mirror of
https://github.com/google/googletest.git
synced 2024-12-27 10:11:03 +08:00
a0669e070a
Silence MSVC C4100 (unused formal parameter) to fix breakage from recently added testcase. This warning is silenced in many files throughout googletest, but was not needed here until this testcase was added. PiperOrigin-RevId: 312121200
1584 lines
50 KiB
C++
1584 lines
50 KiB
C++
// Copyright 2007, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
// Google Mock - a framework for writing C++ mock classes.
|
|
//
|
|
// This file tests the built-in actions.
|
|
|
|
// Silence C4100 (unreferenced formal parameter) for MSVC
|
|
#ifdef _MSC_VER
|
|
# pragma warning(push)
|
|
# pragma warning(disable:4100)
|
|
#if _MSC_VER == 1900
|
|
// and silence C4800 (C4800: 'int *const ': forcing value
|
|
// to bool 'true' or 'false') for MSVC 15
|
|
# pragma warning(disable:4800)
|
|
#endif
|
|
#endif
|
|
|
|
#include "gmock/gmock-actions.h"
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include "gmock/gmock.h"
|
|
#include "gmock/internal/gmock-port.h"
|
|
#include "gtest/gtest.h"
|
|
#include "gtest/gtest-spi.h"
|
|
|
|
namespace {
|
|
|
|
using ::testing::_;
|
|
using ::testing::Action;
|
|
using ::testing::ActionInterface;
|
|
using ::testing::Assign;
|
|
using ::testing::ByMove;
|
|
using ::testing::ByRef;
|
|
using ::testing::DefaultValue;
|
|
using ::testing::DoAll;
|
|
using ::testing::DoDefault;
|
|
using ::testing::IgnoreResult;
|
|
using ::testing::Invoke;
|
|
using ::testing::InvokeWithoutArgs;
|
|
using ::testing::MakePolymorphicAction;
|
|
using ::testing::PolymorphicAction;
|
|
using ::testing::Return;
|
|
using ::testing::ReturnNew;
|
|
using ::testing::ReturnNull;
|
|
using ::testing::ReturnRef;
|
|
using ::testing::ReturnRefOfCopy;
|
|
using ::testing::ReturnRoundRobin;
|
|
using ::testing::SetArgPointee;
|
|
using ::testing::SetArgumentPointee;
|
|
using ::testing::Unused;
|
|
using ::testing::WithArgs;
|
|
using ::testing::internal::BuiltInDefaultValue;
|
|
|
|
#if !GTEST_OS_WINDOWS_MOBILE
|
|
using ::testing::SetErrnoAndReturn;
|
|
#endif
|
|
|
|
// Tests that BuiltInDefaultValue<T*>::Get() returns NULL.
|
|
TEST(BuiltInDefaultValueTest, IsNullForPointerTypes) {
|
|
EXPECT_TRUE(BuiltInDefaultValue<int*>::Get() == nullptr);
|
|
EXPECT_TRUE(BuiltInDefaultValue<const char*>::Get() == nullptr);
|
|
EXPECT_TRUE(BuiltInDefaultValue<void*>::Get() == nullptr);
|
|
}
|
|
|
|
// Tests that BuiltInDefaultValue<T*>::Exists() return true.
|
|
TEST(BuiltInDefaultValueTest, ExistsForPointerTypes) {
|
|
EXPECT_TRUE(BuiltInDefaultValue<int*>::Exists());
|
|
EXPECT_TRUE(BuiltInDefaultValue<const char*>::Exists());
|
|
EXPECT_TRUE(BuiltInDefaultValue<void*>::Exists());
|
|
}
|
|
|
|
// Tests that BuiltInDefaultValue<T>::Get() returns 0 when T is a
|
|
// built-in numeric type.
|
|
TEST(BuiltInDefaultValueTest, IsZeroForNumericTypes) {
|
|
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned char>::Get());
|
|
EXPECT_EQ(0, BuiltInDefaultValue<signed char>::Get());
|
|
EXPECT_EQ(0, BuiltInDefaultValue<char>::Get());
|
|
#if GMOCK_WCHAR_T_IS_NATIVE_
|
|
#if !defined(__WCHAR_UNSIGNED__)
|
|
EXPECT_EQ(0, BuiltInDefaultValue<wchar_t>::Get());
|
|
#else
|
|
EXPECT_EQ(0U, BuiltInDefaultValue<wchar_t>::Get());
|
|
#endif
|
|
#endif
|
|
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned short>::Get()); // NOLINT
|
|
EXPECT_EQ(0, BuiltInDefaultValue<signed short>::Get()); // NOLINT
|
|
EXPECT_EQ(0, BuiltInDefaultValue<short>::Get()); // NOLINT
|
|
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned int>::Get());
|
|
EXPECT_EQ(0, BuiltInDefaultValue<signed int>::Get());
|
|
EXPECT_EQ(0, BuiltInDefaultValue<int>::Get());
|
|
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long>::Get()); // NOLINT
|
|
EXPECT_EQ(0, BuiltInDefaultValue<signed long>::Get()); // NOLINT
|
|
EXPECT_EQ(0, BuiltInDefaultValue<long>::Get()); // NOLINT
|
|
EXPECT_EQ(0U, BuiltInDefaultValue<unsigned long long>::Get()); // NOLINT
|
|
EXPECT_EQ(0, BuiltInDefaultValue<signed long long>::Get()); // NOLINT
|
|
EXPECT_EQ(0, BuiltInDefaultValue<long long>::Get()); // NOLINT
|
|
EXPECT_EQ(0, BuiltInDefaultValue<float>::Get());
|
|
EXPECT_EQ(0, BuiltInDefaultValue<double>::Get());
|
|
}
|
|
|
|
// Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
|
|
// built-in numeric type.
|
|
TEST(BuiltInDefaultValueTest, ExistsForNumericTypes) {
|
|
EXPECT_TRUE(BuiltInDefaultValue<unsigned char>::Exists());
|
|
EXPECT_TRUE(BuiltInDefaultValue<signed char>::Exists());
|
|
EXPECT_TRUE(BuiltInDefaultValue<char>::Exists());
|
|
#if GMOCK_WCHAR_T_IS_NATIVE_
|
|
EXPECT_TRUE(BuiltInDefaultValue<wchar_t>::Exists());
|
|
#endif
|
|
EXPECT_TRUE(BuiltInDefaultValue<unsigned short>::Exists()); // NOLINT
|
|
EXPECT_TRUE(BuiltInDefaultValue<signed short>::Exists()); // NOLINT
|
|
EXPECT_TRUE(BuiltInDefaultValue<short>::Exists()); // NOLINT
|
|
EXPECT_TRUE(BuiltInDefaultValue<unsigned int>::Exists());
|
|
EXPECT_TRUE(BuiltInDefaultValue<signed int>::Exists());
|
|
EXPECT_TRUE(BuiltInDefaultValue<int>::Exists());
|
|
EXPECT_TRUE(BuiltInDefaultValue<unsigned long>::Exists()); // NOLINT
|
|
EXPECT_TRUE(BuiltInDefaultValue<signed long>::Exists()); // NOLINT
|
|
EXPECT_TRUE(BuiltInDefaultValue<long>::Exists()); // NOLINT
|
|
EXPECT_TRUE(BuiltInDefaultValue<unsigned long long>::Exists()); // NOLINT
|
|
EXPECT_TRUE(BuiltInDefaultValue<signed long long>::Exists()); // NOLINT
|
|
EXPECT_TRUE(BuiltInDefaultValue<long long>::Exists()); // NOLINT
|
|
EXPECT_TRUE(BuiltInDefaultValue<float>::Exists());
|
|
EXPECT_TRUE(BuiltInDefaultValue<double>::Exists());
|
|
}
|
|
|
|
// Tests that BuiltInDefaultValue<bool>::Get() returns false.
|
|
TEST(BuiltInDefaultValueTest, IsFalseForBool) {
|
|
EXPECT_FALSE(BuiltInDefaultValue<bool>::Get());
|
|
}
|
|
|
|
// Tests that BuiltInDefaultValue<bool>::Exists() returns true.
|
|
TEST(BuiltInDefaultValueTest, BoolExists) {
|
|
EXPECT_TRUE(BuiltInDefaultValue<bool>::Exists());
|
|
}
|
|
|
|
// Tests that BuiltInDefaultValue<T>::Get() returns "" when T is a
|
|
// string type.
|
|
TEST(BuiltInDefaultValueTest, IsEmptyStringForString) {
|
|
EXPECT_EQ("", BuiltInDefaultValue< ::std::string>::Get());
|
|
}
|
|
|
|
// Tests that BuiltInDefaultValue<T>::Exists() returns true when T is a
|
|
// string type.
|
|
TEST(BuiltInDefaultValueTest, ExistsForString) {
|
|
EXPECT_TRUE(BuiltInDefaultValue< ::std::string>::Exists());
|
|
}
|
|
|
|
// Tests that BuiltInDefaultValue<const T>::Get() returns the same
|
|
// value as BuiltInDefaultValue<T>::Get() does.
|
|
TEST(BuiltInDefaultValueTest, WorksForConstTypes) {
|
|
EXPECT_EQ("", BuiltInDefaultValue<const std::string>::Get());
|
|
EXPECT_EQ(0, BuiltInDefaultValue<const int>::Get());
|
|
EXPECT_TRUE(BuiltInDefaultValue<char* const>::Get() == nullptr);
|
|
EXPECT_FALSE(BuiltInDefaultValue<const bool>::Get());
|
|
}
|
|
|
|
// A type that's default constructible.
