mirror of
https://github.com/google/googletest.git
synced 2025-01-21 15:11:57 +08:00
1194 lines
44 KiB
C++
1194 lines
44 KiB
C++
// Copyright 2005, Google Inc.
|
||
// All rights reserved.
|
||
//
|
||
// Redistribution and use in source and binary forms, with or without
|
||
// modification, are permitted provided that the following conditions are
|
||
// met:
|
||
//
|
||
// * Redistributions of source code must retain the above copyright
|
||
// notice, this list of conditions and the following disclaimer.
|
||
// * Redistributions in binary form must reproduce the above
|
||
// copyright notice, this list of conditions and the following disclaimer
|
||
// in the documentation and/or other materials provided with the
|
||
// distribution.
|
||
// * Neither the name of Google Inc. nor the names of its
|
||
// contributors may be used to endorse or promote products derived from
|
||
// this software without specific prior written permission.
|
||
//
|
||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
//
|
||
// Authors: wan@google.com (Zhanyong Wan), eefacm@gmail.com (Sean Mcafee)
|
||
//
|
||
// The Google C++ Testing Framework (Google Test)
|
||
//
|
||
// This header file declares functions and macros used internally by
|
||
// Google Test. They are subject to change without notice.
|
||
|
||
#ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
|
||
#define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
|
||
|
||
#include "gtest/internal/gtest-port.h"
|
||
|
||
#if GTEST_OS_LINUX
|
||
# include <stdlib.h>
|
||
# include <sys/types.h>
|
||
# include <sys/wait.h>
|
||
# include <unistd.h>
|
||
#endif // GTEST_OS_LINUX
|
||
|
||
#if GTEST_HAS_EXCEPTIONS
|
||
# include <stdexcept>
|
||
#endif
|
||
|
||
#include <ctype.h>
|
||
#include <float.h>
|
||
#include <string.h>
|
||
#include <iomanip>
|
||
#include <limits>
|
||
#include <set>
|
||
#include <string>
|
||
#include <vector>
|
||
|
||
#include "gtest/gtest-message.h"
|
||
#include "gtest/internal/gtest-string.h"
|
||
#include "gtest/internal/gtest-filepath.h"
|
||
#include "gtest/internal/gtest-type-util.h"
|
||
|
||
// Due to C++ preprocessor weirdness, we need double indirection to
|
||
// concatenate two tokens when one of them is __LINE__. Writing
|
||
//
|
||
// foo ## __LINE__
|
||
//
|
||
// will result in the token foo__LINE__, instead of foo followed by
|
||
// the current line number. For more details, see
|
||
// http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
|
||
#define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
|
||
#define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
|
||
|
||
class ProtocolMessage;
|
||
namespace proto2 { class Message; }
|
||
|
||
namespace testing {
|
||
|
||
// Forward declarations.
|
||
|
||
class AssertionResult; // Result of an assertion.
|
||
class Message; // Represents a failure message.
|
||
class Test; // Represents a test.
|
||
class TestInfo; // Information about a test.
|
||
class TestPartResult; // Result of a test part.
|
||
class UnitTest; // A collection of test cases.
|
||
|
||
template <typename T>
|
||
::std::string PrintToString(const T& value);
|
||
|
||
namespace internal {
|
||
|
||
struct TraceInfo; // Information about a trace point.
|
||
class ScopedTrace; // Implements scoped trace.
|
||
class TestInfoImpl; // Opaque implementation of TestInfo
|
||
class UnitTestImpl; // Opaque implementation of UnitTest
|
||
|
||
// How many times InitGoogleTest() has been called.
|
||
GTEST_API_ extern int g_init_gtest_count;
|
||
|
||
// The text used in failure messages to indicate the start of the
|
||
// stack trace.
|
||
GTEST_API_ extern const char kStackTraceMarker[];
|
||
|
||
// Two overloaded helpers for checking at compile time whether an
|
||
// expression is a null pointer literal (i.e. NULL or any 0-valued
|
||
// compile-time integral constant). Their return values have
|
||
// different sizes, so we can use sizeof() to test which version is
|
||
// picked by the compiler. These helpers have no implementations, as
|
||
// we only need their signatures.
|
||
//
|
||
// Given IsNullLiteralHelper(x), the compiler will pick the first
|
||
// version if x can be implicitly converted to Secret*, and pick the
|
||
// second version otherwise. Since Secret is a secret and incomplete
|
||
// type, the only expression a user can write that has type Secret* is
|
||
// a null pointer literal. Therefore, we know that x is a null
|
||
// pointer literal if and only if the first version is picked by the
|
||
// compiler.
|
||
char IsNullLiteralHelper(Secret* p);
|
||
char (&IsNullLiteralHelper(...))[2]; // NOLINT
|
||
|
||
// A compile-time bool constant that is true if and only if x is a
|
||
// null pointer literal (i.e. NULL or any 0-valued compile-time
|
||
// integral constant).
|
||
#ifdef GTEST_ELLIPSIS_NEEDS_POD_
|
||
// We lose support for NULL detection where the compiler doesn't like
|
||
// passing non-POD classes through ellipsis (...).
|
||
# define GTEST_IS_NULL_LITERAL_(x) false
|
||
#else
|
||
# define GTEST_IS_NULL_LITERAL_(x) \
|
||
(sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
|
||
#endif // GTEST_ELLIPSIS_NEEDS_POD_
|
||
|
||
// Appends the user-supplied message to the Google-Test-generated message.
|
||
GTEST_API_ std::string AppendUserMessage(
|
||
const std::string& gtest_msg, const Message& user_msg);
|
||
|
||
#if GTEST_HAS_EXCEPTIONS
|
||
|
||
// This exception is thrown by (and only by) a failed Google Test
|
||
// assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
|
||
// are enabled). We derive it from std::runtime_error, which is for
|
||
// errors presumably detectable only at run time. Since
|
||
// std::runtime_error inherits from std::exception, many testing
|
||
// frameworks know how to extract and print the message inside it.
