest, Truth) {
EXPECT_TRUE(true) << "unexpected failure";
ASSERT_TRUE(true) << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
"expected failure");
}
TEST(StreamingAssertionsTest, Truth2) {
EXPECT_FALSE(false) << "unexpected failure";
ASSERT_FALSE(false) << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
"expected failure");
}
TEST(StreamingAssertionsTest, IntegerEquals) {
EXPECT_EQ(1, 1) << "unexpected failure";
ASSERT_EQ(1, 1) << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
"expected failure");
}
TEST(StreamingAssertionsTest, IntegerLessThan) {
EXPECT_LT(1, 2) << "unexpected failure";
ASSERT_LT(1, 2) << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
"expected failure");
}
TEST(StreamingAssertionsTest, StringsEqual) {
EXPECT_STREQ("foo", "foo") << "unexpected failure";
ASSERT_STREQ("foo", "foo") << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
"expected failure");
}
TEST(StreamingAssertionsTest, StringsNotEqual) {
EXPECT_STRNE("foo", "bar") << "unexpected failure";
ASSERT_STRNE("foo", "bar") << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
"expected failure");
}
TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
"expected failure");
}
TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
"expected failure");
}
TEST(StreamingAssertionsTest, FloatingPointEquals) {
EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
"expected failure");
EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
"expected failure");
}
#if GTEST_HAS_EXCEPTIONS
TEST(StreamingAssertionsTest, Throw) {
EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
"expected failure", "expected failure");
EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
"expected failure", "expected failure");
}
TEST(StreamingAssertionsTest, NoThrow) {
EXPECT_NO_THROW(1) << "unexpected failure";
ASSERT_NO_THROW(1) << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
"expected failure", "expected failure");
EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
"expected failure", "expected failure");
}
TEST(StreamingAssertionsTest, AnyThrow) {
EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(1) <<
"expected failure", "expected failure");
EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(1) <<
"expected failure", "expected failure");
}
#endif // GTEST_HAS_EXCEPTIONS
// Tests that Google Test correctly decides whether to use colors in the output.
TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
GTEST_FLAG(color) = "yes";
SetEnv("TERM", "xterm"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
SetEnv("TERM", "dumb"); // TERM doesn't support colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
}
TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
SetEnv("TERM", "dumb"); // TERM doesn't support colors.
GTEST_FLAG(color) = "True";
EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
GTEST_FLAG(color) = "t";
EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
GTEST_FLAG(color) = "1";
EXPECT_TRUE(ShouldUseColor(false)); // Stdout is not a TTY.
}
TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
GTEST_FLAG(color) = "no";
SetEnv("TERM", "xterm"); // TERM supports colors.
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
SetEnv("TERM", "dumb"); // TERM doesn't support colors.
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
}
TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
SetEnv("TERM", "xterm"); // TERM supports colors.
GTEST_FLAG(color) = "F";
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
GTEST_FLAG(color) = "0";
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
GTEST_FLAG(color) = "unknown";
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
}
TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
GTEST_FLAG(color) = "auto";
SetEnv("TERM", "xterm"); // TERM supports colors.
EXPECT_FALSE(ShouldUseColor(false)); // Stdout is not a TTY.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
}
TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
GTEST_FLAG(color) = "auto";
#ifdef GTEST_OS_WINDOWS
// On Windows, we ignore the TERM variable as it's usually not set.
SetEnv("TERM", "dumb");
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "");
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "xterm");
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
#else
// On non-Windows platforms, we rely on TERM to determine if the
// terminal supports colors.
SetEnv("TERM", "dumb"); // TERM doesn't support colors.
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "emacs"); // TERM doesn't support colors.
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "vt100"); // TERM doesn't support colors.
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "xterm-mono"); // TERM doesn't support colors.
EXPECT_FALSE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "xterm"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
SetEnv("TERM", "xterm-color"); // TERM supports colors.
EXPECT_TRUE(ShouldUseColor(true)); // Stdout is a TTY.
#endif // GTEST_OS_WINDOWS
}
// Verifies that StaticAssertTypeEq works in a namespace scope.
static bool dummy1 = StaticAssertTypeEq<bool, bool>();
static bool dummy2 = StaticAssertTypeEq<const int, const int>();
// Verifies that StaticAssertTypeEq works in a class.
template <typename T>
class StaticAssertTypeEqTestHelper {
public:
StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
};
TEST(StaticAssertTypeEqTest, WorksInClass) {
StaticAssertTypeEqTestHelper<bool>();
}
// Verifies that StaticAssertTypeEq works inside a function.
typedef int IntAlias;
TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
StaticAssertTypeEq<int, IntAlias>();
StaticAssertTypeEq<int*, IntAlias*>();
}
TEST(ThreadLocalTest, DefaultConstructor) {
ThreadLocal<int> t1;
EXPECT_EQ(0, t1.get());
ThreadLocal<void*> t2;
EXPECT_TRUE(t2.get() == NULL);
}
TEST(ThreadLocalTest, Init) {
ThreadLocal<int> t1(123);
EXPECT_EQ(123, t1.get());
int i = 0;
ThreadLocal<int*> t2(&i);
EXPECT_EQ(&i, t2.get());
}
TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) {
testing::UnitTest* const unit_test = testing::UnitTest::GetInstance();
// We don't have a stack walker in Google Test yet.
EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str());
EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str());
}
#ifndef GTEST_OS_SYMBIAN
// We will want to integrate running the unittests to a different
// main application on Symbian.
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
#ifdef GTEST_HAS_DEATH_TEST
if (!testing::internal::GTEST_FLAG(internal_run_death_test).empty()) {
// Skip the usual output capturing if we're running as the child
// process of an threadsafe-style death test.
freopen("/dev/null", "w", stdout);
}
#endif // GTEST_HAS_DEATH_TEST
// Runs all tests using Google Test.
return RUN_ALL_TESTS();
}
#endif // GTEST_OS_SYMBIAN