|
|
class MyDefaultConstructible {
|
|
public:
|
|
MyDefaultConstructible() : value_(42) {}
|
|
|
|
int value() const { return value_; }
|
|
|
|
private:
|
|
int value_;
|
|
};
|
|
|
|
// A type that's not default constructible.
|
|
class MyNonDefaultConstructible {
|
|
public:
|
|
// Does not have a default ctor.
|
|
explicit MyNonDefaultConstructible(int a_value) : value_(a_value) {}
|
|
|
|
int value() const { return value_; }
|
|
|
|
private:
|
|
int value_;
|
|
};
|
|
|
|
|
|
TEST(BuiltInDefaultValueTest, ExistsForDefaultConstructibleType) {
|
|
EXPECT_TRUE(BuiltInDefaultValue<MyDefaultConstructible>::Exists());
|
|
}
|
|
|
|
TEST(BuiltInDefaultValueTest, IsDefaultConstructedForDefaultConstructibleType) {
|
|
EXPECT_EQ(42, BuiltInDefaultValue<MyDefaultConstructible>::Get().value());
|
|
}
|
|
|
|
|
|
TEST(BuiltInDefaultValueTest, DoesNotExistForNonDefaultConstructibleType) {
|
|
EXPECT_FALSE(BuiltInDefaultValue<MyNonDefaultConstructible>::Exists());
|
|
}
|
|
|
|
// Tests that BuiltInDefaultValue<T&>::Get() aborts the program.
|
|
TEST(BuiltInDefaultValueDeathTest, IsUndefinedForReferences) {
|
|
EXPECT_DEATH_IF_SUPPORTED({
|
|
BuiltInDefaultValue<int&>::Get();
|
|
}, "");
|
|
EXPECT_DEATH_IF_SUPPORTED({
|
|
BuiltInDefaultValue<const char&>::Get();
|
|
}, "");
|
|
}
|
|
|
|
TEST(BuiltInDefaultValueDeathTest, IsUndefinedForNonDefaultConstructibleType) {
|
|
EXPECT_DEATH_IF_SUPPORTED({
|
|
BuiltInDefaultValue<MyNonDefaultConstructible>::Get();
|
|
}, "");
|
|
}
|
|
|
|
// Tests that DefaultValue<T>::IsSet() is false initially.
|
|
TEST(DefaultValueTest, IsInitiallyUnset) {
|
|
EXPECT_FALSE(DefaultValue<int>::IsSet());
|
|
EXPECT_FALSE(DefaultValue<MyDefaultConstructible>::IsSet());
|
|
EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
|
|
}
|
|
|
|
// Tests that DefaultValue<T> can be set and then unset.
|
|
TEST(DefaultValueTest, CanBeSetAndUnset) {
|
|
EXPECT_TRUE(DefaultValue<int>::Exists());
|
|
EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
|
|
|
|
DefaultValue<int>::Set(1);
|
|
DefaultValue<const MyNonDefaultConstructible>::Set(
|
|
MyNonDefaultConstructible(42));
|
|
|
|
EXPECT_EQ(1, DefaultValue<int>::Get());
|
|
EXPECT_EQ(42, DefaultValue<const MyNonDefaultConstructible>::Get().value());
|
|
|
|
EXPECT_TRUE(DefaultValue<int>::Exists());
|
|
EXPECT_TRUE(DefaultValue<const MyNonDefaultConstructible>::Exists());
|
|
|
|
DefaultValue<int>::Clear();
|
|
DefaultValue<const MyNonDefaultConstructible>::Clear();
|
|
|
|
EXPECT_FALSE(DefaultValue<int>::IsSet());
|
|
EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::IsSet());
|
|
|
|
EXPECT_TRUE(DefaultValue<int>::Exists());
|
|
EXPECT_FALSE(DefaultValue<const MyNonDefaultConstructible>::Exists());
|
|
}
|
|
|
|
// Tests that DefaultValue<T>::Get() returns the
|
|
// BuiltInDefaultValue<T>::Get() when DefaultValue<T>::IsSet() is
|
|
// false.
|
|
TEST(DefaultValueDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
|
|
EXPECT_FALSE(DefaultValue<int>::IsSet());
|
|
EXPECT_TRUE(DefaultValue<int>::Exists());
|
|
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::IsSet());
|
|
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible>::Exists());
|
|
|
|
EXPECT_EQ(0, DefaultValue<int>::Get());
|
|
|
|
EXPECT_DEATH_IF_SUPPORTED({
|
|
DefaultValue<MyNonDefaultConstructible>::Get();
|
|
}, "");
|
|
}
|
|
|
|
TEST(DefaultValueTest, GetWorksForMoveOnlyIfSet) {
|
|
EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
|
|
EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Get() == nullptr);
|
|
DefaultValue<std::unique_ptr<int>>::SetFactory([] {
|
|
return std::unique_ptr<int>(new int(42));
|
|
});
|
|
EXPECT_TRUE(DefaultValue<std::unique_ptr<int>>::Exists());
|
|
std::unique_ptr<int> i = DefaultValue<std::unique_ptr<int>>::Get();
|
|
EXPECT_EQ(42, *i);
|
|
}
|
|
|
|
// Tests that DefaultValue<void>::Get() returns void.
|
|
TEST(DefaultValueTest, GetWorksForVoid) {
|
|
return DefaultValue<void>::Get();
|
|
}
|
|
|
|
// Tests using DefaultValue with a reference type.
|
|
|
|
// Tests that DefaultValue<T&>::IsSet() is false initially.
|
|
TEST(DefaultValueOfReferenceTest, IsInitiallyUnset) {
|
|
EXPECT_FALSE(DefaultValue<int&>::IsSet());
|
|
EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::IsSet());
|
|
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
|
|
}
|
|
|
|
// Tests that DefaultValue<T&>::Exists is false initiallly.
|
|
TEST(DefaultValueOfReferenceTest, IsInitiallyNotExisting) {
|
|
EXPECT_FALSE(DefaultValue<int&>::Exists());
|
|
EXPECT_FALSE(DefaultValue<MyDefaultConstructible&>::Exists());
|
|
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
|
|
}
|
|
|
|
// Tests that DefaultValue<T&> can be set and then unset.
|
|
TEST(DefaultValueOfReferenceTest, CanBeSetAndUnset) {
|
|
int n = 1;
|
|
DefaultValue<const int&>::Set(n);
|
|
MyNonDefaultConstructible x(42);
|
|
DefaultValue<MyNonDefaultConstructible&>::Set(x);
|
|
|
|
EXPECT_TRUE(DefaultValue<const int&>::Exists());
|
|
EXPECT_TRUE(DefaultValue<MyNonDefaultConstructible&>::Exists());
|
|
|
|
EXPECT_EQ(&n, &(DefaultValue<const int&>::Get()));
|
|
EXPECT_EQ(&x, &(DefaultValue<MyNonDefaultConstructible&>::Get()));
|
|
|
|
DefaultValue<const int&>::Clear();
|
|
DefaultValue<MyNonDefaultConstructible&>::Clear();
|
|
|
|
EXPECT_FALSE(DefaultValue<const int&>::Exists());
|
|
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::Exists());
|
|
|
|
EXPECT_FALSE(DefaultValue<const int&>::IsSet());
|
|
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
|
|
}
|
|
|
|
// Tests that DefaultValue<T&>::Get() returns the
|
|
// BuiltInDefaultValue<T&>::Get() when DefaultValue<T&>::IsSet() is
|
|
// false.
|
|
TEST(DefaultValueOfReferenceDeathTest, GetReturnsBuiltInDefaultValueWhenUnset) {
|
|
EXPECT_FALSE(DefaultValue<int&>::IsSet());
|
|
EXPECT_FALSE(DefaultValue<MyNonDefaultConstructible&>::IsSet());
|
|
|
|
EXPECT_DEATH_IF_SUPPORTED({
|
|
DefaultValue<int&>::Get();
|
|
}, "");
|
|
EXPECT_DEATH_IF_SUPPORTED({
|
|
DefaultValue<MyNonDefaultConstructible>::Get();
|
|
}, "");
|
|
}
|
|
|
|
// Tests that ActionInterface can be implemented by defining the
|
|
// Perform method.
|
|
|
|
typedef int MyGlobalFunction(bool, int);
|
|
|
|
class MyActionImpl : public ActionInterface<MyGlobalFunction> {
|
|
public:
|
|
int Perform(const std::tuple<bool, int>& args) override {
|
|
return std::get<0>(args) ? std::get<1>(args) : 0;
|
|
}
|
|
};
|
|
|
|
TEST(ActionInterfaceTest, CanBeImplementedByDefiningPerform) {
|
|
MyActionImpl my_action_impl;
|
|
(void)my_action_impl;
|
|
}
|
|
|
|
TEST(ActionInterfaceTest, MakeAction) {
|
|
Action<MyGlobalFunction> action = MakeAction(new MyActionImpl);
|
|
|
|
// When exercising the Perform() method of Action<F>, we must pass
|
|
// it a tuple whose size and type are compatible with F's argument
|
|
// types. For example, if F is int(), then Perform() takes a
|
|
// 0-tuple; if F is void(bool, int), then Perform() takes a
|
|
// std::tuple<bool, int>, and so on.