|
||
class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
|
||
public:
|
||
explicit GoogleTestFailureException(const TestPartResult& failure);
|
||
};
|
||
|
||
#endif // GTEST_HAS_EXCEPTIONS
|
||
|
||
// A helper class for creating scoped traces in user programs.
|
||
class GTEST_API_ ScopedTrace {
|
||
public:
|
||
// The c'tor pushes the given source file location and message onto
|
||
// a trace stack maintained by Google Test.
|
||
ScopedTrace(const char* file, int line, const Message& message);
|
||
|
||
// The d'tor pops the info pushed by the c'tor.
|
||
//
|
||
// Note that the d'tor is not virtual in order to be efficient.
|
||
// Don't inherit from ScopedTrace!
|
||
~ScopedTrace();
|
||
|
||
private:
|
||
GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
|
||
} GTEST_ATTRIBUTE_UNUSED_; // A ScopedTrace object does its job in its
|
||
// c'tor and d'tor. Therefore it doesn't
|
||
// need to be used otherwise.
|
||
|
||
namespace edit_distance {
|
||
// Returns the optimal edits to go from 'left' to 'right'.
|
||
// All edits cost the same, with replace having lower priority than
|
||
// add/remove.
|
||
// Simple implementation of the Wagner–Fischer algorithm.
|
||
// See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
|
||
enum EditType { kMatch, kAdd, kRemove, kReplace };
|
||
GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
|
||
const std::vector<size_t>& left, const std::vector<size_t>& right);
|
||
|
||
// Same as above, but the input is represented as strings.
|
||
GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
|
||
const std::vector<std::string>& left,
|
||
const std::vector<std::string>& right);
|
||
|
||
// Create a diff of the input strings in Unified diff format.
|
||
GTEST_API_ std::string CreateUnifiedDiff(const std::vector<std::string>& left,
|
||
const std::vector<std::string>& right,
|
||
size_t context = 2);
|
||
|
||
} // namespace edit_distance
|
||
|
||
// Calculate the diff between 'left' and 'right' and return it in unified diff
|
||
// format.
|
||
// If not null, stores in 'total_line_count' the total number of lines found
|
||
// in left + right.
|
||
GTEST_API_ std::string DiffStrings(const std::string& left,
|
||
const std::string& right,
|
||
size_t* total_line_count);
|
||
|
||
// Constructs and returns the message for an equality assertion
|
||
// (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
|
||
//
|
||
// The first four parameters are the expressions used in the assertion
|
||
// and their values, as strings. For example, for ASSERT_EQ(foo, bar)
|
||
// where foo is 5 and bar is 6, we have:
|
||
//
|
||
// expected_expression: "foo"
|
||
// actual_expression: "bar"
|
||
// expected_value: "5"
|
||
// actual_value: "6"
|
||
//
|
||
// The ignoring_case parameter is true iff the assertion is a
|
||
// *_STRCASEEQ*. When it's true, the string " (ignoring case)" will
|
||
// be inserted into the message.
|
||
GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
|
||
const char* actual_expression,
|
||
const std::string& expected_value,
|
||
const std::string& actual_value,
|
||
bool ignoring_case);
|
||
|
||
// Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
|
||
GTEST_API_ std::string GetBoolAssertionFailureMessage(
|
||
const AssertionResult& assertion_result,
|
||
const char* expression_text,
|
||
const char* actual_predicate_value,
|
||
const char* expected_predicate_value);
|
||
|
||
// This template class represents an IEEE floating-point number
|
||
// (either single-precision or double-precision, depending on the
|
||
// template parameters).
|
||
//
|
||
// The purpose of this class is to do more sophisticated number
|
||
// comparison. (Due to round-off error, etc, it's very unlikely that
|
||
// two floating-points will be equal exactly. Hence a naive
|
||
// comparison by the == operation often doesn't work.)
|
||
//
|
||
// Format of IEEE floating-point:
|
||
//
|
||
// The most-significant bit being the leftmost, an IEEE
|
||
// floating-point looks like
|
||
//
|
||
// sign_bit exponent_bits fraction_bits
|
||
//
|
||
// Here, sign_bit is a single bit that designates the sign of the
|
||
// number.
|
||
//
|
||
// For float, there are 8 exponent bits and 23 fraction bits.
|
||
//
|
||
// For double, there are 11 exponent bits and 52 fraction bits.
|
||
//
|
||
// More details can be found at
|
||
// http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
|
||
//
|
||
// Template parameter:
|
||
//
|
||
// RawType: the raw floating-point type (either float or double)
|
||
template <typename RawType>
|
||
class FloatingPoint {
|
||
public:
|
||
// Defines the unsigned integer type that has the same size as the
|
||
// floating point number.
|
||
typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
|
||
|
||
// Constants.
|
||
|
||
// # of bits in a number.
|
||
static const size_t kBitCount = 8*sizeof(RawType);
|
||
|
||
// # of fraction bits in a number.
|
||
static const size_t kFractionBitCount =
|
||
std::numeric_limits<RawType>::digits - 1;
|
||
|
||
// # of exponent bits in a number.
|
||
static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
|
||
|
||
// The mask for the sign bit.
|
||
static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
|
||
|
||
// The mask for the fraction bits.
|
||
static const Bits kFractionBitMask =
|
||
~static_cast<Bits>(0) >> (kExponentBitCount + 1);
|
||
|
||
// The mask for the exponent bits.
|
||
static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
|
||
|
||
// How many ULP's (Units in the Last Place) we want to tolerate when
|
||
// comparing two numbers. The larger the value, the more error we
|
||
// allow. A 0 value means that two numbers must be exactly the same
|
||
// to be considered equal.
|
||
//
|
||
// The maximum error of a single floating-point operation is 0.5
|
||
// units in the last place. On Intel CPU's, all floating-point
|
||
// calculations are done with 80-bit precision, while double has 64
|
||
// bits. Therefore, 4 should be enough for ordinary use.
