mirror of
https://github.com/google/googletest.git
synced 2025-01-08 05:06:29 +08:00
1229 lines
40 KiB
C++
1229 lines
40 KiB
C++
// Copyright 2007, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Author: wan@google.com (Zhanyong Wan)
|
|
|
|
// Google Mock - a framework for writing C++ mock classes.
|
|
//
|
|
// This file tests the built-in actions generated by a script.
|
|
|
|
#include "gmock/gmock-generated-actions.h"
|
|
|
|
#include <functional>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include "gmock/gmock.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
namespace testing {
|
|
namespace gmock_generated_actions_test {
|
|
|
|
using ::std::plus;
|
|
using ::std::string;
|
|
using testing::get;
|
|
using testing::make_tuple;
|
|
using testing::tuple;
|
|
using testing::tuple_element;
|
|
using testing::_;
|
|
using testing::Action;
|
|
using testing::ActionInterface;
|
|
using testing::ByRef;
|
|
using testing::DoAll;
|
|
using testing::Invoke;
|
|
using testing::Return;
|
|
using testing::ReturnNew;
|
|
using testing::SetArgPointee;
|
|
using testing::StaticAssertTypeEq;
|
|
using testing::Unused;
|
|
using testing::WithArgs;
|
|
|
|
// For suppressing compiler warnings on conversion possibly losing precision.
|
|
inline short Short(short n) { return n; } // NOLINT
|
|
inline char Char(char ch) { return ch; }
|
|
|
|
// Sample functions and functors for testing various actions.
|
|
int Nullary() { return 1; }
|
|
|
|
class NullaryFunctor {
|
|
public:
|
|
int operator()() { return 2; }
|
|
};
|
|
|
|
bool g_done = false;
|
|
|
|
bool Unary(int x) { return x < 0; }
|
|
|
|
const char* Plus1(const char* s) { return s + 1; }
|
|
|
|
bool ByConstRef(const std::string& s) { return s == "Hi"; }
|
|
|
|
const double g_double = 0;
|
|
bool ReferencesGlobalDouble(const double& x) { return &x == &g_double; }
|
|
|
|
std::string ByNonConstRef(std::string& s) { return s += "+"; } // NOLINT
|
|
|
|
struct UnaryFunctor {
|
|
int operator()(bool x) { return x ? 1 : -1; }
|
|
};
|
|
|
|
const char* Binary(const char* input, short n) { return input + n; } // NOLINT
|
|
|
|
void VoidBinary(int, char) { g_done = true; }
|
|
|
|
int Ternary(int x, char y, short z) { return x + y + z; } // NOLINT
|
|
|
|
void VoidTernary(int, char, bool) { g_done = true; }
|
|
|
|
int SumOf4(int a, int b, int c, int d) { return a + b + c + d; }
|
|
|
|
std::string Concat4(const char* s1, const char* s2, const char* s3,
|
|
const char* s4) {
|
|
return std::string(s1) + s2 + s3 + s4;
|
|
}
|
|
|
|
int SumOf5(int a, int b, int c, int d, int e) { return a + b + c + d + e; }
|
|
|
|
struct SumOf5Functor {
|
|
int operator()(int a, int b, int c, int d, int e) {
|
|
return a + b + c + d + e;
|
|
}
|
|
};
|
|
|
|
std::string Concat5(const char* s1, const char* s2, const char* s3,
|
|
const char* s4, const char* s5) {
|
|
return std::string(s1) + s2 + s3 + s4 + s5;
|
|
}
|
|
|
|
int SumOf6(int a, int b, int c, int d, int e, int f) {
|
|
return a + b + c + d + e + f;
|
|
}
|
|
|
|
struct SumOf6Functor {
|
|
int operator()(int a, int b, int c, int d, int e, int f) {
|
|
return a + b + c + d + e + f;
|
|
}
|
|
};
|
|
|
|
std::string Concat6(const char* s1, const char* s2, const char* s3,
|
|
const char* s4, const char* s5, const char* s6) {
|
|
return std::string(s1) + s2 + s3 + s4 + s5 + s6;
|
|
}
|
|
|
|
std::string Concat7(const char* s1, const char* s2, const char* s3,
|
|
const char* s4, const char* s5, const char* s6,
|
|
const char* s7) {
|
|
return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7;
|
|
}
|
|
|
|
std::string Concat8(const char* s1, const char* s2, const char* s3,
|
|
const char* s4, const char* s5, const char* s6,
|
|
const char* s7, const char* s8) {
|
|
return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8;
|
|
}
|
|
|
|
std::string Concat9(const char* s1, const char* s2, const char* s3,
|
|
const char* s4, const char* s5, const char* s6,
|
|
const char* s7, const char* s8, const char* s9) {
|
|
return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9;
|
|
}
|
|
|
|
std::string Concat10(const char* s1, const char* s2, const char* s3,
|
|
const char* s4, const char* s5, const char* s6,
|
|
const char* s7, const char* s8, const char* s9,
|
|
const char* s10) {
|
|
return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 + s10;
|
|
}
|
|
|
|
// A helper that turns the type of a C-string literal from const
|
|
// char[N] to const char*.
|
|
inline const char* CharPtr(const char* s) { return s; }
|
|
|
|
// Tests InvokeArgument<N>(...).
|
|
|
|
// Tests using InvokeArgument with a nullary function.
|
|
TEST(InvokeArgumentTest, Function0) {
|
|
Action<int(int, int(*)())> a = InvokeArgument<1>(); // NOLINT
|
|
EXPECT_EQ(1, a.Perform(make_tuple(2, &Nullary)));
|
|
}
|
|
|
|
// Tests using InvokeArgument with a unary function.
|
|
TEST(InvokeArgumentTest, Functor1) {
|
|
Action<int(UnaryFunctor)> a = InvokeArgument<0>(true); // NOLINT
|
|
EXPECT_EQ(1, a.Perform(make_tuple(UnaryFunctor())));
|
|
}
|
|
|
|
// Tests using InvokeArgument with a 5-ary function.
|
|
TEST(InvokeArgumentTest, Function5) {
|
|
Action<int(int(*)(int, int, int, int, int))> a = // NOLINT
|
|
InvokeArgument<0>(10000, 2000, 300, 40, 5);
|
|
EXPECT_EQ(12345, a.Perform(make_tuple(&SumOf5)));
|
|
}
|
|
|
|
// Tests using InvokeArgument with a 5-ary functor.
|
|
TEST(InvokeArgumentTest, Functor5) {
|
|
Action<int(SumOf5Functor)> a = // NOLINT
|
|
InvokeArgument<0>(10000, 2000, 300, 40, 5);
|
|
EXPECT_EQ(12345, a.Perform(make_tuple(SumOf5Functor())));
|
|
}
|
|
|
|
// Tests using InvokeArgument with a 6-ary function.
|
|
TEST(InvokeArgumentTest, Function6) {
|
|
Action<int(int(*)(int, int, int, int, int, int))> a = // NOLINT
|
|
InvokeArgument<0>(100000, 20000, 3000, 400, 50, 6);
|
|
EXPECT_EQ(123456, a.Perform(make_tuple(&SumOf6)));
|
|
}
|
|
|
|
// Tests using InvokeArgument with a 6-ary functor.