|
|
EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5)));
|
|
}
|
|
|
|
// Tests that Action<F> can be contructed from a pointer to
|
|
// ActionInterface<F>.
|
|
TEST(ActionTest, CanBeConstructedFromActionInterface) {
|
|
Action<MyGlobalFunction> action(new MyActionImpl);
|
|
}
|
|
|
|
// Tests that Action<F> delegates actual work to ActionInterface<F>.
|
|
TEST(ActionTest, DelegatesWorkToActionInterface) {
|
|
const Action<MyGlobalFunction> action(new MyActionImpl);
|
|
|
|
EXPECT_EQ(5, action.Perform(std::make_tuple(true, 5)));
|
|
EXPECT_EQ(0, action.Perform(std::make_tuple(false, 1)));
|
|
}
|
|
|
|
// Tests that Action<F> can be copied.
|
|
TEST(ActionTest, IsCopyable) {
|
|
Action<MyGlobalFunction> a1(new MyActionImpl);
|
|
Action<MyGlobalFunction> a2(a1); // Tests the copy constructor.
|
|
|
|
// a1 should continue to work after being copied from.
|
|
EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
|
|
EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1)));
|
|
|
|
// a2 should work like the action it was copied from.
|
|
EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5)));
|
|
EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1)));
|
|
|
|
a2 = a1; // Tests the assignment operator.
|
|
|
|
// a1 should continue to work after being copied from.
|
|
EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
|
|
EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 1)));
|
|
|
|
// a2 should work like the action it was copied from.
|
|
EXPECT_EQ(5, a2.Perform(std::make_tuple(true, 5)));
|
|
EXPECT_EQ(0, a2.Perform(std::make_tuple(false, 1)));
|
|
}
|
|
|
|
// Tests that an Action<From> object can be converted to a
|
|
// compatible Action<To> object.
|
|
|
|
class IsNotZero : public ActionInterface<bool(int)> { // NOLINT
|
|
public:
|
|
bool Perform(const std::tuple<int>& arg) override {
|
|
return std::get<0>(arg) != 0;
|
|
}
|
|
};
|
|
|
|
TEST(ActionTest, CanBeConvertedToOtherActionType) {
|
|
const Action<bool(int)> a1(new IsNotZero); // NOLINT
|
|
const Action<int(char)> a2 = Action<int(char)>(a1); // NOLINT
|
|
EXPECT_EQ(1, a2.Perform(std::make_tuple('a')));
|
|
EXPECT_EQ(0, a2.Perform(std::make_tuple('\0')));
|
|
}
|
|
|
|
// The following two classes are for testing MakePolymorphicAction().
|
|
|
|
// Implements a polymorphic action that returns the second of the
|
|
// arguments it receives.
|
|
class ReturnSecondArgumentAction {
|
|
public:
|
|
// We want to verify that MakePolymorphicAction() can work with a
|
|
// polymorphic action whose Perform() method template is either
|
|
// const or not. This lets us verify the non-const case.
|
|
template <typename Result, typename ArgumentTuple>
|
|
Result Perform(const ArgumentTuple& args) {
|
|
return std::get<1>(args);
|
|
}
|
|
};
|
|
|
|
// Implements a polymorphic action that can be used in a nullary
|
|
// function to return 0.
|
|
class ReturnZeroFromNullaryFunctionAction {
|
|
public:
|
|
// For testing that MakePolymorphicAction() works when the
|
|
// implementation class' Perform() method template takes only one
|
|
// template parameter.
|
|
//
|
|
// We want to verify that MakePolymorphicAction() can work with a
|
|
// polymorphic action whose Perform() method template is either
|
|
// const or not. This lets us verify the const case.
|
|
template <typename Result>
|
|
Result Perform(const std::tuple<>&) const {
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
// These functions verify that MakePolymorphicAction() returns a
|
|
// PolymorphicAction<T> where T is the argument's type.
|
|
|
|
PolymorphicAction<ReturnSecondArgumentAction> ReturnSecondArgument() {
|
|
return MakePolymorphicAction(ReturnSecondArgumentAction());
|
|
}
|
|
|
|
PolymorphicAction<ReturnZeroFromNullaryFunctionAction>
|
|
ReturnZeroFromNullaryFunction() {
|
|
return MakePolymorphicAction(ReturnZeroFromNullaryFunctionAction());
|
|
}
|
|
|
|
// Tests that MakePolymorphicAction() turns a polymorphic action
|
|
// implementation class into a polymorphic action.
|
|
TEST(MakePolymorphicActionTest, ConstructsActionFromImpl) {
|
|
Action<int(bool, int, double)> a1 = ReturnSecondArgument(); // NOLINT
|
|
EXPECT_EQ(5, a1.Perform(std::make_tuple(false, 5, 2.0)));
|
|
}
|
|
|
|
// Tests that MakePolymorphicAction() works when the implementation
|
|
// class' Perform() method template has only one template parameter.
|
|
TEST(MakePolymorphicActionTest, WorksWhenPerformHasOneTemplateParameter) {
|
|
Action<int()> a1 = ReturnZeroFromNullaryFunction();
|
|
EXPECT_EQ(0, a1.Perform(std::make_tuple()));
|
|
|
|
Action<void*()> a2 = ReturnZeroFromNullaryFunction();
|
|
EXPECT_TRUE(a2.Perform(std::make_tuple()) == nullptr);
|
|
}
|
|
|
|
// Tests that Return() works as an action for void-returning
|
|
// functions.
|
|
TEST(ReturnTest, WorksForVoid) {
|
|
const Action<void(int)> ret = Return(); // NOLINT
|
|
return ret.Perform(std::make_tuple(1));
|
|
}
|
|
|
|
// Tests that Return(v) returns v.
|
|
TEST(ReturnTest, ReturnsGivenValue) {
|
|
Action<int()> ret = Return(1); // NOLINT
|
|
EXPECT_EQ(1, ret.Perform(std::make_tuple()));
|
|
|
|
ret = Return(-5);
|
|
EXPECT_EQ(-5, ret.Perform(std::make_tuple()));
|
|
}
|
|
|
|
// Tests that Return("string literal") works.
|
|
TEST(ReturnTest, AcceptsStringLiteral) {
|
|
Action<const char*()> a1 = Return("Hello");
|
|
EXPECT_STREQ("Hello", a1.Perform(std::make_tuple()));
|
|
|
|
Action<std::string()> a2 = Return("world");
|
|
EXPECT_EQ("world", a2.Perform(std::make_tuple()));
|
|
}
|
|
|
|
// Test struct which wraps a vector of integers. Used in
|
|
// 'SupportsWrapperReturnType' test.
|
|
struct IntegerVectorWrapper {
|
|
std::vector<int> * v;
|
|
IntegerVectorWrapper(std::vector<int>& _v) : v(&_v) {} // NOLINT
|
|
};
|
|
|
|
// Tests that Return() works when return type is a wrapper type.
|
|
TEST(ReturnTest, SupportsWrapperReturnType) {
|
|
// Initialize vector of integers.
|
|
std::vector<int> v;
|
|
for (int i = 0; i < 5; ++i) v.push_back(i);
|
|
|
|
// Return() called with 'v' as argument. The Action will return the same data
|
|
// as 'v' (copy) but it will be wrapped in an IntegerVectorWrapper.
|
|
Action<IntegerVectorWrapper()> a = Return(v);
|
|
const std::vector<int>& result = *(a.Perform(std::make_tuple()).v);
|
|
EXPECT_THAT(result, ::testing::ElementsAre(0, 1, 2, 3, 4));
|
|
}
|
|
|
|
// Tests that Return(v) is covaraint.
|
|
|
|
struct Base {
|
|
bool operator==(const Base&) { return true; }
|
|
};
|
|
|
|
struct Derived : public Base {
|
|
bool operator==(const Derived&) { return true; }
|
|
};
|
|
|
|
TEST(ReturnTest, IsCovariant) {
|
|
Base base;
|
|
Derived derived;
|
|
Action<Base*()> ret = Return(&base);
|
|
EXPECT_EQ(&base, ret.Perform(std::make_tuple()));
|
|
|
|
ret = Return(&derived);
|
|
EXPECT_EQ(&derived, ret.Perform(std::make_tuple()));
|
|
}
|
|
|
|
// Tests that the type of the value passed into Return is converted into T
|
|
// when the action is cast to Action<T(...)> rather than when the action is
|
|
// performed. See comments on testing::internal::ReturnAction in
|
|
// gmock-actions.h for more information.
|
|
class FromType {
|
|
public:
|
|
explicit FromType(bool* is_converted) : converted_(is_converted) {}
|
|
bool* converted() const { return converted_; }
|
|
|
|
private:
|
|
bool* const converted_;
|
|
};
|
|
|
|
class ToType {
|
|
public:
|
|
// Must allow implicit conversion due to use in ImplicitCast_<T>.
|
|
ToType(const FromType& x) { *x.converted() = true; } // NOLINT
|
|
};
|
|
|
|
TEST(ReturnTest, ConvertsArgumentWhenConverted) {
|
|
bool converted = false;
|
|
FromType x(&converted);
|
|
Action<ToType()> action(Return(x));
|
|
EXPECT_TRUE(converted) << "Return must convert its argument in its own "
|
|
<< "conversion operator.";
|
|
converted = false;
|
|
action.Perform(std::tuple<>());
|
|
EXPECT_FALSE(converted) << "Action must NOT convert its argument "
|
|
<< "when performed.";
|
|
}
|
|
|
|
class DestinationType {};
|
|
|
|
class SourceType {
|
|
public:
|
|
// Note: a non-const typecast operator.