|
||
//
|
||
// See the following article for more details on ULP:
|
||
// http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
|
||
static const size_t kMaxUlps = 4;
|
||
|
||
// Constructs a FloatingPoint from a raw floating-point number.
|
||
//
|
||
// On an Intel CPU, passing a non-normalized NAN (Not a Number)
|
||
// around may change its bits, although the new value is guaranteed
|
||
// to be also a NAN. Therefore, don't expect this constructor to
|
||
// preserve the bits in x when x is a NAN.
|
||
explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
|
||
|
||
// Static methods
|
||
|
||
// Reinterprets a bit pattern as a floating-point number.
|
||
//
|
||
// This function is needed to test the AlmostEquals() method.
|
||
static RawType ReinterpretBits(const Bits bits) {
|
||
FloatingPoint fp(0);
|
||
fp.u_.bits_ = bits;
|
||
return fp.u_.value_;
|
||
}
|
||
|
||
// Returns the floating-point number that represent positive infinity.
|
||
static RawType Infinity() {
|
||
return ReinterpretBits(kExponentBitMask);
|
||
}
|
||
|
||
// Returns the maximum representable finite floating-point number.
|
||
static RawType Max();
|
||
|
||
// Non-static methods
|
||
|
||
// Returns the bits that represents this number.
|
||
const Bits &bits() const { return u_.bits_; }
|
||
|
||
// Returns the exponent bits of this number.
|
||
Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
|
||
|
||
// Returns the fraction bits of this number.
|
||
Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
|
||
|
||
// Returns the sign bit of this number.
|
||
Bits sign_bit() const { return kSignBitMask & u_.bits_; }
|
||
|
||
// Returns true iff this is NAN (not a number).
|
||
bool is_nan() const {
|
||
// It's a NAN if the exponent bits are all ones and the fraction
|
||
// bits are not entirely zeros.
|
||
return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
|
||
}
|
||
|
||
// Returns true iff this number is at most kMaxUlps ULP's away from
|
||
// rhs. In particular, this function:
|
||
//
|
||
// - returns false if either number is (or both are) NAN.
|
||
// - treats really large numbers as almost equal to infinity.
|
||
// - thinks +0.0 and -0.0 are 0 DLP's apart.
|
||
bool AlmostEquals(const FloatingPoint& rhs) const {
|
||
// The IEEE standard says that any comparison operation involving
|
||
// a NAN must return false.
|
||
if (is_nan() || rhs.is_nan()) return false;
|
||
|
||
return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
|
||
<= kMaxUlps;
|
||
}
|
||
|
||
private:
|
||
// The data type used to store the actual floating-point number.
|
||
union FloatingPointUnion {
|
||
RawType value_; // The raw floating-point number.
|
||
Bits bits_; // The bits that represent the number.
|
||
};
|
||
|
||
// Converts an integer from the sign-and-magnitude representation to
|
||
// the biased representation. More precisely, let N be 2 to the
|
||
// power of (kBitCount - 1), an integer x is represented by the
|
||
// unsigned number x + N.
|
||
//
|
||
// For instance,
|
||
//
|
||
// -N + 1 (the most negative number representable using
|
||
// sign-and-magnitude) is represented by 1;
|
||
// 0 is represented by N; and
|
||
// N - 1 (the biggest number representable using
|
||
// sign-and-magnitude) is represented by 2N - 1.
|
||
//
|
||
// Read http://en.wikipedia.org/wiki/Signed_number_representations
|
||
// for more details on signed number representations.
|
||
static Bits SignAndMagnitudeToBiased(const Bits &sam) {
|
||
if (kSignBitMask & sam) {
|
||
// sam represents a negative number.
|
||
return ~sam + 1;
|
||
} else {
|
||
// sam represents a positive number.
|
||
return kSignBitMask | sam;
|
||
}
|
||
}
|
||
|
||
// Given two numbers in the sign-and-magnitude representation,
|
||
// returns the distance between them as an unsigned number.
|
||
static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
|
||
const Bits &sam2) {
|
||
const Bits biased1 = SignAndMagnitudeToBiased(sam1);
|
||
const Bits biased2 = SignAndMagnitudeToBiased(sam2);
|
||
return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
|
||
}
|
||
|
||
FloatingPointUnion u_;
|
||
};
|
||
|
||
// We cannot use std::numeric_limits<T>::max() as it clashes with the max()
|
||
// macro defined by <windows.h>.
|
||
template <>
|
||
inline float FloatingPoint<float>::Max() { return FLT_MAX; }
|
||
template <>
|
||
inline double FloatingPoint<double>::Max() { return DBL_MAX; }
|
||
|
||
// Typedefs the instances of the FloatingPoint template class that we
|
||
// care to use.
|
||
typedef FloatingPoint<float> Float;
|
||
typedef FloatingPoint<double> Double;
|
||
|
||
// In order to catch the mistake of putting tests that use different
|
||
// test fixture classes in the same test case, we need to assign
|
||
// unique IDs to fixture classes and compare them. The TypeId type is
|
||
// used to hold such IDs. The user should treat TypeId as an opaque
|
||
// type: the only operation allowed on TypeId values is to compare
|
||
// them for equality using the == operator.
|
||
typedef const void* TypeId;
|
||
|
||
template <typename T>
|
||
class TypeIdHelper {
|
||
public:
|
||
// dummy_ must not have a const type. Otherwise an overly eager
|
||
// compiler (e.g. MSVC 7.1 & 8.0) may try to merge
|
||
// TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
|
||
static bool dummy_;
|
||
};
|
||
|
||
template <typename T>
|
||
bool TypeIdHelper<T>::dummy_ = false;
|
||
|
||
// GetTypeId<T>() returns the ID of type T. Different values will be
|
||
// returned for different types. Calling the function twice with the
|
||
// same type argument is guaranteed to return the same ID.