|
|
TEST(InvokeArgumentTest, Functor6) {
|
|
Action<int(SumOf6Functor)> a = // NOLINT
|
|
InvokeArgument<0>(100000, 20000, 3000, 400, 50, 6);
|
|
EXPECT_EQ(123456, a.Perform(make_tuple(SumOf6Functor())));
|
|
}
|
|
|
|
// Tests using InvokeArgument with a 7-ary function.
|
|
TEST(InvokeArgumentTest, Function7) {
|
|
Action<std::string(std::string(*)(const char*, const char*, const char*,
|
|
const char*, const char*, const char*,
|
|
const char*))>
|
|
a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7");
|
|
EXPECT_EQ("1234567", a.Perform(make_tuple(&Concat7)));
|
|
}
|
|
|
|
// Tests using InvokeArgument with a 8-ary function.
|
|
TEST(InvokeArgumentTest, Function8) {
|
|
Action<std::string(std::string(*)(const char*, const char*, const char*,
|
|
const char*, const char*, const char*,
|
|
const char*, const char*))>
|
|
a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8");
|
|
EXPECT_EQ("12345678", a.Perform(make_tuple(&Concat8)));
|
|
}
|
|
|
|
// Tests using InvokeArgument with a 9-ary function.
|
|
TEST(InvokeArgumentTest, Function9) {
|
|
Action<std::string(std::string(*)(const char*, const char*, const char*,
|
|
const char*, const char*, const char*,
|
|
const char*, const char*, const char*))>
|
|
a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8", "9");
|
|
EXPECT_EQ("123456789", a.Perform(make_tuple(&Concat9)));
|
|
}
|
|
|
|
// Tests using InvokeArgument with a 10-ary function.
|
|
TEST(InvokeArgumentTest, Function10) {
|
|
Action<std::string(std::string(*)(
|
|
const char*, const char*, const char*, const char*, const char*,
|
|
const char*, const char*, const char*, const char*, const char*))>
|
|
a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8", "9", "0");
|
|
EXPECT_EQ("1234567890", a.Perform(make_tuple(&Concat10)));
|
|
}
|
|
|
|
// Tests using InvokeArgument with a function that takes a pointer argument.
|
|
TEST(InvokeArgumentTest, ByPointerFunction) {
|
|
Action<const char*(const char*(*)(const char* input, short n))> a = // NOLINT
|
|
InvokeArgument<0>(static_cast<const char*>("Hi"), Short(1));
|
|
EXPECT_STREQ("i", a.Perform(make_tuple(&Binary)));
|
|
}
|
|
|
|
// Tests using InvokeArgument with a function that takes a const char*
|
|
// by passing it a C-string literal.
|
|
TEST(InvokeArgumentTest, FunctionWithCStringLiteral) {
|
|
Action<const char*(const char*(*)(const char* input, short n))> a = // NOLINT
|
|
InvokeArgument<0>("Hi", Short(1));
|
|
EXPECT_STREQ("i", a.Perform(make_tuple(&Binary)));
|
|
}
|
|
|
|
// Tests using InvokeArgument with a function that takes a const reference.
|
|
TEST(InvokeArgumentTest, ByConstReferenceFunction) {
|
|
Action<bool(bool (*function)(const std::string& s))> a = // NOLINT
|
|
InvokeArgument<0>(std::string("Hi"));
|
|
// When action 'a' is constructed, it makes a copy of the temporary
|
|
// string object passed to it, so it's OK to use 'a' later, when the
|
|
// temporary object has already died.
|
|
EXPECT_TRUE(a.Perform(make_tuple(&ByConstRef)));
|
|
}
|
|
|
|
// Tests using InvokeArgument with ByRef() and a function that takes a
|
|
// const reference.
|
|
TEST(InvokeArgumentTest, ByExplicitConstReferenceFunction) {
|
|
Action<bool(bool(*)(const double& x))> a = // NOLINT
|
|
InvokeArgument<0>(ByRef(g_double));
|
|
// The above line calls ByRef() on a const value.
|
|
EXPECT_TRUE(a.Perform(make_tuple(&ReferencesGlobalDouble)));
|
|
|
|
double x = 0;
|
|
a = InvokeArgument<0>(ByRef(x)); // This calls ByRef() on a non-const.
|
|
EXPECT_FALSE(a.Perform(make_tuple(&ReferencesGlobalDouble)));
|
|
}
|
|
|
|
// Tests using WithArgs and with an action that takes 1 argument.
|
|
TEST(WithArgsTest, OneArg) {
|
|
Action<bool(double x, int n)> a = WithArgs<1>(Invoke(Unary)); // NOLINT
|
|
EXPECT_TRUE(a.Perform(make_tuple(1.5, -1)));
|
|
EXPECT_FALSE(a.Perform(make_tuple(1.5, 1)));
|
|
}
|
|
|
|
// Tests using WithArgs with an action that takes 2 arguments.
|
|
TEST(WithArgsTest, TwoArgs) {
|
|
Action<const char*(const char* s, double x, short n)> a =
|
|
WithArgs<0, 2>(Invoke(Binary));
|
|
const char s[] = "Hello";
|
|
EXPECT_EQ(s + 2, a.Perform(make_tuple(CharPtr(s), 0.5, Short(2))));
|
|
}
|
|
|
|
// Tests using WithArgs with an action that takes 3 arguments.
|
|
TEST(WithArgsTest, ThreeArgs) {
|
|
Action<int(int, double, char, short)> a = // NOLINT
|
|
WithArgs<0, 2, 3>(Invoke(Ternary));
|
|
EXPECT_EQ(123, a.Perform(make_tuple(100, 6.5, Char(20), Short(3))));
|
|
}
|
|
|
|
// Tests using WithArgs with an action that takes 4 arguments.
|
|
TEST(WithArgsTest, FourArgs) {
|
|
Action<std::string(const char*, const char*, double, const char*,
|
|
const char*)>
|
|
a = WithArgs<4, 3, 1, 0>(Invoke(Concat4));
|
|
EXPECT_EQ("4310", a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), 2.5,
|
|
CharPtr("3"), CharPtr("4"))));
|
|
}
|
|
|
|
// Tests using WithArgs with an action that takes 5 arguments.
|
|
TEST(WithArgsTest, FiveArgs) {
|
|
Action<std::string(const char*, const char*, const char*, const char*,
|
|
const char*)>
|
|
a = WithArgs<4, 3, 2, 1, 0>(Invoke(Concat5));
|
|
EXPECT_EQ("43210",
|
|
a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"),
|
|
CharPtr("3"), CharPtr("4"))));
|
|
}
|
|
|
|
// Tests using WithArgs with an action that takes 6 arguments.
|
|
TEST(WithArgsTest, SixArgs) {
|
|
Action<std::string(const char*, const char*, const char*)> a =
|
|
WithArgs<0, 1, 2, 2, 1, 0>(Invoke(Concat6));
|
|
EXPECT_EQ("012210",
|
|
a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"))));
|
|
}
|
|
|
|
// Tests using WithArgs with an action that takes 7 arguments.