|
|
operator DestinationType() { return DestinationType(); }
|
|
};
|
|
|
|
TEST(ReturnTest, CanConvertArgumentUsingNonConstTypeCastOperator) {
|
|
SourceType s;
|
|
Action<DestinationType()> action(Return(s));
|
|
}
|
|
|
|
// Tests that ReturnNull() returns NULL in a pointer-returning function.
|
|
TEST(ReturnNullTest, WorksInPointerReturningFunction) {
|
|
const Action<int*()> a1 = ReturnNull();
|
|
EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr);
|
|
|
|
const Action<const char*(bool)> a2 = ReturnNull(); // NOLINT
|
|
EXPECT_TRUE(a2.Perform(std::make_tuple(true)) == nullptr);
|
|
}
|
|
|
|
// Tests that ReturnNull() returns NULL for shared_ptr and unique_ptr returning
|
|
// functions.
|
|
TEST(ReturnNullTest, WorksInSmartPointerReturningFunction) {
|
|
const Action<std::unique_ptr<const int>()> a1 = ReturnNull();
|
|
EXPECT_TRUE(a1.Perform(std::make_tuple()) == nullptr);
|
|
|
|
const Action<std::shared_ptr<int>(std::string)> a2 = ReturnNull();
|
|
EXPECT_TRUE(a2.Perform(std::make_tuple("foo")) == nullptr);
|
|
}
|
|
|
|
// Tests that ReturnRef(v) works for reference types.
|
|
TEST(ReturnRefTest, WorksForReference) {
|
|
const int n = 0;
|
|
const Action<const int&(bool)> ret = ReturnRef(n); // NOLINT
|
|
|
|
EXPECT_EQ(&n, &ret.Perform(std::make_tuple(true)));
|
|
}
|
|
|
|
// Tests that ReturnRef(v) is covariant.
|
|
TEST(ReturnRefTest, IsCovariant) {
|
|
Base base;
|
|
Derived derived;
|
|
Action<Base&()> a = ReturnRef(base);
|
|
EXPECT_EQ(&base, &a.Perform(std::make_tuple()));
|
|
|
|
a = ReturnRef(derived);
|
|
EXPECT_EQ(&derived, &a.Perform(std::make_tuple()));
|
|
}
|
|
|
|
template <typename T, typename = decltype(ReturnRef(std::declval<T&&>()))>
|
|
bool CanCallReturnRef(T&&) { return true; }
|
|
bool CanCallReturnRef(Unused) { return false; }
|
|
|
|
// Tests that ReturnRef(v) is working with non-temporaries (T&)
|
|
TEST(ReturnRefTest, WorksForNonTemporary) {
|
|
int scalar_value = 123;
|
|
EXPECT_TRUE(CanCallReturnRef(scalar_value));
|
|
|
|
std::string non_scalar_value("ABC");
|
|
EXPECT_TRUE(CanCallReturnRef(non_scalar_value));
|
|
|
|
const int const_scalar_value{321};
|
|
EXPECT_TRUE(CanCallReturnRef(const_scalar_value));
|
|
|
|
const std::string const_non_scalar_value("CBA");
|
|
EXPECT_TRUE(CanCallReturnRef(const_non_scalar_value));
|
|
}
|
|
|
|
// Tests that ReturnRef(v) is not working with temporaries (T&&)
|
|
TEST(ReturnRefTest, DoesNotWorkForTemporary) {
|
|
auto scalar_value = []() -> int { return 123; };
|
|
EXPECT_FALSE(CanCallReturnRef(scalar_value()));
|
|
|
|
auto non_scalar_value = []() -> std::string { return "ABC"; };
|
|
EXPECT_FALSE(CanCallReturnRef(non_scalar_value()));
|
|
|
|
// cannot use here callable returning "const scalar type",
|
|
// because such const for scalar return type is ignored
|
|
EXPECT_FALSE(CanCallReturnRef(static_cast<const int>(321)));
|
|
|
|
auto const_non_scalar_value = []() -> const std::string { return "CBA"; };
|
|
EXPECT_FALSE(CanCallReturnRef(const_non_scalar_value()));
|
|
}
|
|
|
|
// Tests that ReturnRefOfCopy(v) works for reference types.
|
|
TEST(ReturnRefOfCopyTest, WorksForReference) {
|
|
int n = 42;
|
|
const Action<const int&()> ret = ReturnRefOfCopy(n);
|
|
|
|
EXPECT_NE(&n, &ret.Perform(std::make_tuple()));
|
|
EXPECT_EQ(42, ret.Perform(std::make_tuple()));
|
|
|
|
n = 43;
|
|
EXPECT_NE(&n, &ret.Perform(std::make_tuple()));
|
|
EXPECT_EQ(42, ret.Perform(std::make_tuple()));
|
|
}
|
|
|
|
// Tests that ReturnRefOfCopy(v) is covariant.
|
|
TEST(ReturnRefOfCopyTest, IsCovariant) {
|
|
Base base;
|
|
Derived derived;
|
|
Action<Base&()> a = ReturnRefOfCopy(base);
|
|
EXPECT_NE(&base, &a.Perform(std::make_tuple()));
|
|
|
|
a = ReturnRefOfCopy(derived);
|
|
EXPECT_NE(&derived, &a.Perform(std::make_tuple()));
|
|
}
|
|
|
|
// Tests that ReturnRoundRobin(v) works with initializer lists
|
|
TEST(ReturnRoundRobinTest, WorksForInitList) {
|
|
Action<int()> ret = ReturnRoundRobin({1, 2, 3});
|
|
|
|
EXPECT_EQ(1, ret.Perform(std::make_tuple()));
|
|
EXPECT_EQ(2, ret.Perform(std::make_tuple()));
|
|
EXPECT_EQ(3, ret.Perform(std::make_tuple()));
|
|
EXPECT_EQ(1, ret.Perform(std::make_tuple()));
|
|
EXPECT_EQ(2, ret.Perform(std::make_tuple()));
|
|
EXPECT_EQ(3, ret.Perform(std::make_tuple()));
|
|
}
|
|
|
|
// Tests that ReturnRoundRobin(v) works with vectors
|
|
TEST(ReturnRoundRobinTest, WorksForVector) {
|
|
std::vector<double> v = {4.4, 5.5, 6.6};
|
|
Action<double()> ret = ReturnRoundRobin(v);
|
|
|
|
EXPECT_EQ(4.4, ret.Perform(std::make_tuple()));
|
|
EXPECT_EQ(5.5, ret.Perform(std::make_tuple()));
|
|
EXPECT_EQ(6.6, ret.Perform(std::make_tuple()));
|
|
EXPECT_EQ(4.4, ret.Perform(std::make_tuple()));
|
|
EXPECT_EQ(5.5, ret.Perform(std::make_tuple()));
|
|
EXPECT_EQ(6.6, ret.Perform(std::make_tuple()));
|
|
}
|
|
|
|
// Tests that DoDefault() does the default action for the mock method.
|
|
|
|
class MockClass {
|
|
public:
|
|
MockClass() {}
|
|
|
|
MOCK_METHOD1(IntFunc, int(bool flag)); // NOLINT
|
|
MOCK_METHOD0(Foo, MyNonDefaultConstructible());
|
|
MOCK_METHOD0(MakeUnique, std::unique_ptr<int>());
|
|
MOCK_METHOD0(MakeUniqueBase, std::unique_ptr<Base>());
|
|
MOCK_METHOD0(MakeVectorUnique, std::vector<std::unique_ptr<int>>());
|
|
MOCK_METHOD1(TakeUnique, int(std::unique_ptr<int>));
|
|
MOCK_METHOD2(TakeUnique,
|
|
int(const std::unique_ptr<int>&, std::unique_ptr<int>));
|
|
|
|
private:
|
|
GTEST_DISALLOW_COPY_AND_ASSIGN_(MockClass);
|
|
};
|
|
|
|
// Tests that DoDefault() returns the built-in default value for the
|
|
// return type by default.
|
|
TEST(DoDefaultTest, ReturnsBuiltInDefaultValueByDefault) {
|
|
MockClass mock;
|
|
EXPECT_CALL(mock, IntFunc(_))
|
|
.WillOnce(DoDefault());
|
|
EXPECT_EQ(0, mock.IntFunc(true));
|
|
}
|
|
|
|
// Tests that DoDefault() throws (when exceptions are enabled) or aborts
|
|
// the process when there is no built-in default value for the return type.
|
|
TEST(DoDefaultDeathTest, DiesForUnknowType) {
|
|
MockClass mock;
|
|
EXPECT_CALL(mock, Foo())
|
|
.WillRepeatedly(DoDefault());
|
|
#if GTEST_HAS_EXCEPTIONS
|
|
EXPECT_ANY_THROW(mock.Foo());
|
|
#else
|
|
EXPECT_DEATH_IF_SUPPORTED({
|
|
mock.Foo();
|
|
}, "");
|
|
#endif
|
|
}
|
|
|
|
// Tests that using DoDefault() inside a composite action leads to a
|
|
// run-time error.