|
||
template <typename T>
|
||
TypeId GetTypeId() {
|
||
// The compiler is required to allocate a different
|
||
// TypeIdHelper<T>::dummy_ variable for each T used to instantiate
|
||
// the template. Therefore, the address of dummy_ is guaranteed to
|
||
// be unique.
|
||
return &(TypeIdHelper<T>::dummy_);
|
||
}
|
||
|
||
// Returns the type ID of ::testing::Test. Always call this instead
|
||
// of GetTypeId< ::testing::Test>() to get the type ID of
|
||
// ::testing::Test, as the latter may give the wrong result due to a
|
||
// suspected linker bug when compiling Google Test as a Mac OS X
|
||
// framework.
|
||
GTEST_API_ TypeId GetTestTypeId();
|
||
|
||
// Defines the abstract factory interface that creates instances
|
||
// of a Test object.
|
||
class TestFactoryBase {
|
||
public:
|
||
virtual ~TestFactoryBase() {}
|
||
|
||
// Creates a test instance to run. The instance is both created and destroyed
|
||
// within TestInfoImpl::Run()
|
||
virtual Test* CreateTest() = 0;
|
||
|
||
protected:
|
||
TestFactoryBase() {}
|
||
|
||
private:
|
||
GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
|
||
};
|
||
|
||
// This class provides implementation of TeastFactoryBase interface.
|
||
// It is used in TEST and TEST_F macros.
|
||
template <class TestClass>
|
||
class TestFactoryImpl : public TestFactoryBase {
|
||
public:
|
||
virtual Test* CreateTest() { return new TestClass; }
|
||
};
|
||
|
||
#if GTEST_OS_WINDOWS
|
||
|
||
// Predicate-formatters for implementing the HRESULT checking macros
|
||
// {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
|
||
// We pass a long instead of HRESULT to avoid causing an
|
||
// include dependency for the HRESULT type.
|
||
GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
|
||
long hr); // NOLINT
|
||
GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
|
||
long hr); // NOLINT
|
||
|
||
#endif // GTEST_OS_WINDOWS
|
||
|
||
// Types of SetUpTestCase() and TearDownTestCase() functions.
|
||
typedef void (*SetUpTestCaseFunc)();
|
||
typedef void (*TearDownTestCaseFunc)();
|
||
|
||
// Creates a new TestInfo object and registers it with Google Test;
|
||
// returns the created object.
|
||
//
|
||
// Arguments:
|
||
//
|
||
// test_case_name: name of the test case
|
||
// name: name of the test
|
||
// type_param the name of the test's type parameter, or NULL if
|
||
// this is not a typed or a type-parameterized test.
|
||
// value_param text representation of the test's value parameter,
|
||
// or NULL if this is not a type-parameterized test.
|
||
// fixture_class_id: ID of the test fixture class
|
||
// set_up_tc: pointer to the function that sets up the test case
|
||
// tear_down_tc: pointer to the function that tears down the test case
|
||
// factory: pointer to the factory that creates a test object.
|
||
// The newly created TestInfo instance will assume
|
||
// ownership of the factory object.
|
||
GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
|
||
const char* test_case_name,
|
||
const char* name,
|
||
const char* type_param,
|
||
const char* value_param,
|
||
TypeId fixture_class_id,
|
||
SetUpTestCaseFunc set_up_tc,
|
||
TearDownTestCaseFunc tear_down_tc,
|
||
TestFactoryBase* factory);
|
||
|
||
// If *pstr starts with the given prefix, modifies *pstr to be right
|
||
// past the prefix and returns true; otherwise leaves *pstr unchanged
|
||
// and returns false. None of pstr, *pstr, and prefix can be NULL.
|
||
GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
|
||
|
||
#if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
|
||
|
||
// State of the definition of a type-parameterized test case.
|
||
class GTEST_API_ TypedTestCasePState {
|
||
public:
|
||
TypedTestCasePState() : registered_(false) {}
|
||
|
||
// Adds the given test name to defined_test_names_ and return true
|
||
// if the test case hasn't been registered; otherwise aborts the
|
||
// program.
|
||
bool AddTestName(const char* file, int line, const char* case_name,
|
||
const char* test_name) {
|
||
if (registered_) {
|
||
fprintf(stderr, "%s Test %s must be defined before "
|
||
"REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
|
||
FormatFileLocation(file, line).c_str(), test_name, case_name);
|
||
fflush(stderr);
|
||
posix::Abort();
|
||
}
|
||
defined_test_names_.insert(test_name);
|
||
return true;
|
||
}
|
||
|
||
// Verifies that registered_tests match the test names in
|
||
// defined_test_names_; returns registered_tests if successful, or
|
||
// aborts the program otherwise.
|
||
const char* VerifyRegisteredTestNames(
|
||
const char* file, int line, const char* registered_tests);
|
||
|
||
private:
|
||
bool registered_;
|
||
::std::set<const char*> defined_test_names_;
|
||
};
|
||
|
||
// Skips to the first non-space char after the first comma in 'str';
|
||
// returns NULL if no comma is found in 'str'.
|
||
inline const char* SkipComma(const char* str) {
|
||
const char* comma = strchr(str, ',');
|
||
if (comma == NULL) {
|
||
return NULL;
|
||
}
|
||
while (IsSpace(*(++comma))) {}
|
||
return comma;
|
||
}
|
||
|
||
// Returns the prefix of 'str' before the first comma in it; returns
|
||
// the entire string if it contains no comma.
|
||
inline std::string GetPrefixUntilComma(const char* str) {
|
||
const char* comma = strchr(str, ',');
|
||
return comma == NULL ? str : std::string(str, comma);
|
||
}
|
||
|
||
// TypeParameterizedTest<Fixture, TestSel, Types>::Register()
|
||
// registers a list of type-parameterized tests with Google Test. The
|
||
// return value is insignificant - we just need to return something
|
||
// such that we can call this function in a namespace scope.
|
||
//
|
||
// Implementation note: The GTEST_TEMPLATE_ macro declares a template
|
||
// template parameter. It's defined in gtest-type-util.h.