|
|
TEST(WithArgsTest, SevenArgs) {
|
|
Action<std::string(const char*, const char*, const char*, const char*)> a =
|
|
WithArgs<0, 1, 2, 3, 2, 1, 0>(Invoke(Concat7));
|
|
EXPECT_EQ("0123210",
|
|
a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"),
|
|
CharPtr("3"))));
|
|
}
|
|
|
|
// Tests using WithArgs with an action that takes 8 arguments.
|
|
TEST(WithArgsTest, EightArgs) {
|
|
Action<std::string(const char*, const char*, const char*, const char*)> a =
|
|
WithArgs<0, 1, 2, 3, 0, 1, 2, 3>(Invoke(Concat8));
|
|
EXPECT_EQ("01230123",
|
|
a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"),
|
|
CharPtr("3"))));
|
|
}
|
|
|
|
// Tests using WithArgs with an action that takes 9 arguments.
|
|
TEST(WithArgsTest, NineArgs) {
|
|
Action<std::string(const char*, const char*, const char*, const char*)> a =
|
|
WithArgs<0, 1, 2, 3, 1, 2, 3, 2, 3>(Invoke(Concat9));
|
|
EXPECT_EQ("012312323",
|
|
a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"),
|
|
CharPtr("3"))));
|
|
}
|
|
|
|
// Tests using WithArgs with an action that takes 10 arguments.
|
|
TEST(WithArgsTest, TenArgs) {
|
|
Action<std::string(const char*, const char*, const char*, const char*)> a =
|
|
WithArgs<0, 1, 2, 3, 2, 1, 0, 1, 2, 3>(Invoke(Concat10));
|
|
EXPECT_EQ("0123210123",
|
|
a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"),
|
|
CharPtr("3"))));
|
|
}
|
|
|
|
// Tests using WithArgs with an action that is not Invoke().
|
|
class SubstractAction : public ActionInterface<int(int, int)> { // NOLINT
|
|
public:
|
|
virtual int Perform(const tuple<int, int>& args) {
|
|
return get<0>(args) - get<1>(args);
|
|
}
|
|
};
|
|
|
|
TEST(WithArgsTest, NonInvokeAction) {
|
|
Action<int(const string&, int, int)> a = // NOLINT
|
|
WithArgs<2, 1>(MakeAction(new SubstractAction));
|
|
string s("hello");
|
|
EXPECT_EQ(8, a.Perform(tuple<const string&, int, int>(s, 2, 10)));
|
|
}
|
|
|
|
// Tests using WithArgs to pass all original arguments in the original order.
|
|
TEST(WithArgsTest, Identity) {
|
|
Action<int(int x, char y, short z)> a = // NOLINT
|
|
WithArgs<0, 1, 2>(Invoke(Ternary));
|
|
EXPECT_EQ(123, a.Perform(make_tuple(100, Char(20), Short(3))));
|
|
}
|
|
|
|
// Tests using WithArgs with repeated arguments.
|
|
TEST(WithArgsTest, RepeatedArguments) {
|
|
Action<int(bool, int m, int n)> a = // NOLINT
|
|
WithArgs<1, 1, 1, 1>(Invoke(SumOf4));
|
|
EXPECT_EQ(4, a.Perform(make_tuple(false, 1, 10)));
|
|
}
|
|
|
|
// Tests using WithArgs with reversed argument order.
|
|
TEST(WithArgsTest, ReversedArgumentOrder) {
|
|
Action<const char*(short n, const char* input)> a = // NOLINT
|
|
WithArgs<1, 0>(Invoke(Binary));
|
|
const char s[] = "Hello";
|
|
EXPECT_EQ(s + 2, a.Perform(make_tuple(Short(2), CharPtr(s))));
|
|
}
|
|
|
|
// Tests using WithArgs with compatible, but not identical, argument types.
|
|
TEST(WithArgsTest, ArgsOfCompatibleTypes) {
|
|
Action<long(short x, char y, double z, char c)> a = // NOLINT
|
|
WithArgs<0, 1, 3>(Invoke(Ternary));
|
|
EXPECT_EQ(123, a.Perform(make_tuple(Short(100), Char(20), 5.6, Char(3))));
|
|
}
|
|
|
|
// Tests using WithArgs with an action that returns void.
|
|
TEST(WithArgsTest, VoidAction) {
|
|
Action<void(double x, char c, int n)> a = WithArgs<2, 1>(Invoke(VoidBinary));
|
|
g_done = false;
|
|
a.Perform(make_tuple(1.5, 'a', 3));
|
|
EXPECT_TRUE(g_done);
|
|
}
|
|
|
|
// Tests DoAll(a1, a2).
|
|
TEST(DoAllTest, TwoActions) {
|
|
int n = 0;
|
|
Action<int(int*)> a = DoAll(SetArgPointee<0>(1), // NOLINT
|
|
Return(2));
|
|
EXPECT_EQ(2, a.Perform(make_tuple(&n)));
|
|
EXPECT_EQ(1, n);
|
|
}
|
|
|
|
// Tests DoAll(a1, a2, a3).
|
|
TEST(DoAllTest, ThreeActions) {
|
|
int m = 0, n = 0;
|
|
Action<int(int*, int*)> a = DoAll(SetArgPointee<0>(1), // NOLINT
|
|
SetArgPointee<1>(2),
|
|
Return(3));
|
|
EXPECT_EQ(3, a.Perform(make_tuple(&m, &n)));
|
|
EXPECT_EQ(1, m);
|
|
EXPECT_EQ(2, n);
|
|
}
|
|
|
|
// Tests DoAll(a1, a2, a3, a4).
|
|
TEST(DoAllTest, FourActions) {
|
|
int m = 0, n = 0;
|
|
char ch = '\0';
|
|
Action<int(int*, int*, char*)> a = // NOLINT
|
|
DoAll(SetArgPointee<0>(1),
|
|
SetArgPointee<1>(2),
|
|
SetArgPointee<2>('a'),
|
|
Return(3));
|
|
EXPECT_EQ(3, a.Perform(make_tuple(&m, &n, &ch)));
|
|
EXPECT_EQ(1, m);
|
|
EXPECT_EQ(2, n);
|
|
EXPECT_EQ('a', ch);
|
|
}
|
|
|
|
// Tests DoAll(a1, a2, a3, a4, a5).
|
|
TEST(DoAllTest, FiveActions) {
|
|
int m = 0, n = 0;
|
|
char a = '\0', b = '\0';
|
|
Action<int(int*, int*, char*, char*)> action = // NOLINT
|
|
DoAll(SetArgPointee<0>(1),
|
|
SetArgPointee<1>(2),
|
|
SetArgPointee<2>('a'),
|
|
SetArgPointee<3>('b'),
|
|
Return(3));
|
|
EXPECT_EQ(3, action.Perform(make_tuple(&m, &n, &a, &b)));
|
|
EXPECT_EQ(1, m);
|
|
EXPECT_EQ(2, n);
|
|
EXPECT_EQ('a', a);
|
|
EXPECT_EQ('b', b);
|
|
}
|
|
|
|
// Tests DoAll(a1, a2, ..., a6).