|
|
|
|
void VoidFunc(bool /* flag */) {}
|
|
|
|
TEST(DoDefaultDeathTest, DiesIfUsedInCompositeAction) {
|
|
MockClass mock;
|
|
EXPECT_CALL(mock, IntFunc(_))
|
|
.WillRepeatedly(DoAll(Invoke(VoidFunc),
|
|
DoDefault()));
|
|
|
|
// Ideally we should verify the error message as well. Sadly,
|
|
// EXPECT_DEATH() can only capture stderr, while Google Mock's
|
|
// errors are printed on stdout. Therefore we have to settle for
|
|
// not verifying the message.
|
|
EXPECT_DEATH_IF_SUPPORTED({
|
|
mock.IntFunc(true);
|
|
}, "");
|
|
}
|
|
|
|
// Tests that DoDefault() returns the default value set by
|
|
// DefaultValue<T>::Set() when it's not overriden by an ON_CALL().
|
|
TEST(DoDefaultTest, ReturnsUserSpecifiedPerTypeDefaultValueWhenThereIsOne) {
|
|
DefaultValue<int>::Set(1);
|
|
MockClass mock;
|
|
EXPECT_CALL(mock, IntFunc(_))
|
|
.WillOnce(DoDefault());
|
|
EXPECT_EQ(1, mock.IntFunc(false));
|
|
DefaultValue<int>::Clear();
|
|
}
|
|
|
|
// Tests that DoDefault() does the action specified by ON_CALL().
|
|
TEST(DoDefaultTest, DoesWhatOnCallSpecifies) {
|
|
MockClass mock;
|
|
ON_CALL(mock, IntFunc(_))
|
|
.WillByDefault(Return(2));
|
|
EXPECT_CALL(mock, IntFunc(_))
|
|
.WillOnce(DoDefault());
|
|
EXPECT_EQ(2, mock.IntFunc(false));
|
|
}
|
|
|
|
// Tests that using DoDefault() in ON_CALL() leads to a run-time failure.
|
|
TEST(DoDefaultTest, CannotBeUsedInOnCall) {
|
|
MockClass mock;
|
|
EXPECT_NONFATAL_FAILURE({ // NOLINT
|
|
ON_CALL(mock, IntFunc(_))
|
|
.WillByDefault(DoDefault());
|
|
}, "DoDefault() cannot be used in ON_CALL()");
|
|
}
|
|
|
|
// Tests that SetArgPointee<N>(v) sets the variable pointed to by
|
|
// the N-th (0-based) argument to v.
|
|
TEST(SetArgPointeeTest, SetsTheNthPointee) {
|
|
typedef void MyFunction(bool, int*, char*);
|
|
Action<MyFunction> a = SetArgPointee<1>(2);
|
|
|
|
int n = 0;
|
|
char ch = '\0';
|
|
a.Perform(std::make_tuple(true, &n, &ch));
|
|
EXPECT_EQ(2, n);
|
|
EXPECT_EQ('\0', ch);
|
|
|
|
a = SetArgPointee<2>('a');
|
|
n = 0;
|
|
ch = '\0';
|
|
a.Perform(std::make_tuple(true, &n, &ch));
|
|
EXPECT_EQ(0, n);
|
|
EXPECT_EQ('a', ch);
|
|
}
|
|
|
|
// Tests that SetArgPointee<N>() accepts a string literal.
|
|
TEST(SetArgPointeeTest, AcceptsStringLiteral) {
|
|
typedef void MyFunction(std::string*, const char**);
|
|
Action<MyFunction> a = SetArgPointee<0>("hi");
|
|
std::string str;
|
|
const char* ptr = nullptr;
|
|
a.Perform(std::make_tuple(&str, &ptr));
|
|
EXPECT_EQ("hi", str);
|
|
EXPECT_TRUE(ptr == nullptr);
|
|
|
|
a = SetArgPointee<1>("world");
|
|
str = "";
|
|
a.Perform(std::make_tuple(&str, &ptr));
|
|
EXPECT_EQ("", str);
|
|
EXPECT_STREQ("world", ptr);
|
|
}
|
|
|
|
TEST(SetArgPointeeTest, AcceptsWideStringLiteral) {
|
|
typedef void MyFunction(const wchar_t**);
|
|
Action<MyFunction> a = SetArgPointee<0>(L"world");
|
|
const wchar_t* ptr = nullptr;
|
|
a.Perform(std::make_tuple(&ptr));
|
|
EXPECT_STREQ(L"world", ptr);
|
|
|
|
# if GTEST_HAS_STD_WSTRING
|
|
|
|
typedef void MyStringFunction(std::wstring*);
|
|
Action<MyStringFunction> a2 = SetArgPointee<0>(L"world");
|
|
std::wstring str = L"";
|
|
a2.Perform(std::make_tuple(&str));
|
|
EXPECT_EQ(L"world", str);
|
|
|
|
# endif
|
|
}
|
|
|
|
// Tests that SetArgPointee<N>() accepts a char pointer.
|
|
TEST(SetArgPointeeTest, AcceptsCharPointer) {
|
|
typedef void MyFunction(bool, std::string*, const char**);
|
|
const char* const hi = "hi";
|
|
Action<MyFunction> a = SetArgPointee<1>(hi);
|
|
std::string str;
|
|
const char* ptr = nullptr;
|
|
a.Perform(std::make_tuple(true, &str, &ptr));
|
|
EXPECT_EQ("hi", str);
|
|
EXPECT_TRUE(ptr == nullptr);
|
|
|
|
char world_array[] = "world";
|
|
char* const world = world_array;
|
|
a = SetArgPointee<2>(world);
|
|
str = "";
|
|
a.Perform(std::make_tuple(true, &str, &ptr));
|
|
EXPECT_EQ("", str);
|
|
EXPECT_EQ(world, ptr);
|
|
}
|
|
|
|
TEST(SetArgPointeeTest, AcceptsWideCharPointer) {
|
|
typedef void MyFunction(bool, const wchar_t**);
|
|
const wchar_t* const hi = L"hi";
|
|
Action<MyFunction> a = SetArgPointee<1>(hi);
|
|
const wchar_t* ptr = nullptr;
|
|
a.Perform(std::make_tuple(true, &ptr));
|
|
EXPECT_EQ(hi, ptr);
|
|
|
|
# if GTEST_HAS_STD_WSTRING
|
|
|
|
typedef void MyStringFunction(bool, std::wstring*);
|
|
wchar_t world_array[] = L"world";
|
|
wchar_t* const world = world_array;
|
|
Action<MyStringFunction> a2 = SetArgPointee<1>(world);
|
|
std::wstring str;
|
|
a2.Perform(std::make_tuple(true, &str));
|
|
EXPECT_EQ(world_array, str);
|
|
# endif
|
|
}
|
|
|
|
// Tests that SetArgumentPointee<N>(v) sets the variable pointed to by
|
|
// the N-th (0-based) argument to v.
|
|
TEST(SetArgumentPointeeTest, SetsTheNthPointee) {
|
|
typedef void MyFunction(bool, int*, char*);
|
|
Action<MyFunction> a = SetArgumentPointee<1>(2);
|
|
|
|
int n = 0;
|
|
char ch = '\0';
|
|
a.Perform(std::make_tuple(true, &n, &ch));
|
|
EXPECT_EQ(2, n);
|
|
EXPECT_EQ('\0', ch);
|
|
|
|
a = SetArgumentPointee<2>('a');
|
|
n = 0;
|
|
ch = '\0';
|
|
a.Perform(std::make_tuple(true, &n, &ch));
|
|
EXPECT_EQ(0, n);
|
|
EXPECT_EQ('a', ch);
|
|
}
|
|
|
|
// Sample functions and functors for testing Invoke() and etc.
|
|
int Nullary() { return 1; }
|
|
|
|
class NullaryFunctor {
|
|
public:
|
|
int operator()() { return 2; }
|
|
};
|
|
|
|
bool g_done = false;
|
|
void VoidNullary() { g_done = true; }
|
|
|
|
class VoidNullaryFunctor {
|
|
public:
|
|
void operator()() { g_done = true; }
|
|
};
|
|
|
|
short Short(short n) { return n; } // NOLINT
|
|
char Char(char ch) { return ch; }
|
|
|
|
const char* CharPtr(const char* s) { return s; }
|
|
|
|
bool Unary(int x) { return x < 0; }
|
|
|
|
const char* Binary(const char* input, short n) { return input + n; } // NOLINT
|
|
|
|
void VoidBinary(int, char) { g_done = true; }
|
|
|
|
int Ternary(int x, char y, short z) { return x + y + z; } // NOLINT
|
|
|
|
int SumOf4(int a, int b, int c, int d) { return a + b + c + d; }
|
|
|
|
class Foo {
|
|
public:
|
|
Foo() : value_(123) {}
|
|
|
|
int Nullary() const { return value_; }
|
|
|
|
private:
|
|
int value_;
|
|
};
|
|
|
|
// Tests InvokeWithoutArgs(function).
|
|
TEST(InvokeWithoutArgsTest, Function) {
|
|
// As an action that takes one argument.
|
|
Action<int(int)> a = InvokeWithoutArgs(Nullary); // NOLINT
|
|
EXPECT_EQ(1, a.Perform(std::make_tuple(2)));
|
|
|
|
// As an action that takes two arguments.
|
|
Action<int(int, double)> a2 = InvokeWithoutArgs(Nullary); // NOLINT
|
|
EXPECT_EQ(1, a2.Perform(std::make_tuple(2, 3.5)));
|
|
|
|
// As an action that returns void.