|
||
template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
|
||
class TypeParameterizedTest {
|
||
public:
|
||
// 'index' is the index of the test in the type list 'Types'
|
||
// specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
|
||
// Types). Valid values for 'index' are [0, N - 1] where N is the
|
||
// length of Types.
|
||
static bool Register(const char* prefix, const char* case_name,
|
||
const char* test_names, int index) {
|
||
typedef typename Types::Head Type;
|
||
typedef Fixture<Type> FixtureClass;
|
||
typedef typename GTEST_BIND_(TestSel, Type) TestClass;
|
||
|
||
// First, registers the first type-parameterized test in the type
|
||
// list.
|
||
MakeAndRegisterTestInfo(
|
||
(std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/"
|
||
+ StreamableToString(index)).c_str(),
|
||
StripTrailingSpaces(GetPrefixUntilComma(test_names)).c_str(),
|
||
GetTypeName<Type>().c_str(),
|
||
NULL, // No value parameter.
|
||
GetTypeId<FixtureClass>(),
|
||
TestClass::SetUpTestCase,
|
||
TestClass::TearDownTestCase,
|
||
new TestFactoryImpl<TestClass>);
|
||
|
||
// Next, recurses (at compile time) with the tail of the type list.
|
||
return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
|
||
::Register(prefix, case_name, test_names, index + 1);
|
||
}
|
||
};
|
||
|
||
// The base case for the compile time recursion.
|
||
template <GTEST_TEMPLATE_ Fixture, class TestSel>
|
||
class TypeParameterizedTest<Fixture, TestSel, Types0> {
|
||
public:
|
||
static bool Register(const char* /*prefix*/, const char* /*case_name*/,
|
||
const char* /*test_names*/, int /*index*/) {
|
||
return true;
|
||
}
|
||
};
|
||
|
||
// TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
|
||
// registers *all combinations* of 'Tests' and 'Types' with Google
|
||
// Test. The return value is insignificant - we just need to return
|
||
// something such that we can call this function in a namespace scope.
|
||
template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
|
||
class TypeParameterizedTestCase {
|
||
public:
|
||
static bool Register(const char* prefix, const char* case_name,
|
||
const char* test_names) {
|
||
typedef typename Tests::Head Head;
|
||
|
||
// First, register the first test in 'Test' for each type in 'Types'.
|
||
TypeParameterizedTest<Fixture, Head, Types>::Register(
|
||
prefix, case_name, test_names, 0);
|
||
|
||
// Next, recurses (at compile time) with the tail of the test list.
|
||
return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
|
||
::Register(prefix, case_name, SkipComma(test_names));
|
||
}
|
||
};
|
||
|
||
// The base case for the compile time recursion.
|
||
template <GTEST_TEMPLATE_ Fixture, typename Types>
|
||
class TypeParameterizedTestCase<Fixture, Templates0, Types> {
|
||
public:
|
||
static bool Register(const char* /*prefix*/, const char* /*case_name*/,
|
||
const char* /*test_names*/) {
|
||
return true;
|
||
}
|
||
};
|
||
|
||
#endif // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
|
||
|
||
// Returns the current OS stack trace as an std::string.
|
||
//
|
||
// The maximum number of stack frames to be included is specified by
|
||
// the gtest_stack_trace_depth flag. The skip_count parameter
|
||
// specifies the number of top frames to be skipped, which doesn't
|
||
// count against the number of frames to be included.
|
||
//
|
||
// For example, if Foo() calls Bar(), which in turn calls
|
||
// GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
|
||
// the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
|
||
GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
|
||
UnitTest* unit_test, int skip_count);
|
||
|
||
// Helpers for suppressing warnings on unreachable code or constant
|
||
// condition.
|
||
|
||
// Always returns true.
|
||
GTEST_API_ bool AlwaysTrue();
|
||
|
||
// Always returns false.
|
||
inline bool AlwaysFalse() { return !AlwaysTrue(); }
|
||
|
||
// Helper for suppressing false warning from Clang on a const char*
|
||
// variable declared in a conditional expression always being NULL in
|
||
// the else branch.
|
||
struct GTEST_API_ ConstCharPtr {
|
||
ConstCharPtr(const char* str) : value(str) {}
|
||
operator bool() const { return true; }
|
||
const char* value;
|
||
};
|
||
|
||
// A simple Linear Congruential Generator for generating random
|
||
// numbers with a uniform distribution. Unlike rand() and srand(), it
|
||
// doesn't use global state (and therefore can't interfere with user
|
||
// code). Unlike rand_r(), it's portable. An LCG isn't very random,
|
||
// but it's good enough for our purposes.
|
||
class GTEST_API_ Random {
|
||
public:
|
||
static const UInt32 kMaxRange = 1u << 31;
|
||
|
||
explicit Random(UInt32 seed) : state_(seed) {}
|
||
|
||
void Reseed(UInt32 seed) { state_ = seed; }
|
||
|
||
// Generates a random number from [0, range). Crashes if 'range' is
|
||
// 0 or greater than kMaxRange.
|
||
UInt32 Generate(UInt32 range);
|
||
|
||
private:
|
||
UInt32 state_;
|
||
GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
|
||
};
|
||
|
||
// Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
|
||
// compiler error iff T1 and T2 are different types.
|
||
template <typename T1, typename T2>
|
||
struct CompileAssertTypesEqual;
|
||
|
||
template <typename T>
|
||
struct CompileAssertTypesEqual<T, T> {
|
||
};
|
||
|
||
// Removes the reference from a type if it is a reference type,
|
||
// otherwise leaves it unchanged. This is the same as
|
||
// tr1::remove_reference, which is not widely available yet.
|
||
template <typename T>
|
||
struct RemoveReference { typedef T type; }; // NOLINT
|
||
template <typename T>
|
||
struct RemoveReference<T&> { typedef T type; }; // NOLINT
|
||
|
||
// A handy wrapper around RemoveReference that works when the argument
|
||
// T depends on template parameters.