|
|
TEST(DoAllTest, SixActions) {
|
|
int m = 0, n = 0;
|
|
char a = '\0', b = '\0', c = '\0';
|
|
Action<int(int*, int*, char*, char*, char*)> action = // NOLINT
|
|
DoAll(SetArgPointee<0>(1),
|
|
SetArgPointee<1>(2),
|
|
SetArgPointee<2>('a'),
|
|
SetArgPointee<3>('b'),
|
|
SetArgPointee<4>('c'),
|
|
Return(3));
|
|
EXPECT_EQ(3, action.Perform(make_tuple(&m, &n, &a, &b, &c)));
|
|
EXPECT_EQ(1, m);
|
|
EXPECT_EQ(2, n);
|
|
EXPECT_EQ('a', a);
|
|
EXPECT_EQ('b', b);
|
|
EXPECT_EQ('c', c);
|
|
}
|
|
|
|
// Tests DoAll(a1, a2, ..., a7).
|
|
TEST(DoAllTest, SevenActions) {
|
|
int m = 0, n = 0;
|
|
char a = '\0', b = '\0', c = '\0', d = '\0';
|
|
Action<int(int*, int*, char*, char*, char*, char*)> action = // NOLINT
|
|
DoAll(SetArgPointee<0>(1),
|
|
SetArgPointee<1>(2),
|
|
SetArgPointee<2>('a'),
|
|
SetArgPointee<3>('b'),
|
|
SetArgPointee<4>('c'),
|
|
SetArgPointee<5>('d'),
|
|
Return(3));
|
|
EXPECT_EQ(3, action.Perform(make_tuple(&m, &n, &a, &b, &c, &d)));
|
|
EXPECT_EQ(1, m);
|
|
EXPECT_EQ(2, n);
|
|
EXPECT_EQ('a', a);
|
|
EXPECT_EQ('b', b);
|
|
EXPECT_EQ('c', c);
|
|
EXPECT_EQ('d', d);
|
|
}
|
|
|
|
// Tests DoAll(a1, a2, ..., a8).
|
|
TEST(DoAllTest, EightActions) {
|
|
int m = 0, n = 0;
|
|
char a = '\0', b = '\0', c = '\0', d = '\0', e = '\0';
|
|
Action<int(int*, int*, char*, char*, char*, char*, // NOLINT
|
|
char*)> action =
|
|
DoAll(SetArgPointee<0>(1),
|
|
SetArgPointee<1>(2),
|
|
SetArgPointee<2>('a'),
|
|
SetArgPointee<3>('b'),
|
|
SetArgPointee<4>('c'),
|
|
SetArgPointee<5>('d'),
|
|
SetArgPointee<6>('e'),
|
|
Return(3));
|
|
EXPECT_EQ(3, action.Perform(make_tuple(&m, &n, &a, &b, &c, &d, &e)));
|
|
EXPECT_EQ(1, m);
|
|
EXPECT_EQ(2, n);
|
|
EXPECT_EQ('a', a);
|
|
EXPECT_EQ('b', b);
|
|
EXPECT_EQ('c', c);
|
|
EXPECT_EQ('d', d);
|
|
EXPECT_EQ('e', e);
|
|
}
|
|
|
|
// Tests DoAll(a1, a2, ..., a9).
|
|
TEST(DoAllTest, NineActions) {
|
|
int m = 0, n = 0;
|
|
char a = '\0', b = '\0', c = '\0', d = '\0', e = '\0', f = '\0';
|
|
Action<int(int*, int*, char*, char*, char*, char*, // NOLINT
|
|
char*, char*)> action =
|
|
DoAll(SetArgPointee<0>(1),
|
|
SetArgPointee<1>(2),
|
|
SetArgPointee<2>('a'),
|
|
SetArgPointee<3>('b'),
|
|
SetArgPointee<4>('c'),
|
|
SetArgPointee<5>('d'),
|
|
SetArgPointee<6>('e'),
|
|
SetArgPointee<7>('f'),
|
|
Return(3));
|
|
EXPECT_EQ(3, action.Perform(make_tuple(&m, &n, &a, &b, &c, &d, &e, &f)));
|
|
EXPECT_EQ(1, m);
|
|
EXPECT_EQ(2, n);
|
|
EXPECT_EQ('a', a);
|
|
EXPECT_EQ('b', b);
|
|
EXPECT_EQ('c', c);
|
|
EXPECT_EQ('d', d);
|
|
EXPECT_EQ('e', e);
|
|
EXPECT_EQ('f', f);
|
|
}
|
|
|
|
// Tests DoAll(a1, a2, ..., a10).
|
|
TEST(DoAllTest, TenActions) {
|
|
int m = 0, n = 0;
|
|
char a = '\0', b = '\0', c = '\0', d = '\0';
|
|
char e = '\0', f = '\0', g = '\0';
|
|
Action<int(int*, int*, char*, char*, char*, char*, // NOLINT
|
|
char*, char*, char*)> action =
|
|
DoAll(SetArgPointee<0>(1),
|
|
SetArgPointee<1>(2),
|
|
SetArgPointee<2>('a'),
|
|
SetArgPointee<3>('b'),
|
|
SetArgPointee<4>('c'),
|
|
SetArgPointee<5>('d'),
|
|
SetArgPointee<6>('e'),
|
|
SetArgPointee<7>('f'),
|
|
SetArgPointee<8>('g'),
|
|
Return(3));
|
|
EXPECT_EQ(3, action.Perform(make_tuple(&m, &n, &a, &b, &c, &d, &e, &f, &g)));
|
|
EXPECT_EQ(1, m);
|
|
EXPECT_EQ(2, n);
|
|
EXPECT_EQ('a', a);
|
|
EXPECT_EQ('b', b);
|
|
EXPECT_EQ('c', c);
|
|
EXPECT_EQ('d', d);
|
|
EXPECT_EQ('e', e);
|
|
EXPECT_EQ('f', f);
|
|
EXPECT_EQ('g', g);
|
|
}
|
|
|
|
// The ACTION*() macros trigger warning C4100 (unreferenced formal
|
|
// parameter) in MSVC with -W4. Unfortunately they cannot be fixed in
|
|
// the macro definition, as the warnings are generated when the macro
|
|
// is expanded and macro expansion cannot contain #pragma. Therefore
|
|
// we suppress them here.
|
|
#ifdef _MSC_VER
|
|
# pragma warning(push)
|
|
# pragma warning(disable:4100)
|
|
#endif
|
|
|
|
// Tests the ACTION*() macro family.
|
|
|
|
// Tests that ACTION() can define an action that doesn't reference the
|
|
// mock function arguments.
|
|
ACTION(Return5) { return 5; }
|
|
|
|
TEST(ActionMacroTest, WorksWhenNotReferencingArguments) {
|
|
Action<double()> a1 = Return5();
|
|
EXPECT_DOUBLE_EQ(5, a1.Perform(make_tuple()));
|
|
|
|
Action<int(double, bool)> a2 = Return5();
|
|
EXPECT_EQ(5, a2.Perform(make_tuple(1, true)));
|
|
}
|
|
|
|
// Tests that ACTION() can define an action that returns void.
|
|
ACTION(IncrementArg1) { (*arg1)++; }
|
|
|
|
TEST(ActionMacroTest, WorksWhenReturningVoid) {
|
|
Action<void(int, int*)> a1 = IncrementArg1();
|
|
int n = 0;
|
|
a1.Perform(make_tuple(5, &n));
|
|
EXPECT_EQ(1, n);
|
|
}
|
|
|
|
// Tests that the body of ACTION() can reference the type of the
|
|
// argument.