|
|
Action<void(int)> a3 = InvokeWithoutArgs(VoidNullary); // NOLINT
|
|
g_done = false;
|
|
a3.Perform(std::make_tuple(1));
|
|
EXPECT_TRUE(g_done);
|
|
}
|
|
|
|
// Tests InvokeWithoutArgs(functor).
|
|
TEST(InvokeWithoutArgsTest, Functor) {
|
|
// As an action that takes no argument.
|
|
Action<int()> a = InvokeWithoutArgs(NullaryFunctor()); // NOLINT
|
|
EXPECT_EQ(2, a.Perform(std::make_tuple()));
|
|
|
|
// As an action that takes three arguments.
|
|
Action<int(int, double, char)> a2 = // NOLINT
|
|
InvokeWithoutArgs(NullaryFunctor());
|
|
EXPECT_EQ(2, a2.Perform(std::make_tuple(3, 3.5, 'a')));
|
|
|
|
// As an action that returns void.
|
|
Action<void()> a3 = InvokeWithoutArgs(VoidNullaryFunctor());
|
|
g_done = false;
|
|
a3.Perform(std::make_tuple());
|
|
EXPECT_TRUE(g_done);
|
|
}
|
|
|
|
// Tests InvokeWithoutArgs(obj_ptr, method).
|
|
TEST(InvokeWithoutArgsTest, Method) {
|
|
Foo foo;
|
|
Action<int(bool, char)> a = // NOLINT
|
|
InvokeWithoutArgs(&foo, &Foo::Nullary);
|
|
EXPECT_EQ(123, a.Perform(std::make_tuple(true, 'a')));
|
|
}
|
|
|
|
// Tests using IgnoreResult() on a polymorphic action.
|
|
TEST(IgnoreResultTest, PolymorphicAction) {
|
|
Action<void(int)> a = IgnoreResult(Return(5)); // NOLINT
|
|
a.Perform(std::make_tuple(1));
|
|
}
|
|
|
|
// Tests using IgnoreResult() on a monomorphic action.
|
|
|
|
int ReturnOne() {
|
|
g_done = true;
|
|
return 1;
|
|
}
|
|
|
|
TEST(IgnoreResultTest, MonomorphicAction) {
|
|
g_done = false;
|
|
Action<void()> a = IgnoreResult(Invoke(ReturnOne));
|
|
a.Perform(std::make_tuple());
|
|
EXPECT_TRUE(g_done);
|
|
}
|
|
|
|
// Tests using IgnoreResult() on an action that returns a class type.
|
|
|
|
MyNonDefaultConstructible ReturnMyNonDefaultConstructible(double /* x */) {
|
|
g_done = true;
|
|
return MyNonDefaultConstructible(42);
|
|
}
|
|
|
|
TEST(IgnoreResultTest, ActionReturningClass) {
|
|
g_done = false;
|
|
Action<void(int)> a =
|
|
IgnoreResult(Invoke(ReturnMyNonDefaultConstructible)); // NOLINT
|
|
a.Perform(std::make_tuple(2));
|
|
EXPECT_TRUE(g_done);
|
|
}
|
|
|
|
TEST(AssignTest, Int) {
|
|
int x = 0;
|
|
Action<void(int)> a = Assign(&x, 5);
|
|
a.Perform(std::make_tuple(0));
|
|
EXPECT_EQ(5, x);
|
|
}
|
|
|
|
TEST(AssignTest, String) {
|
|
::std::string x;
|
|
Action<void(void)> a = Assign(&x, "Hello, world");
|
|
a.Perform(std::make_tuple());
|
|
EXPECT_EQ("Hello, world", x);
|
|
}
|
|
|
|
TEST(AssignTest, CompatibleTypes) {
|
|
double x = 0;
|
|
Action<void(int)> a = Assign(&x, 5);
|
|
a.Perform(std::make_tuple(0));
|
|
EXPECT_DOUBLE_EQ(5, x);
|
|
}
|
|
|
|
|
|
// Tests using WithArgs and with an action that takes 1 argument.
|
|
TEST(WithArgsTest, OneArg) {
|
|
Action<bool(double x, int n)> a = WithArgs<1>(Invoke(Unary)); // NOLINT
|
|
EXPECT_TRUE(a.Perform(std::make_tuple(1.5, -1)));
|
|
EXPECT_FALSE(a.Perform(std::make_tuple(1.5, 1)));
|
|
}
|
|
|
|
// Tests using WithArgs with an action that takes 2 arguments.
|
|
TEST(WithArgsTest, TwoArgs) {
|
|
Action<const char*(const char* s, double x, short n)> a = // NOLINT
|
|
WithArgs<0, 2>(Invoke(Binary));
|
|
const char s[] = "Hello";
|
|
EXPECT_EQ(s + 2, a.Perform(std::make_tuple(CharPtr(s), 0.5, Short(2))));
|
|
}
|
|
|
|
struct ConcatAll {
|
|
std::string operator()() const { return {}; }
|
|
template <typename... I>
|
|
std::string operator()(const char* a, I... i) const {
|
|
return a + ConcatAll()(i...);
|
|
}
|
|
};
|
|
|
|
// Tests using WithArgs with an action that takes 10 arguments.
|
|
TEST(WithArgsTest, TenArgs) {
|
|
Action<std::string(const char*, const char*, const char*, const char*)> a =
|
|
WithArgs<0, 1, 2, 3, 2, 1, 0, 1, 2, 3>(Invoke(ConcatAll{}));
|
|
EXPECT_EQ("0123210123",
|
|
a.Perform(std::make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"),
|
|
CharPtr("3"))));
|
|
}
|
|
|
|
// Tests using WithArgs with an action that is not Invoke().
|
|
class SubtractAction : public ActionInterface<int(int, int)> {
|
|
public:
|
|
int Perform(const std::tuple<int, int>& args) override {
|
|
return std::get<0>(args) - std::get<1>(args);
|
|
}
|
|
};
|
|
|
|
TEST(WithArgsTest, NonInvokeAction) {
|
|
Action<int(const std::string&, int, int)> a =
|
|
WithArgs<2, 1>(MakeAction(new SubtractAction));
|
|
std::tuple<std::string, int, int> dummy =
|
|
std::make_tuple(std::string("hi"), 2, 10);
|
|
EXPECT_EQ(8, a.Perform(dummy));
|
|
}
|
|
|
|
// Tests using WithArgs to pass all original arguments in the original order.
|
|
TEST(WithArgsTest, Identity) {
|
|
Action<int(int x, char y, short z)> a = // NOLINT
|
|
WithArgs<0, 1, 2>(Invoke(Ternary));
|
|
EXPECT_EQ(123, a.Perform(std::make_tuple(100, Char(20), Short(3))));
|
|
}
|
|
|
|
// Tests using WithArgs with repeated arguments.
|
|
TEST(WithArgsTest, RepeatedArguments) {
|
|
Action<int(bool, int m, int n)> a = // NOLINT
|
|
WithArgs<1, 1, 1, 1>(Invoke(SumOf4));
|
|
EXPECT_EQ(4, a.Perform(std::make_tuple(false, 1, 10)));
|
|
}
|
|
|
|
// Tests using WithArgs with reversed argument order.
|
|
TEST(WithArgsTest, ReversedArgumentOrder) {
|
|
Action<const char*(short n, const char* input)> a = // NOLINT
|
|
WithArgs<1, 0>(Invoke(Binary));
|
|
const char s[] = "Hello";
|
|
EXPECT_EQ(s + 2, a.Perform(std::make_tuple(Short(2), CharPtr(s))));
|
|
}
|
|
|
|
// Tests using WithArgs with compatible, but not identical, argument types.
|
|
TEST(WithArgsTest, ArgsOfCompatibleTypes) {
|
|
Action<long(short x, char y, double z, char c)> a = // NOLINT
|
|
WithArgs<0, 1, 3>(Invoke(Ternary));
|
|
EXPECT_EQ(123,
|
|
a.Perform(std::make_tuple(Short(100), Char(20), 5.6, Char(3))));
|
|
}
|
|
|
|
// Tests using WithArgs with an action that returns void.
|
|
TEST(WithArgsTest, VoidAction) {
|
|
Action<void(double x, char c, int n)> a = WithArgs<2, 1>(Invoke(VoidBinary));
|
|
g_done = false;
|
|
a.Perform(std::make_tuple(1.5, 'a', 3));
|
|
EXPECT_TRUE(g_done);
|
|
}
|
|
|
|
TEST(WithArgsTest, ReturnReference) {
|
|
Action<int&(int&, void*)> aa = WithArgs<0>([](int& a) -> int& { return a; });
|
|
int i = 0;
|
|
const int& res = aa.Perform(std::forward_as_tuple(i, nullptr));
|
|
EXPECT_EQ(&i, &res);
|
|
}
|
|
|
|
TEST(WithArgsTest, InnerActionWithConversion) {
|
|
Action<Derived*()> inner = [] { return nullptr; };
|
|
Action<Base*(double)> a = testing::WithoutArgs(inner);
|
|
EXPECT_EQ(nullptr, a.Perform(std::make_tuple(1.1)));
|
|
}
|
|
|
|
#if !GTEST_OS_WINDOWS_MOBILE
|
|
|
|
class SetErrnoAndReturnTest : public testing::Test {
|
|
protected:
|
|
void SetUp() override { errno = 0; }
|
|
void TearDown() override { errno = 0; }
|
|
};
|
|
|
|
TEST_F(SetErrnoAndReturnTest, Int) {
|
|
Action<int(void)> a = SetErrnoAndReturn(ENOTTY, -5);
|
|
EXPECT_EQ(-5, a.Perform(std::make_tuple()));
|
|
EXPECT_EQ(ENOTTY, errno);
|
|
}
|
|
|
|
TEST_F(SetErrnoAndReturnTest, Ptr) {
|
|
int x;
|
|
Action<int*(void)> a = SetErrnoAndReturn(ENOTTY, &x);
|
|
EXPECT_EQ(&x, a.Perform(std::make_tuple()));
|
|
EXPECT_EQ(ENOTTY, errno);
|
|
}
|
|
|
|
TEST_F(SetErrnoAndReturnTest, CompatibleTypes) {
|
|
Action<double()> a = SetErrnoAndReturn(EINVAL, 5);
|
|
EXPECT_DOUBLE_EQ(5.0, a.Perform(std::make_tuple()));
|
|
EXPECT_EQ(EINVAL, errno);
|
|
}
|
|
|
|
#endif // !GTEST_OS_WINDOWS_MOBILE
|
|
|
|
// Tests ByRef().