|
||
#define GTEST_REMOVE_REFERENCE_(T) \
|
||
typename ::testing::internal::RemoveReference<T>::type
|
||
|
||
// Removes const from a type if it is a const type, otherwise leaves
|
||
// it unchanged. This is the same as tr1::remove_const, which is not
|
||
// widely available yet.
|
||
template <typename T>
|
||
struct RemoveConst { typedef T type; }; // NOLINT
|
||
template <typename T>
|
||
struct RemoveConst<const T> { typedef T type; }; // NOLINT
|
||
|
||
// MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
|
||
// definition to fail to remove the const in 'const int[3]' and 'const
|
||
// char[3][4]'. The following specialization works around the bug.
|
||
template <typename T, size_t N>
|
||
struct RemoveConst<const T[N]> {
|
||
typedef typename RemoveConst<T>::type type[N];
|
||
};
|
||
|
||
#if defined(_MSC_VER) && _MSC_VER < 1400
|
||
// This is the only specialization that allows VC++ 7.1 to remove const in
|
||
// 'const int[3] and 'const int[3][4]'. However, it causes trouble with GCC
|
||
// and thus needs to be conditionally compiled.
|
||
template <typename T, size_t N>
|
||
struct RemoveConst<T[N]> {
|
||
typedef typename RemoveConst<T>::type type[N];
|
||
};
|
||
#endif
|
||
|
||
// A handy wrapper around RemoveConst that works when the argument
|
||
// T depends on template parameters.
|
||
#define GTEST_REMOVE_CONST_(T) \
|
||
typename ::testing::internal::RemoveConst<T>::type
|
||
|
||
// Turns const U&, U&, const U, and U all into U.
|
||
#define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
|
||
GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
|
||
|
||
// Adds reference to a type if it is not a reference type,
|
||
// otherwise leaves it unchanged. This is the same as
|
||
// tr1::add_reference, which is not widely available yet.
|
||
template <typename T>
|
||
struct AddReference { typedef T& type; }; // NOLINT
|
||
template <typename T>
|
||
struct AddReference<T&> { typedef T& type; }; // NOLINT
|
||
|
||
// A handy wrapper around AddReference that works when the argument T
|
||
// depends on template parameters.
|
||
#define GTEST_ADD_REFERENCE_(T) \
|
||
typename ::testing::internal::AddReference<T>::type
|
||
|
||
// Adds a reference to const on top of T as necessary. For example,
|
||
// it transforms
|
||
//
|
||
// char ==> const char&
|
||
// const char ==> const char&
|
||
// char& ==> const char&
|
||
// const char& ==> const char&
|
||
//
|
||
// The argument T must depend on some template parameters.
|
||
#define GTEST_REFERENCE_TO_CONST_(T) \
|
||
GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
|
||
|
||
// ImplicitlyConvertible<From, To>::value is a compile-time bool
|
||
// constant that's true iff type From can be implicitly converted to
|
||
// type To.
|
||
template <typename From, typename To>
|
||
class ImplicitlyConvertible {
|
||
private:
|
||
// We need the following helper functions only for their types.
|
||
// They have no implementations.
|
||
|
||
// MakeFrom() is an expression whose type is From. We cannot simply
|
||
// use From(), as the type From may not have a public default
|
||
// constructor.
|
||
static typename AddReference<From>::type MakeFrom();
|
||
|
||
// These two functions are overloaded. Given an expression
|
||
// Helper(x), the compiler will pick the first version if x can be
|
||
// implicitly converted to type To; otherwise it will pick the
|
||
// second version.
|
||
//
|
||
// The first version returns a value of size 1, and the second
|
||
// version returns a value of size 2. Therefore, by checking the
|
||
// size of Helper(x), which can be done at compile time, we can tell
|
||
// which version of Helper() is used, and hence whether x can be
|
||
// implicitly converted to type To.
|
||
static char Helper(To);
|
||
static char (&Helper(...))[2]; // NOLINT
|
||
|
||
// We have to put the 'public' section after the 'private' section,
|
||
// or MSVC refuses to compile the code.
|
||
public:
|
||
#if defined(__BORLANDC__)
|
||
// C++Builder cannot use member overload resolution during template
|
||
// instantiation. The simplest workaround is to use its C++0x type traits
|
||
// functions (C++Builder 2009 and above only).
|
||
static const bool value = __is_convertible(From, To);
|
||
#else
|
||
// MSVC warns about implicitly converting from double to int for
|
||
// possible loss of data, so we need to temporarily disable the
|
||
// warning.
|
||
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4244)
|
||
static const bool value =
|
||
sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
|
||
GTEST_DISABLE_MSC_WARNINGS_POP_()
|
||
#endif // __BORLANDC__
|
||
};
|
||
template <typename From, typename To>
|
||
const bool ImplicitlyConvertible<From, To>::value;
|
||
|
||
// IsAProtocolMessage<T>::value is a compile-time bool constant that's
|
||
// true iff T is type ProtocolMessage, proto2::Message, or a subclass
|
||
// of those.
|
||
template <typename T>
|
||
struct IsAProtocolMessage
|
||
: public bool_constant<
|
||
ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
|
||
ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
|
||
};
|
||
|
||
// When the compiler sees expression IsContainerTest<C>(0), if C is an
|
||
// STL-style container class, the first overload of IsContainerTest
|
||
// will be viable (since both C::iterator* and C::const_iterator* are
|
||
// valid types and NULL can be implicitly converted to them). It will
|
||
// be picked over the second overload as 'int' is a perfect match for
|
||
// the type of argument 0. If C::iterator or C::const_iterator is not
|
||
// a valid type, the first overload is not viable, and the second
|
||
// overload will be picked. Therefore, we can determine whether C is
|
||
// a container class by checking the type of IsContainerTest<C>(0).
|
||
// The value of the expression is insignificant.