|
|
ACTION(IncrementArg2) {
|
|
StaticAssertTypeEq<int*, arg2_type>();
|
|
arg2_type temp = arg2;
|
|
(*temp)++;
|
|
}
|
|
|
|
TEST(ActionMacroTest, CanReferenceArgumentType) {
|
|
Action<void(int, bool, int*)> a1 = IncrementArg2();
|
|
int n = 0;
|
|
a1.Perform(make_tuple(5, false, &n));
|
|
EXPECT_EQ(1, n);
|
|
}
|
|
|
|
// Tests that the body of ACTION() can reference the argument tuple
|
|
// via args_type and args.
|
|
ACTION(Sum2) {
|
|
StaticAssertTypeEq<tuple<int, char, int*>, args_type>();
|
|
args_type args_copy = args;
|
|
return get<0>(args_copy) + get<1>(args_copy);
|
|
}
|
|
|
|
TEST(ActionMacroTest, CanReferenceArgumentTuple) {
|
|
Action<int(int, char, int*)> a1 = Sum2();
|
|
int dummy = 0;
|
|
EXPECT_EQ(11, a1.Perform(make_tuple(5, Char(6), &dummy)));
|
|
}
|
|
|
|
// Tests that the body of ACTION() can reference the mock function
|
|
// type.
|
|
int Dummy(bool flag) { return flag? 1 : 0; }
|
|
|
|
ACTION(InvokeDummy) {
|
|
StaticAssertTypeEq<int(bool), function_type>();
|
|
function_type* fp = &Dummy;
|
|
return (*fp)(true);
|
|
}
|
|
|
|
TEST(ActionMacroTest, CanReferenceMockFunctionType) {
|
|
Action<int(bool)> a1 = InvokeDummy();
|
|
EXPECT_EQ(1, a1.Perform(make_tuple(true)));
|
|
EXPECT_EQ(1, a1.Perform(make_tuple(false)));
|
|
}
|
|
|
|
// Tests that the body of ACTION() can reference the mock function's
|
|
// return type.
|
|
ACTION(InvokeDummy2) {
|
|
StaticAssertTypeEq<int, return_type>();
|
|
return_type result = Dummy(true);
|
|
return result;
|
|
}
|
|
|
|
TEST(ActionMacroTest, CanReferenceMockFunctionReturnType) {
|
|
Action<int(bool)> a1 = InvokeDummy2();
|
|
EXPECT_EQ(1, a1.Perform(make_tuple(true)));
|
|
EXPECT_EQ(1, a1.Perform(make_tuple(false)));
|
|
}
|
|
|
|
// Tests that ACTION() works for arguments passed by const reference.
|
|
ACTION(ReturnAddrOfConstBoolReferenceArg) {
|
|
StaticAssertTypeEq<const bool&, arg1_type>();
|
|
return &arg1;
|
|
}
|
|
|
|
TEST(ActionMacroTest, WorksForConstReferenceArg) {
|
|
Action<const bool*(int, const bool&)> a = ReturnAddrOfConstBoolReferenceArg();
|
|
const bool b = false;
|
|
EXPECT_EQ(&b, a.Perform(tuple<int, const bool&>(0, b)));
|
|
}
|
|
|
|
// Tests that ACTION() works for arguments passed by non-const reference.
|
|
ACTION(ReturnAddrOfIntReferenceArg) {
|
|
StaticAssertTypeEq<int&, arg0_type>();
|
|
return &arg0;
|
|
}
|
|
|
|
TEST(ActionMacroTest, WorksForNonConstReferenceArg) {
|
|
Action<int*(int&, bool, int)> a = ReturnAddrOfIntReferenceArg();
|
|
int n = 0;
|
|
EXPECT_EQ(&n, a.Perform(tuple<int&, bool, int>(n, true, 1)));
|
|
}
|
|
|
|
// Tests that ACTION() can be used in a namespace.
|
|
namespace action_test {
|
|
ACTION(Sum) { return arg0 + arg1; }
|
|
} // namespace action_test
|
|
|
|
TEST(ActionMacroTest, WorksInNamespace) {
|
|
Action<int(int, int)> a1 = action_test::Sum();
|
|
EXPECT_EQ(3, a1.Perform(make_tuple(1, 2)));
|
|
}
|
|
|
|
// Tests that the same ACTION definition works for mock functions with
|
|
// different argument numbers.
|
|
ACTION(PlusTwo) { return arg0 + 2; }
|
|
|
|
TEST(ActionMacroTest, WorksForDifferentArgumentNumbers) {
|
|
Action<int(int)> a1 = PlusTwo();
|
|
EXPECT_EQ(4, a1.Perform(make_tuple(2)));
|
|
|
|
Action<double(float, void*)> a2 = PlusTwo();
|
|
int dummy;
|
|
EXPECT_DOUBLE_EQ(6, a2.Perform(make_tuple(4.0f, &dummy)));
|
|
}
|
|
|
|
// Tests that ACTION_P can define a parameterized action.
|
|
ACTION_P(Plus, n) { return arg0 + n; }
|
|
|
|
TEST(ActionPMacroTest, DefinesParameterizedAction) {
|
|
Action<int(int m, bool t)> a1 = Plus(9);
|
|
EXPECT_EQ(10, a1.Perform(make_tuple(1, true)));
|
|
}
|
|
|
|
// Tests that the body of ACTION_P can reference the argument types
|
|
// and the parameter type.
|
|
ACTION_P(TypedPlus, n) {
|
|
arg0_type t1 = arg0;
|
|
n_type t2 = n;
|
|
return t1 + t2;
|
|
}
|
|
|
|
TEST(ActionPMacroTest, CanReferenceArgumentAndParameterTypes) {
|
|
Action<int(char m, bool t)> a1 = TypedPlus(9);
|
|
EXPECT_EQ(10, a1.Perform(make_tuple(Char(1), true)));
|
|
}
|
|
|
|
// Tests that a parameterized action can be used in any mock function
|
|
// whose type is compatible.
|
|
TEST(ActionPMacroTest, WorksInCompatibleMockFunction) {
|
|
Action<std::string(const std::string& s)> a1 = Plus("tail");
|
|
const std::string re = "re";
|
|
EXPECT_EQ("retail", a1.Perform(tuple<const std::string&>(re)));
|
|
}
|
|
|
|
// Tests that we can use ACTION*() to define actions overloaded on the
|
|
// number of parameters.