|
|
|
|
// Tests that the result of ByRef() is copyable.
|
|
TEST(ByRefTest, IsCopyable) {
|
|
const std::string s1 = "Hi";
|
|
const std::string s2 = "Hello";
|
|
|
|
auto ref_wrapper = ByRef(s1);
|
|
const std::string& r1 = ref_wrapper;
|
|
EXPECT_EQ(&s1, &r1);
|
|
|
|
// Assigns a new value to ref_wrapper.
|
|
ref_wrapper = ByRef(s2);
|
|
const std::string& r2 = ref_wrapper;
|
|
EXPECT_EQ(&s2, &r2);
|
|
|
|
auto ref_wrapper1 = ByRef(s1);
|
|
// Copies ref_wrapper1 to ref_wrapper.
|
|
ref_wrapper = ref_wrapper1;
|
|
const std::string& r3 = ref_wrapper;
|
|
EXPECT_EQ(&s1, &r3);
|
|
}
|
|
|
|
// Tests using ByRef() on a const value.
|
|
TEST(ByRefTest, ConstValue) {
|
|
const int n = 0;
|
|
// int& ref = ByRef(n); // This shouldn't compile - we have a
|
|
// negative compilation test to catch it.
|
|
const int& const_ref = ByRef(n);
|
|
EXPECT_EQ(&n, &const_ref);
|
|
}
|
|
|
|
// Tests using ByRef() on a non-const value.
|
|
TEST(ByRefTest, NonConstValue) {
|
|
int n = 0;
|
|
|
|
// ByRef(n) can be used as either an int&,
|
|
int& ref = ByRef(n);
|
|
EXPECT_EQ(&n, &ref);
|
|
|
|
// or a const int&.
|
|
const int& const_ref = ByRef(n);
|
|
EXPECT_EQ(&n, &const_ref);
|
|
}
|
|
|
|
// Tests explicitly specifying the type when using ByRef().
|
|
TEST(ByRefTest, ExplicitType) {
|
|
int n = 0;
|
|
const int& r1 = ByRef<const int>(n);
|
|
EXPECT_EQ(&n, &r1);
|
|
|
|
// ByRef<char>(n); // This shouldn't compile - we have a negative
|
|
// compilation test to catch it.
|
|
|
|
Derived d;
|
|
Derived& r2 = ByRef<Derived>(d);
|
|
EXPECT_EQ(&d, &r2);
|
|
|
|
const Derived& r3 = ByRef<const Derived>(d);
|
|
EXPECT_EQ(&d, &r3);
|
|
|
|
Base& r4 = ByRef<Base>(d);
|
|
EXPECT_EQ(&d, &r4);
|
|
|
|
const Base& r5 = ByRef<const Base>(d);
|
|
EXPECT_EQ(&d, &r5);
|
|
|
|
// The following shouldn't compile - we have a negative compilation
|
|
// test for it.
|
|
//
|
|
// Base b;
|
|
// ByRef<Derived>(b);
|
|
}
|
|
|
|
// Tests that Google Mock prints expression ByRef(x) as a reference to x.
|
|
TEST(ByRefTest, PrintsCorrectly) {
|
|
int n = 42;
|
|
::std::stringstream expected, actual;
|
|
testing::internal::UniversalPrinter<const int&>::Print(n, &expected);
|
|
testing::internal::UniversalPrint(ByRef(n), &actual);
|
|
EXPECT_EQ(expected.str(), actual.str());
|
|
}
|
|
|
|
struct UnaryConstructorClass {
|
|
explicit UnaryConstructorClass(int v) : value(v) {}
|
|
int value;
|
|
};
|
|
|
|
// Tests using ReturnNew() with a unary constructor.
|
|
TEST(ReturnNewTest, Unary) {
|
|
Action<UnaryConstructorClass*()> a = ReturnNew<UnaryConstructorClass>(4000);
|
|
UnaryConstructorClass* c = a.Perform(std::make_tuple());
|
|
EXPECT_EQ(4000, c->value);
|
|
delete c;
|
|
}
|
|
|
|
TEST(ReturnNewTest, UnaryWorksWhenMockMethodHasArgs) {
|
|
Action<UnaryConstructorClass*(bool, int)> a =
|
|
ReturnNew<UnaryConstructorClass>(4000);
|
|
UnaryConstructorClass* c = a.Perform(std::make_tuple(false, 5));
|
|
EXPECT_EQ(4000, c->value);
|
|
delete c;
|
|
}
|
|
|
|
TEST(ReturnNewTest, UnaryWorksWhenMockMethodReturnsPointerToConst) {
|
|
Action<const UnaryConstructorClass*()> a =
|
|
ReturnNew<UnaryConstructorClass>(4000);
|
|
const UnaryConstructorClass* c = a.Perform(std::make_tuple());
|
|
EXPECT_EQ(4000, c->value);
|
|
delete c;
|
|
}
|
|
|
|
class TenArgConstructorClass {
|
|
public:
|
|
TenArgConstructorClass(int a1, int a2, int a3, int a4, int a5, int a6, int a7,
|
|
int a8, int a9, int a10)
|
|
: value_(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) {}
|
|
int value_;
|
|
};
|
|
|
|
// Tests using ReturnNew() with a 10-argument constructor.
|
|
TEST(ReturnNewTest, ConstructorThatTakes10Arguments) {
|
|
Action<TenArgConstructorClass*()> a = ReturnNew<TenArgConstructorClass>(
|
|
1000000000, 200000000, 30000000, 4000000, 500000, 60000, 7000, 800, 90,
|
|
0);
|
|
TenArgConstructorClass* c = a.Perform(std::make_tuple());
|
|
EXPECT_EQ(1234567890, c->value_);
|
|
delete c;
|
|
}
|
|
|
|
std::unique_ptr<int> UniquePtrSource() {
|
|
return std::unique_ptr<int>(new int(19));
|
|
}
|
|
|
|
std::vector<std::unique_ptr<int>> VectorUniquePtrSource() {
|
|
std::vector<std::unique_ptr<int>> out;
|
|
out.emplace_back(new int(7));
|
|
return out;
|
|
}
|
|
|
|
TEST(MockMethodTest, CanReturnMoveOnlyValue_Return) {
|
|
MockClass mock;
|
|
std::unique_ptr<int> i(new int(19));
|
|
EXPECT_CALL(mock, MakeUnique()).WillOnce(Return(ByMove(std::move(i))));
|
|
EXPECT_CALL(mock, MakeVectorUnique())
|
|
.WillOnce(Return(ByMove(VectorUniquePtrSource())));
|
|
Derived* d = new Derived;
|
|
EXPECT_CALL(mock, MakeUniqueBase())
|
|
.WillOnce(Return(ByMove(std::unique_ptr<Derived>(d))));
|
|
|
|
std::unique_ptr<int> result1 = mock.MakeUnique();
|
|
EXPECT_EQ(19, *result1);
|
|
|
|
std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
|
|
EXPECT_EQ(1u, vresult.size());
|
|
EXPECT_NE(nullptr, vresult[0]);
|
|
EXPECT_EQ(7, *vresult[0]);
|
|
|
|
std::unique_ptr<Base> result2 = mock.MakeUniqueBase();
|
|
EXPECT_EQ(d, result2.get());
|
|
}
|
|
|
|
TEST(MockMethodTest, CanReturnMoveOnlyValue_DoAllReturn) {
|
|
testing::MockFunction<void()> mock_function;
|
|
MockClass mock;
|
|
std::unique_ptr<int> i(new int(19));
|
|
EXPECT_CALL(mock_function, Call());
|
|
EXPECT_CALL(mock, MakeUnique()).WillOnce(DoAll(
|
|
InvokeWithoutArgs(&mock_function, &testing::MockFunction<void()>::Call),
|
|
Return(ByMove(std::move(i)))));
|
|
|
|
std::unique_ptr<int> result1 = mock.MakeUnique();
|
|
EXPECT_EQ(19, *result1);
|
|
}
|
|
|
|
TEST(MockMethodTest, CanReturnMoveOnlyValue_Invoke) {
|
|
MockClass mock;
|
|
|
|
// Check default value
|
|
DefaultValue<std::unique_ptr<int>>::SetFactory([] {
|
|
return std::unique_ptr<int>(new int(42));
|
|
});
|
|
EXPECT_EQ(42, *mock.MakeUnique());
|
|
|
|
EXPECT_CALL(mock, MakeUnique()).WillRepeatedly(Invoke(UniquePtrSource));
|
|
EXPECT_CALL(mock, MakeVectorUnique())
|
|
.WillRepeatedly(Invoke(VectorUniquePtrSource));
|
|
std::unique_ptr<int> result1 = mock.MakeUnique();
|
|
EXPECT_EQ(19, *result1);
|
|
std::unique_ptr<int> result2 = mock.MakeUnique();
|
|
EXPECT_EQ(19, *result2);
|
|
EXPECT_NE(result1, result2);
|
|
|
|
std::vector<std::unique_ptr<int>> vresult = mock.MakeVectorUnique();
|
|
EXPECT_EQ(1u, vresult.size());
|
|
EXPECT_NE(nullptr, vresult[0]);
|
|
EXPECT_EQ(7, *vresult[0]);
|
|
}
|
|
|
|
TEST(MockMethodTest, CanTakeMoveOnlyValue) {
|
|
MockClass mock;
|
|
auto make = [](int i) { return std::unique_ptr<int>(new int(i)); };
|
|
|
|
EXPECT_CALL(mock, TakeUnique(_)).WillRepeatedly([](std::unique_ptr<int> i) {
|
|
return *i;
|
|
});
|
|
// DoAll() does not compile, since it would move from its arguments twice.