|
||
//
|
||
// Note that we look for both C::iterator and C::const_iterator. The
|
||
// reason is that C++ injects the name of a class as a member of the
|
||
// class itself (e.g. you can refer to class iterator as either
|
||
// 'iterator' or 'iterator::iterator'). If we look for C::iterator
|
||
// only, for example, we would mistakenly think that a class named
|
||
// iterator is an STL container.
|
||
//
|
||
// Also note that the simpler approach of overloading
|
||
// IsContainerTest(typename C::const_iterator*) and
|
||
// IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
|
||
typedef int IsContainer;
|
||
template <class C>
|
||
IsContainer IsContainerTest(int /* dummy */,
|
||
typename C::iterator* /* it */ = NULL,
|
||
typename C::const_iterator* /* const_it */ = NULL) {
|
||
return 0;
|
||
}
|
||
|
||
typedef char IsNotContainer;
|
||
template <class C>
|
||
IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
|
||
|
||
// EnableIf<condition>::type is void when 'Cond' is true, and
|
||
// undefined when 'Cond' is false. To use SFINAE to make a function
|
||
// overload only apply when a particular expression is true, add
|
||
// "typename EnableIf<expression>::type* = 0" as the last parameter.
|
||
template<bool> struct EnableIf;
|
||
template<> struct EnableIf<true> { typedef void type; }; // NOLINT
|
||
|
||
// Utilities for native arrays.
|
||
|
||
// ArrayEq() compares two k-dimensional native arrays using the
|
||
// elements' operator==, where k can be any integer >= 0. When k is
|
||
// 0, ArrayEq() degenerates into comparing a single pair of values.
|
||
|
||
template <typename T, typename U>
|
||
bool ArrayEq(const T* lhs, size_t size, const U* rhs);
|
||
|
||
// This generic version is used when k is 0.
|
||
template <typename T, typename U>
|
||
inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
|
||
|
||
// This overload is used when k >= 1.
|
||
template <typename T, typename U, size_t N>
|
||
inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
|
||
return internal::ArrayEq(lhs, N, rhs);
|
||
}
|
||
|
||
// This helper reduces code bloat. If we instead put its logic inside
|
||
// the previous ArrayEq() function, arrays with different sizes would
|
||
// lead to different copies of the template code.
|
||
template <typename T, typename U>
|
||
bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
|
||
for (size_t i = 0; i != size; i++) {
|
||
if (!internal::ArrayEq(lhs[i], rhs[i]))
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
// Finds the first element in the iterator range [begin, end) that
|
||
// equals elem. Element may be a native array type itself.
|
||
template <typename Iter, typename Element>
|
||
Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
|
||
for (Iter it = begin; it != end; ++it) {
|
||
if (internal::ArrayEq(*it, elem))
|
||
return it;
|
||
}
|
||
return end;
|
||
}
|
||
|
||
// CopyArray() copies a k-dimensional native array using the elements'
|
||
// operator=, where k can be any integer >= 0. When k is 0,
|
||
// CopyArray() degenerates into copying a single value.
|
||
|
||
template <typename T, typename U>
|
||
void CopyArray(const T* from, size_t size, U* to);
|
||
|
||
// This generic version is used when k is 0.
|
||
template <typename T, typename U>
|
||
inline void CopyArray(const T& from, U* to) { *to = from; }
|
||
|
||
// This overload is used when k >= 1.
|
||
template <typename T, typename U, size_t N>
|
||
inline void CopyArray(const T(&from)[N], U(*to)[N]) {
|
||
internal::CopyArray(from, N, *to);
|
||
}
|
||
|
||
// This helper reduces code bloat. If we instead put its logic inside
|
||
// the previous CopyArray() function, arrays with different sizes
|
||
// would lead to different copies of the template code.
|
||
template <typename T, typename U>
|
||
void CopyArray(const T* from, size_t size, U* to) {
|
||
for (size_t i = 0; i != size; i++) {
|
||
internal::CopyArray(from[i], to + i);
|
||
}
|
||
}
|
||
|
||
// The relation between an NativeArray object (see below) and the
|
||
// native array it represents.
|
||
// We use 2 different structs to allow non-copyable types to be used, as long
|
||
// as RelationToSourceReference() is passed.
|
||
struct RelationToSourceReference {};
|
||
struct RelationToSourceCopy {};
|
||
|
||
// Adapts a native array to a read-only STL-style container. Instead
|
||
// of the complete STL container concept, this adaptor only implements
|
||
// members useful for Google Mock's container matchers. New members
|
||
// should be added as needed. To simplify the implementation, we only
|
||
// support Element being a raw type (i.e. having no top-level const or
|
||
// reference modifier). It's the client's responsibility to satisfy
|
||
// this requirement. Element can be an array type itself (hence
|
||
// multi-dimensional arrays are supported).
|
||
template <typename Element>
|
||
class NativeArray {
|
||
public:
|
||
// STL-style container typedefs.
|
||
typedef Element value_type;
|
||
typedef Element* iterator;
|
||
typedef const Element* const_iterator;
|
||
|
||
// Constructs from a native array. References the source.
|
||
NativeArray(const Element* array, size_t count, RelationToSourceReference) {
|
||
InitRef(array, count);
|
||
}
|
||
|
||
// Constructs from a native array. Copies the source.
|
||
NativeArray(const Element* array, size_t count, RelationToSourceCopy) {
|
||
InitCopy(array, count);
|
||
}
|
||
|
||
// Copy constructor.
|
||
NativeArray(const NativeArray& rhs) {
|
||
(this->*rhs.clone_)(rhs.array_, rhs.size_);
|
||
}
|
||
|
||
~NativeArray() {
|
||
if (clone_ != &NativeArray::InitRef)
|
||
delete[] array_;
|
||
}
|
||
|
||
// STL-style container methods.