|
|
|
|
ACTION(OverloadedAction) { return arg0 ? arg1 : "hello"; }
|
|
|
|
ACTION_P(OverloadedAction, default_value) {
|
|
return arg0 ? arg1 : default_value;
|
|
}
|
|
|
|
ACTION_P2(OverloadedAction, true_value, false_value) {
|
|
return arg0 ? true_value : false_value;
|
|
}
|
|
|
|
TEST(ActionMacroTest, CanDefineOverloadedActions) {
|
|
typedef Action<const char*(bool, const char*)> MyAction;
|
|
|
|
const MyAction a1 = OverloadedAction();
|
|
EXPECT_STREQ("hello", a1.Perform(make_tuple(false, CharPtr("world"))));
|
|
EXPECT_STREQ("world", a1.Perform(make_tuple(true, CharPtr("world"))));
|
|
|
|
const MyAction a2 = OverloadedAction("hi");
|
|
EXPECT_STREQ("hi", a2.Perform(make_tuple(false, CharPtr("world"))));
|
|
EXPECT_STREQ("world", a2.Perform(make_tuple(true, CharPtr("world"))));
|
|
|
|
const MyAction a3 = OverloadedAction("hi", "you");
|
|
EXPECT_STREQ("hi", a3.Perform(make_tuple(true, CharPtr("world"))));
|
|
EXPECT_STREQ("you", a3.Perform(make_tuple(false, CharPtr("world"))));
|
|
}
|
|
|
|
// Tests ACTION_Pn where n >= 3.
|
|
|
|
ACTION_P3(Plus, m, n, k) { return arg0 + m + n + k; }
|
|
|
|
TEST(ActionPnMacroTest, WorksFor3Parameters) {
|
|
Action<double(int m, bool t)> a1 = Plus(100, 20, 3.4);
|
|
EXPECT_DOUBLE_EQ(3123.4, a1.Perform(make_tuple(3000, true)));
|
|
|
|
Action<std::string(const std::string& s)> a2 = Plus("tail", "-", ">");
|
|
const std::string re = "re";
|
|
EXPECT_EQ("retail->", a2.Perform(tuple<const std::string&>(re)));
|
|
}
|
|
|
|
ACTION_P4(Plus, p0, p1, p2, p3) { return arg0 + p0 + p1 + p2 + p3; }
|
|
|
|
TEST(ActionPnMacroTest, WorksFor4Parameters) {
|
|
Action<int(int)> a1 = Plus(1, 2, 3, 4);
|
|
EXPECT_EQ(10 + 1 + 2 + 3 + 4, a1.Perform(make_tuple(10)));
|
|
}
|
|
|
|
ACTION_P5(Plus, p0, p1, p2, p3, p4) { return arg0 + p0 + p1 + p2 + p3 + p4; }
|
|
|
|
TEST(ActionPnMacroTest, WorksFor5Parameters) {
|
|
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5);
|
|
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5, a1.Perform(make_tuple(10)));
|
|
}
|
|
|
|
ACTION_P6(Plus, p0, p1, p2, p3, p4, p5) {
|
|
return arg0 + p0 + p1 + p2 + p3 + p4 + p5;
|
|
}
|
|
|
|
TEST(ActionPnMacroTest, WorksFor6Parameters) {
|
|
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6);
|
|
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6, a1.Perform(make_tuple(10)));
|
|
}
|
|
|
|
ACTION_P7(Plus, p0, p1, p2, p3, p4, p5, p6) {
|
|
return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6;
|
|
}
|
|
|
|
TEST(ActionPnMacroTest, WorksFor7Parameters) {
|
|
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7);
|
|
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7, a1.Perform(make_tuple(10)));
|
|
}
|
|
|
|
ACTION_P8(Plus, p0, p1, p2, p3, p4, p5, p6, p7) {
|
|
return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7;
|
|
}
|
|
|
|
TEST(ActionPnMacroTest, WorksFor8Parameters) {
|
|
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8);
|
|
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, a1.Perform(make_tuple(10)));
|
|
}
|
|
|
|
ACTION_P9(Plus, p0, p1, p2, p3, p4, p5, p6, p7, p8) {
|
|
return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8;
|
|
}
|
|
|
|
TEST(ActionPnMacroTest, WorksFor9Parameters) {
|
|
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8, 9);
|
|
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9, a1.Perform(make_tuple(10)));
|
|
}
|
|
|
|
ACTION_P10(Plus, p0, p1, p2, p3, p4, p5, p6, p7, p8, last_param) {
|
|
arg0_type t0 = arg0;
|
|
last_param_type t9 = last_param;
|
|
return t0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + t9;
|
|
}
|
|
|
|
TEST(ActionPnMacroTest, WorksFor10Parameters) {
|
|
Action<int(int)> a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
|
|
EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
|
|
a1.Perform(make_tuple(10)));
|
|
}
|
|
|
|
// Tests that the action body can promote the parameter types.
|
|
|
|
ACTION_P2(PadArgument, prefix, suffix) {
|
|
// The following lines promote the two parameters to desired types.
|
|
std::string prefix_str(prefix);
|
|
char suffix_char = static_cast<char>(suffix);
|
|
return prefix_str + arg0 + suffix_char;
|
|
}
|
|
|
|
TEST(ActionPnMacroTest, SimpleTypePromotion) {
|
|
Action<std::string(const char*)> no_promo =
|
|
PadArgument(std::string("foo"), 'r');
|
|
Action<std::string(const char*)> promo =
|
|
PadArgument("foo", static_cast<int>('r'));
|
|
EXPECT_EQ("foobar", no_promo.Perform(make_tuple(CharPtr("ba"))));
|
|
EXPECT_EQ("foobar", promo.Perform(make_tuple(CharPtr("ba"))));
|
|
}
|
|
|
|
// Tests that we can partially restrict parameter types using a
|
|
// straight-forward pattern.
|
|
|
|
// Defines a generic action that doesn't restrict the types of its
|
|
// parameters.
|
|
ACTION_P3(ConcatImpl, a, b, c) {
|
|
std::stringstream ss;
|
|
ss << a << b << c;
|
|
return ss.str();
|
|
}
|
|
|
|
// Next, we try to restrict that either the first parameter is a
|
|
// string, or the second parameter is an int.
|
|
|
|
// Defines a partially specialized wrapper that restricts the first
|
|
// parameter to std::string.
|
|
template <typename T1, typename T2>
|
|
// ConcatImplActionP3 is the class template ACTION_P3 uses to
|
|
// implement ConcatImpl. We shouldn't change the name as this
|
|
// pattern requires the user to use it directly.
|
|
ConcatImplActionP3<std::string, T1, T2>
|
|
Concat(const std::string& a, T1 b, T2 c) {
|
|
GTEST_INTENTIONAL_CONST_COND_PUSH_()
|
|
if (true) {
|
|
GTEST_INTENTIONAL_CONST_COND_POP_()
|
|
// This branch verifies that ConcatImpl() can be invoked without
|
|
// explicit template arguments.
|
|
return ConcatImpl(a, b, c);
|
|
} else {
|
|
// This branch verifies that ConcatImpl() can also be invoked with
|
|
// explicit template arguments. It doesn't really need to be
|
|
// executed as this is a compile-time verification.
|
|
return ConcatImpl<std::string, T1, T2>(a, b, c);
|
|
}
|
|
}
|
|
|
|
// Defines another partially specialized wrapper that restricts the
|
|
// second parameter to int.
|
|
template <typename T1, typename T2>
|
|
ConcatImplActionP3<T1, int, T2>
|
|
Concat(T1 a, int b, T2 c) {
|
|
return ConcatImpl(a, b, c);
|
|
}
|
|
|
|
TEST(ActionPnMacroTest, CanPartiallyRestrictParameterTypes) {
|
|
Action<const std::string()> a1 = Concat("Hello", "1", 2);
|
|
EXPECT_EQ("Hello12", a1.Perform(make_tuple()));
|
|
|
|
a1 = Concat(1, 2, 3);
|
|
EXPECT_EQ("123", a1.Perform(make_tuple()));
|
|
}
|
|
|
|
// Verifies the type of an ACTION*.