|
|
// EXPECT_CALL(mock, TakeUnique(_, _))
|
|
// .WillRepeatedly(DoAll(Invoke([](std::unique_ptr<int> j) {}),
|
|
// Return(1)));
|
|
EXPECT_CALL(mock, TakeUnique(testing::Pointee(7)))
|
|
.WillOnce(Return(-7))
|
|
.RetiresOnSaturation();
|
|
EXPECT_CALL(mock, TakeUnique(testing::IsNull()))
|
|
.WillOnce(Return(-1))
|
|
.RetiresOnSaturation();
|
|
|
|
EXPECT_EQ(5, mock.TakeUnique(make(5)));
|
|
EXPECT_EQ(-7, mock.TakeUnique(make(7)));
|
|
EXPECT_EQ(7, mock.TakeUnique(make(7)));
|
|
EXPECT_EQ(7, mock.TakeUnique(make(7)));
|
|
EXPECT_EQ(-1, mock.TakeUnique({}));
|
|
|
|
// Some arguments are moved, some passed by reference.
|
|
auto lvalue = make(6);
|
|
EXPECT_CALL(mock, TakeUnique(_, _))
|
|
.WillOnce([](const std::unique_ptr<int>& i, std::unique_ptr<int> j) {
|
|
return *i * *j;
|
|
});
|
|
EXPECT_EQ(42, mock.TakeUnique(lvalue, make(7)));
|
|
|
|
// The unique_ptr can be saved by the action.
|
|
std::unique_ptr<int> saved;
|
|
EXPECT_CALL(mock, TakeUnique(_)).WillOnce([&saved](std::unique_ptr<int> i) {
|
|
saved = std::move(i);
|
|
return 0;
|
|
});
|
|
EXPECT_EQ(0, mock.TakeUnique(make(42)));
|
|
EXPECT_EQ(42, *saved);
|
|
}
|
|
|
|
|
|
// Tests for std::function based action.
|
|
|
|
int Add(int val, int& ref, int* ptr) { // NOLINT
|
|
int result = val + ref + *ptr;
|
|
ref = 42;
|
|
*ptr = 43;
|
|
return result;
|
|
}
|
|
|
|
int Deref(std::unique_ptr<int> ptr) { return *ptr; }
|
|
|
|
struct Double {
|
|
template <typename T>
|
|
T operator()(T t) { return 2 * t; }
|
|
};
|
|
|
|
std::unique_ptr<int> UniqueInt(int i) {
|
|
return std::unique_ptr<int>(new int(i));
|
|
}
|
|
|
|
TEST(FunctorActionTest, ActionFromFunction) {
|
|
Action<int(int, int&, int*)> a = &Add;
|
|
int x = 1, y = 2, z = 3;
|
|
EXPECT_EQ(6, a.Perform(std::forward_as_tuple(x, y, &z)));
|
|
EXPECT_EQ(42, y);
|
|
EXPECT_EQ(43, z);
|
|
|
|
Action<int(std::unique_ptr<int>)> a1 = &Deref;
|
|
EXPECT_EQ(7, a1.Perform(std::make_tuple(UniqueInt(7))));
|
|
}
|
|
|
|
TEST(FunctorActionTest, ActionFromLambda) {
|
|
Action<int(bool, int)> a1 = [](bool b, int i) { return b ? i : 0; };
|
|
EXPECT_EQ(5, a1.Perform(std::make_tuple(true, 5)));
|
|
EXPECT_EQ(0, a1.Perform(std::make_tuple(false, 5)));
|
|
|
|
std::unique_ptr<int> saved;
|
|
Action<void(std::unique_ptr<int>)> a2 = [&saved](std::unique_ptr<int> p) {
|
|
saved = std::move(p);
|
|
};
|
|
a2.Perform(std::make_tuple(UniqueInt(5)));
|
|
EXPECT_EQ(5, *saved);
|
|
}
|
|
|
|
TEST(FunctorActionTest, PolymorphicFunctor) {
|
|
Action<int(int)> ai = Double();
|
|
EXPECT_EQ(2, ai.Perform(std::make_tuple(1)));
|
|
Action<double(double)> ad = Double(); // Double? Double double!
|
|
EXPECT_EQ(3.0, ad.Perform(std::make_tuple(1.5)));
|
|
}
|
|
|
|
TEST(FunctorActionTest, TypeConversion) {
|
|
// Numeric promotions are allowed.
|
|
const Action<bool(int)> a1 = [](int i) { return i > 1; };
|
|
const Action<int(bool)> a2 = Action<int(bool)>(a1);
|
|
EXPECT_EQ(1, a1.Perform(std::make_tuple(42)));
|
|
EXPECT_EQ(0, a2.Perform(std::make_tuple(42)));
|
|
|
|
// Implicit constructors are allowed.
|
|
const Action<bool(std::string)> s1 = [](std::string s) { return !s.empty(); };
|
|
const Action<int(const char*)> s2 = Action<int(const char*)>(s1);
|
|
EXPECT_EQ(0, s2.Perform(std::make_tuple("")));
|
|
EXPECT_EQ(1, s2.Perform(std::make_tuple("hello")));
|
|
|
|
// Also between the lambda and the action itself.
|
|
const Action<bool(std::string)> x1 = [](Unused) { return 42; };
|
|
const Action<bool(std::string)> x2 = [] { return 42; };
|
|
EXPECT_TRUE(x1.Perform(std::make_tuple("hello")));
|
|
EXPECT_TRUE(x2.Perform(std::make_tuple("hello")));
|
|
|
|
// Ensure decay occurs where required.
|
|
std::function<int()> f = [] { return 7; };
|
|
Action<int(int)> d = f;
|
|
f = nullptr;
|
|
EXPECT_EQ(7, d.Perform(std::make_tuple(1)));
|
|
|
|
// Ensure creation of an empty action succeeds.
|
|
Action<void(int)>(nullptr);
|
|
}
|
|
|
|
TEST(FunctorActionTest, UnusedArguments) {
|
|
// Verify that users can ignore uninteresting arguments.
|
|
Action<int(int, double y, double z)> a =
|
|
[](int i, Unused, Unused) { return 2 * i; };
|
|
std::tuple<int, double, double> dummy = std::make_tuple(3, 7.3, 9.44);
|
|
EXPECT_EQ(6, a.Perform(dummy));
|
|
}
|
|
|
|
// Test that basic built-in actions work with move-only arguments.
|
|
TEST(MoveOnlyArgumentsTest, ReturningActions) {
|
|
Action<int(std::unique_ptr<int>)> a = Return(1);
|
|
EXPECT_EQ(1, a.Perform(std::make_tuple(nullptr)));
|
|
|
|
a = testing::WithoutArgs([]() { return 7; });
|
|
EXPECT_EQ(7, a.Perform(std::make_tuple(nullptr)));
|
|
|
|
Action<void(std::unique_ptr<int>, int*)> a2 = testing::SetArgPointee<1>(3);
|
|
int x = 0;
|
|
a2.Perform(std::make_tuple(nullptr, &x));
|
|
EXPECT_EQ(x, 3);
|
|
}
|
|
|
|
ACTION(ReturnArity) {
|
|
return std::tuple_size<args_type>::value;
|
|
}
|
|
|
|
TEST(ActionMacro, LargeArity) {
|
|
EXPECT_EQ(
|
|
1, testing::Action<int(int)>(ReturnArity()).Perform(std::make_tuple(0)));
|
|
EXPECT_EQ(
|
|
10,
|
|
testing::Action<int(int, int, int, int, int, int, int, int, int, int)>(
|
|
ReturnArity())
|
|
.Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)));
|
|
EXPECT_EQ(
|
|
20,
|
|
testing::Action<int(int, int, int, int, int, int, int, int, int, int, int,
|
|
int, int, int, int, int, int, int, int, int)>(
|
|
ReturnArity())
|
|
.Perform(std::make_tuple(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
|
|
14, 15, 16, 17, 18, 19)));
|
|
}
|
|
|
|
} // Unnamed namespace
|
|
|
|
#ifdef _MSC_VER
|
|
#if _MSC_VER == 1900
|
|
# pragma warning(pop)
|
|
#endif
|
|
#endif
|
|
|