|
||
size_t size() const { return size_; }
|
||
const_iterator begin() const { return array_; }
|
||
const_iterator end() const { return array_ + size_; }
|
||
bool operator==(const NativeArray& rhs) const {
|
||
return size() == rhs.size() &&
|
||
ArrayEq(begin(), size(), rhs.begin());
|
||
}
|
||
|
||
private:
|
||
enum {
|
||
kCheckTypeIsNotConstOrAReference = StaticAssertTypeEqHelper<
|
||
Element, GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>::value,
|
||
};
|
||
|
||
// Initializes this object with a copy of the input.
|
||
void InitCopy(const Element* array, size_t a_size) {
|
||
Element* const copy = new Element[a_size];
|
||
CopyArray(array, a_size, copy);
|
||
array_ = copy;
|
||
size_ = a_size;
|
||
clone_ = &NativeArray::InitCopy;
|
||
}
|
||
|
||
// Initializes this object with a reference of the input.
|
||
void InitRef(const Element* array, size_t a_size) {
|
||
array_ = array;
|
||
size_ = a_size;
|
||
clone_ = &NativeArray::InitRef;
|
||
}
|
||
|
||
const Element* array_;
|
||
size_t size_;
|
||
void (NativeArray::*clone_)(const Element*, size_t);
|
||
|
||
GTEST_DISALLOW_ASSIGN_(NativeArray);
|
||
};
|
||
|
||
} // namespace internal
|
||
} // namespace testing
|
||
|
||
#define GTEST_MESSAGE_AT_(file, line, message, result_type) \
|
||
::testing::internal::AssertHelper(result_type, file, line, message) \
|
||
= ::testing::Message()
|
||
|
||
#define GTEST_MESSAGE_(message, result_type) \
|
||
GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
|
||
|
||
#define GTEST_FATAL_FAILURE_(message) \
|
||
return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
|
||
|
||
#define GTEST_NONFATAL_FAILURE_(message) \
|
||
GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
|
||
|
||
#define GTEST_SUCCESS_(message) \
|
||
GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
|
||
|
||
// Suppresses MSVC warnings 4072 (unreachable code) for the code following
|
||
// statement if it returns or throws (or doesn't return or throw in some
|
||
// situations).
|
||
#define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
|
||
if (::testing::internal::AlwaysTrue()) { statement; }
|
||
|
||
#define GTEST_TEST_THROW_(statement, expected_exception, fail) \
|
||
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
|
||
if (::testing::internal::ConstCharPtr gtest_msg = "") { \
|
||
bool gtest_caught_expected = false; \
|
||
try { \
|
||
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
|
||
} \
|
||
catch (expected_exception const&) { \
|
||
gtest_caught_expected = true; \
|
||
} \
|
||
catch (...) { \
|
||
gtest_msg.value = \
|
||
"Expected: " #statement " throws an exception of type " \
|
||
#expected_exception ".\n Actual: it throws a different type."; \
|
||
goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
|
||
} \
|
||
if (!gtest_caught_expected) { \
|
||
gtest_msg.value = \
|
||
"Expected: " #statement " throws an exception of type " \
|
||
#expected_exception ".\n Actual: it throws nothing."; \
|
||
goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
|
||
} \
|
||
} else \
|
||
GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
|
||
fail(gtest_msg.value)
|
||
|
||
#define GTEST_TEST_NO_THROW_(statement, fail) \
|
||
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
|
||
if (::testing::internal::AlwaysTrue()) { \
|
||
try { \
|
||
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
|
||
} \
|
||
catch (...) { \
|
||
goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
|
||
} \
|
||
} else \
|
||
GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
|
||
fail("Expected: " #statement " doesn't throw an exception.\n" \
|
||
" Actual: it throws.")
|
||
|
||
#define GTEST_TEST_ANY_THROW_(statement, fail) \
|
||
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
|
||
if (::testing::internal::AlwaysTrue()) { \
|
||
bool gtest_caught_any = false; \
|
||
try { \
|
||
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
|
||
} \
|
||
catch (...) { \
|
||
gtest_caught_any = true; \
|
||
} \
|
||
if (!gtest_caught_any) { \
|
||
goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
|
||
} \
|
||
} else \
|
||
GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
|
||
fail("Expected: " #statement " throws an exception.\n" \
|
||
" Actual: it doesn't.")
|
||
|
||
|
||
// Implements Boolean test assertions such as EXPECT_TRUE. expression can be
|
||
// either a boolean expression or an AssertionResult. text is a textual
|
||
// represenation of expression as it was passed into the EXPECT_TRUE.
|
||
#define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
|
||
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
|
||
if (const ::testing::AssertionResult gtest_ar_ = \
|
||
::testing::AssertionResult(expression)) \
|
||
; \
|
||
else \
|
||
fail(::testing::internal::GetBoolAssertionFailureMessage(\
|
||
gtest_ar_, text, #actual, #expected).c_str())
|
||
|
||
#define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
|
||
GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
|
||
if (::testing::internal::AlwaysTrue()) { \
|
||
::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
|
||
GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
|
||
if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
|
||
goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
|
||
} \
|
||
} else \
|
||
GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
|
||
fail("Expected: " #statement " doesn't generate new fatal " \
|
||
"failures in the current thread.\n" \
|
||
" Actual: it does.")
|
||
|
||
// Expands to the name of the class that implements the given test.
|
||
#define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
|
||
test_case_name##_##test_name##_Test
|
||
|
||
// Helper macro for defining tests.
|
||
#define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
|
||
class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
|
||
public:\
|
||
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
|
||
private:\
|
||
virtual void TestBody();\
|
||
static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
|
||
GTEST_DISALLOW_COPY_AND_ASSIGN_(\
|
||
GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
|
||
};\
|
||
\
|
||
::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
|
||
::test_info_ =\
|
||
::testing::internal::MakeAndRegisterTestInfo(\
|
||
#test_case_name, #test_name, NULL, NULL, \
|
||
(parent_id), \
|
||
parent_class::SetUpTestCase, \
|
||
parent_class::TearDownTestCase, \
|
||
new ::testing::internal::TestFactoryImpl<\
|
||
GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
|
||
void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
|
||
|
||
#endif // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
|
||
|