|
|
|
|
ACTION(DoFoo) {}
|
|
ACTION_P(DoFoo, p) {}
|
|
ACTION_P2(DoFoo, p0, p1) {}
|
|
|
|
TEST(ActionPnMacroTest, TypesAreCorrect) {
|
|
// DoFoo() must be assignable to a DoFooAction variable.
|
|
DoFooAction a0 = DoFoo();
|
|
|
|
// DoFoo(1) must be assignable to a DoFooActionP variable.
|
|
DoFooActionP<int> a1 = DoFoo(1);
|
|
|
|
// DoFoo(p1, ..., pk) must be assignable to a DoFooActionPk
|
|
// variable, and so on.
|
|
DoFooActionP2<int, char> a2 = DoFoo(1, '2');
|
|
PlusActionP3<int, int, char> a3 = Plus(1, 2, '3');
|
|
PlusActionP4<int, int, int, char> a4 = Plus(1, 2, 3, '4');
|
|
PlusActionP5<int, int, int, int, char> a5 = Plus(1, 2, 3, 4, '5');
|
|
PlusActionP6<int, int, int, int, int, char> a6 = Plus(1, 2, 3, 4, 5, '6');
|
|
PlusActionP7<int, int, int, int, int, int, char> a7 =
|
|
Plus(1, 2, 3, 4, 5, 6, '7');
|
|
PlusActionP8<int, int, int, int, int, int, int, char> a8 =
|
|
Plus(1, 2, 3, 4, 5, 6, 7, '8');
|
|
PlusActionP9<int, int, int, int, int, int, int, int, char> a9 =
|
|
Plus(1, 2, 3, 4, 5, 6, 7, 8, '9');
|
|
PlusActionP10<int, int, int, int, int, int, int, int, int, char> a10 =
|
|
Plus(1, 2, 3, 4, 5, 6, 7, 8, 9, '0');
|
|
|
|
// Avoid "unused variable" warnings.
|
|
(void)a0;
|
|
(void)a1;
|
|
(void)a2;
|
|
(void)a3;
|
|
(void)a4;
|
|
(void)a5;
|
|
(void)a6;
|
|
(void)a7;
|
|
(void)a8;
|
|
(void)a9;
|
|
(void)a10;
|
|
}
|
|
|
|
// Tests that an ACTION_P*() action can be explicitly instantiated
|
|
// with reference-typed parameters.
|
|
|
|
ACTION_P(Plus1, x) { return x; }
|
|
ACTION_P2(Plus2, x, y) { return x + y; }
|
|
ACTION_P3(Plus3, x, y, z) { return x + y + z; }
|
|
ACTION_P10(Plus10, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9) {
|
|
return a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9;
|
|
}
|
|
|
|
TEST(ActionPnMacroTest, CanExplicitlyInstantiateWithReferenceTypes) {
|
|
int x = 1, y = 2, z = 3;
|
|
const tuple<> empty = make_tuple();
|
|
|
|
Action<int()> a = Plus1<int&>(x);
|
|
EXPECT_EQ(1, a.Perform(empty));
|
|
|
|
a = Plus2<const int&, int&>(x, y);
|
|
EXPECT_EQ(3, a.Perform(empty));
|
|
|
|
a = Plus3<int&, const int&, int&>(x, y, z);
|
|
EXPECT_EQ(6, a.Perform(empty));
|
|
|
|
int n[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
|
|
a = Plus10<const int&, int&, const int&, int&, const int&, int&, const int&,
|
|
int&, const int&, int&>(n[0], n[1], n[2], n[3], n[4], n[5], n[6], n[7],
|
|
n[8], n[9]);
|
|
EXPECT_EQ(55, a.Perform(empty));
|
|
}
|
|
|
|
class NullaryConstructorClass {
|
|
public:
|
|
NullaryConstructorClass() : value_(123) {}
|
|
int value_;
|
|
};
|
|
|
|
// Tests using ReturnNew() with a nullary constructor.
|
|
TEST(ReturnNewTest, NoArgs) {
|
|
Action<NullaryConstructorClass*()> a = ReturnNew<NullaryConstructorClass>();
|
|
NullaryConstructorClass* c = a.Perform(make_tuple());
|
|
EXPECT_EQ(123, c->value_);
|
|
delete c;
|
|
}
|
|
|
|
class UnaryConstructorClass {
|
|
public:
|
|
explicit UnaryConstructorClass(int value) : value_(value) {}
|
|
int value_;
|
|
};
|
|
|
|
// Tests using ReturnNew() with a unary constructor.
|
|
TEST(ReturnNewTest, Unary) {
|
|
Action<UnaryConstructorClass*()> a = ReturnNew<UnaryConstructorClass>(4000);
|
|
UnaryConstructorClass* c = a.Perform(make_tuple());
|
|
EXPECT_EQ(4000, c->value_);
|
|
delete c;
|
|
}
|
|
|
|
TEST(ReturnNewTest, UnaryWorksWhenMockMethodHasArgs) {
|
|
Action<UnaryConstructorClass*(bool, int)> a =
|
|
ReturnNew<UnaryConstructorClass>(4000);
|
|
UnaryConstructorClass* c = a.Perform(make_tuple(false, 5));
|
|
EXPECT_EQ(4000, c->value_);
|
|
delete c;
|
|
}
|
|
|
|
TEST(ReturnNewTest, UnaryWorksWhenMockMethodReturnsPointerToConst) {
|
|
Action<const UnaryConstructorClass*()> a =
|
|
ReturnNew<UnaryConstructorClass>(4000);
|
|
const UnaryConstructorClass* c = a.Perform(make_tuple());
|
|
EXPECT_EQ(4000, c->value_);
|
|
delete c;
|
|
}
|
|
|
|
class TenArgConstructorClass {
|
|
public:
|
|
TenArgConstructorClass(int a1, int a2, int a3, int a4, int a5,
|
|
int a6, int a7, int a8, int a9, int a10)
|
|
: value_(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) {
|
|
}
|
|
int value_;
|
|
};
|
|
|
|
// Tests using ReturnNew() with a 10-argument constructor.
|
|
TEST(ReturnNewTest, ConstructorThatTakes10Arguments) {
|
|
Action<TenArgConstructorClass*()> a =
|
|
ReturnNew<TenArgConstructorClass>(1000000000, 200000000, 30000000,
|
|
4000000, 500000, 60000,
|
|
7000, 800, 90, 0);
|
|
TenArgConstructorClass* c = a.Perform(make_tuple());
|
|
EXPECT_EQ(1234567890, c->value_);
|
|
delete c;
|
|
}
|
|
|
|
// Tests that ACTION_TEMPLATE works when there is no value parameter.
|
|
ACTION_TEMPLATE(CreateNew,
|
|
HAS_1_TEMPLATE_PARAMS(typename, T),
|
|
AND_0_VALUE_PARAMS()) {
|
|
return new T;
|
|
}
|
|
|
|
TEST(ActionTemplateTest, WorksWithoutValueParam) {
|
|
const Action<int*()> a = CreateNew<int>();
|
|
int* p = a.Perform(make_tuple());
|
|
delete p;
|
|
}
|
|
|
|
// Tests that ACTION_TEMPLATE works when there are value parameters.
|
|
ACTION_TEMPLATE(CreateNew,
|
|
HAS_1_TEMPLATE_PARAMS(typename, T),
|
|
AND_1_VALUE_PARAMS(a0)) {
|
|
return new T(a0);
|
|
}
|
|
|
|
TEST(ActionTemplateTest, WorksWithValueParams) {
|
|
const Action<int*()> a = CreateNew<int>(42);
|
|
int* p = a.Perform(make_tuple());
|
|
EXPECT_EQ(42, *p);
|
|
delete p;
|
|
}
|
|
|
|
// Tests that ACTION_TEMPLATE works for integral template parameters.
|
|
ACTION_TEMPLATE(MyDeleteArg,
|
|
HAS_1_TEMPLATE_PARAMS(int, k),
|
|
AND_0_VALUE_PARAMS()) {
|
|
delete get<k>(args);
|
|
}
|
|
|
|
// Resets a bool variable in the destructor.
|
|
class BoolResetter {
|
|
public:
|
|
explicit BoolResetter(bool* value) : value_(value) {}
|
|
~BoolResetter() { *value_ = false; }
|
|
private:
|
|
bool* value_;
|
|
};
|
|
|
|
TEST(ActionTemplateTest, WorksForIntegralTemplateParams) {
|
|
const Action<void(int*, BoolResetter*)> a = MyDeleteArg<1>();
|
|
int n = 0;
|
|
bool b = true;
|
|
BoolResetter* resetter = new BoolResetter(&b);
|
|
a.Perform(make_tuple(&n, resetter));
|
|
EXPECT_FALSE(b); // Verifies that resetter is deleted.
|
|
}
|
|
|
|
// Tests that ACTION_TEMPLATE works for a template with template parameters.
|
|
ACTION_TEMPLATE(ReturnSmartPointer,
|
|
HAS_1_TEMPLATE_PARAMS(template <typename Pointee> class,
|
|
Pointer),
|
|
AND_1_VALUE_PARAMS(pointee)) {
|
|
return Pointer<pointee_type>(new pointee_type(pointee));
|
|
}
|
|
|
|
TEST(ActionTemplateTest, WorksForTemplateTemplateParameters) {
|
|
using ::testing::internal::linked_ptr;
|
|
const Action<linked_ptr<int>()> a = ReturnSmartPointer<linked_ptr>(42);
|
|
linked_ptr<int> p = a.Perform(make_tuple());
|
|
EXPECT_EQ(42, *p);
|
|
}
|
|
|
|
// Tests that ACTION_TEMPLATE works for 10 template parameters.
|
|
template <typename T1, typename T2, typename T3, int k4, bool k5,
|
|
unsigned int k6, typename T7, typename T8, typename T9>
|
|
struct GiantTemplate {
|
|
public:
|
|
explicit GiantTemplate(int a_value) : value(a_value) {}
|
|
int value;
|
|
};
|
|
|
|
ACTION_TEMPLATE(ReturnGiant,
|
|
HAS_10_TEMPLATE_PARAMS(
|
|
typename, T1,
|
|
typename, T2,
|
|
typename, T3,
|
|
int, k4,
|
|
bool, k5,
|
|
unsigned int, k6,
|
|
class, T7,
|
|
class, T8,
|
|
class, T9,
|
|
template <typename T> class, T10),
|
|
AND_1_VALUE_PARAMS(value)) {
|
|
return GiantTemplate<T10<T1>, T2, T3, k4, k5, k6, T7, T8, T9>(value);
|
|
}
|
|
|
|
TEST(ActionTemplateTest, WorksFor10TemplateParameters) {
|
|
using ::testing::internal::linked_ptr;
|
|
typedef GiantTemplate<linked_ptr<int>, bool, double, 5,
|
|
true, 6, char, unsigned, int> Giant;
|
|
const Action<Giant()> a = ReturnGiant<
|
|
int, bool, double, 5, true, 6, char, unsigned, int, linked_ptr>(42);
|
|
Giant giant = a.Perform(make_tuple());
|
|
EXPECT_EQ(42, giant.value);
|
|
}
|
|
|
|
// Tests that ACTION_TEMPLATE works for 10 value parameters.
|
|
ACTION_TEMPLATE(ReturnSum,
|
|
HAS_1_TEMPLATE_PARAMS(typename, Number),
|
|
AND_10_VALUE_PARAMS(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10)) {
|
|
return static_cast<Number>(v1) + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10;
|
|
}
|
|
|
|
TEST(ActionTemplateTest, WorksFor10ValueParameters) {
|
|
const Action<int()> a = ReturnSum<int>(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
|
|
EXPECT_EQ(55, a.Perform(make_tuple()));
|
|
}
|
|
|
|
// Tests that ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded
|
|
// on the number of value parameters.
|
|
|
|
ACTION(ReturnSum) { return 0; }
|
|
|
|
ACTION_P(ReturnSum, x) { return x; }
|
|
|
|
ACTION_TEMPLATE(ReturnSum,
|
|
HAS_1_TEMPLATE_PARAMS(typename, Number),
|
|
AND_2_VALUE_PARAMS(v1, v2)) {
|
|
return static_cast<Number>(v1) + v2;
|
|
}
|
|
|
|
ACTION_TEMPLATE(ReturnSum,
|
|
HAS_1_TEMPLATE_PARAMS(typename, Number),
|
|
AND_3_VALUE_PARAMS(v1, v2, v3)) {
|
|
return static_cast<Number>(v1) + v2 + v3;
|
|
}
|
|
|
|
ACTION_TEMPLATE(ReturnSum,
|
|
HAS_2_TEMPLATE_PARAMS(typename, Number, int, k),
|
|
AND_4_VALUE_PARAMS(v1, v2, v3, v4)) {
|
|
return static_cast<Number>(v1) + v2 + v3 + v4 + k;
|
|
}
|
|
|
|
TEST(ActionTemplateTest, CanBeOverloadedOnNumberOfValueParameters) {
|
|
const Action<int()> a0 = ReturnSum();
|
|
const Action<int()> a1 = ReturnSum(1);
|
|
const Action<int()> a2 = ReturnSum<int>(1, 2);
|
|
const Action<int()> a3 = ReturnSum<int>(1, 2, 3);
|
|
const Action<int()> a4 = ReturnSum<int, 10000>(2000, 300, 40, 5);
|
|
EXPECT_EQ(0, a0.Perform(make_tuple()));
|
|
EXPECT_EQ(1, a1.Perform(make_tuple()));
|
|
EXPECT_EQ(3, a2.Perform(make_tuple()));
|
|
EXPECT_EQ(6, a3.Perform(make_tuple()));
|
|
EXPECT_EQ(12345, a4.Perform(make_tuple()));
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
# pragma warning(pop)
|
|
#endif
|
|
|
|
} // namespace gmock_generated_actions_test
|
|
} // namespace testing
|