googletest/googlemock/test/gmock-matchers-comparisons_test.cc
Abseil Team 5bcb2d78a1 Use matcher's description in AllOf if matcher has no explanation.
PiperOrigin-RevId: 655569834
Change-Id: Ia760d74d1cdde766e9719864c5e19c0159da3128
2024-07-24 08:07:57 -07:00

2372 lines
76 KiB
C++

// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes.
//
// This file tests some commonly used argument matchers.
#include <functional>
#include <memory>
#include <string>
#include <tuple>
#include <vector>
#include "test/gmock-matchers_test.h"
// Silence warning C4244: 'initializing': conversion from 'int' to 'short',
// possible loss of data and C4100, unreferenced local parameter
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4244 4100)
namespace testing {
namespace gmock_matchers_test {
namespace {
INSTANTIATE_GTEST_MATCHER_TEST_P(MonotonicMatcherTest);
TEST_P(MonotonicMatcherTestP, IsPrintable) {
stringstream ss;
ss << GreaterThan(5);
EXPECT_EQ("is > 5", ss.str());
}
TEST(MatchResultListenerTest, StreamingWorks) {
StringMatchResultListener listener;
listener << "hi" << 5;
EXPECT_EQ("hi5", listener.str());
listener.Clear();
EXPECT_EQ("", listener.str());
listener << 42;
EXPECT_EQ("42", listener.str());
// Streaming shouldn't crash when the underlying ostream is NULL.
DummyMatchResultListener dummy;
dummy << "hi" << 5;
}
TEST(MatchResultListenerTest, CanAccessUnderlyingStream) {
EXPECT_TRUE(DummyMatchResultListener().stream() == nullptr);
EXPECT_TRUE(StreamMatchResultListener(nullptr).stream() == nullptr);
EXPECT_EQ(&std::cout, StreamMatchResultListener(&std::cout).stream());
}
TEST(MatchResultListenerTest, IsInterestedWorks) {
EXPECT_TRUE(StringMatchResultListener().IsInterested());
EXPECT_TRUE(StreamMatchResultListener(&std::cout).IsInterested());
EXPECT_FALSE(DummyMatchResultListener().IsInterested());
EXPECT_FALSE(StreamMatchResultListener(nullptr).IsInterested());
}
// Makes sure that the MatcherInterface<T> interface doesn't
// change.
class EvenMatcherImpl : public MatcherInterface<int> {
public:
bool MatchAndExplain(int x,
MatchResultListener* /* listener */) const override {
return x % 2 == 0;
}
void DescribeTo(ostream* os) const override { *os << "is an even number"; }
// We deliberately don't define DescribeNegationTo() and
// ExplainMatchResultTo() here, to make sure the definition of these
// two methods is optional.
};
// Makes sure that the MatcherInterface API doesn't change.
TEST(MatcherInterfaceTest, CanBeImplementedUsingPublishedAPI) {
EvenMatcherImpl m;
}
// Tests implementing a monomorphic matcher using MatchAndExplain().
class NewEvenMatcherImpl : public MatcherInterface<int> {
public:
bool MatchAndExplain(int x, MatchResultListener* listener) const override {
const bool match = x % 2 == 0;
// Verifies that we can stream to a listener directly.
*listener << "value % " << 2;
if (listener->stream() != nullptr) {
// Verifies that we can stream to a listener's underlying stream
// too.
*listener->stream() << " == " << (x % 2);
}
return match;
}
void DescribeTo(ostream* os) const override { *os << "is an even number"; }
};
TEST(MatcherInterfaceTest, CanBeImplementedUsingNewAPI) {
Matcher<int> m = MakeMatcher(new NewEvenMatcherImpl);
EXPECT_TRUE(m.Matches(2));
EXPECT_FALSE(m.Matches(3));
EXPECT_EQ("value % 2 == 0", Explain(m, 2));
EXPECT_EQ("value % 2 == 1", Explain(m, 3));
}
INSTANTIATE_GTEST_MATCHER_TEST_P(MatcherTest);
// Tests default-constructing a matcher.
TEST(MatcherTest, CanBeDefaultConstructed) { Matcher<double> m; }
// Tests that Matcher<T> can be constructed from a MatcherInterface<T>*.
TEST(MatcherTest, CanBeConstructedFromMatcherInterface) {
const MatcherInterface<int>* impl = new EvenMatcherImpl;
Matcher<int> m(impl);
EXPECT_TRUE(m.Matches(4));
EXPECT_FALSE(m.Matches(5));
}
// Tests that value can be used in place of Eq(value).
TEST(MatcherTest, CanBeImplicitlyConstructedFromValue) {
Matcher<int> m1 = 5;
EXPECT_TRUE(m1.Matches(5));
EXPECT_FALSE(m1.Matches(6));
}
// Tests that NULL can be used in place of Eq(NULL).
TEST(MatcherTest, CanBeImplicitlyConstructedFromNULL) {
Matcher<int*> m1 = nullptr;
EXPECT_TRUE(m1.Matches(nullptr));
int n = 0;
EXPECT_FALSE(m1.Matches(&n));
}
// Tests that matchers can be constructed from a variable that is not properly
// defined. This should be illegal, but many users rely on this accidentally.
struct Undefined {
virtual ~Undefined() = 0;
static const int kInt = 1;
};
TEST(MatcherTest, CanBeConstructedFromUndefinedVariable) {
Matcher<int> m1 = Undefined::kInt;
EXPECT_TRUE(m1.Matches(1));
EXPECT_FALSE(m1.Matches(2));
}
// Test that a matcher parameterized with an abstract class compiles.
TEST(MatcherTest, CanAcceptAbstractClass) { Matcher<const Undefined&> m = _; }
// Tests that matchers are copyable.
TEST(MatcherTest, IsCopyable) {
// Tests the copy constructor.
Matcher<bool> m1 = Eq(false);
EXPECT_TRUE(m1.Matches(false));
EXPECT_FALSE(m1.Matches(true));
// Tests the assignment operator.
m1 = Eq(true);
EXPECT_TRUE(m1.Matches(true));
EXPECT_FALSE(m1.Matches(false));
}
// Tests that Matcher<T>::DescribeTo() calls
// MatcherInterface<T>::DescribeTo().
TEST(MatcherTest, CanDescribeItself) {
EXPECT_EQ("is an even number", Describe(Matcher<int>(new EvenMatcherImpl)));
}
// Tests Matcher<T>::MatchAndExplain().
TEST_P(MatcherTestP, MatchAndExplain) {
Matcher<int> m = GreaterThan(0);
StringMatchResultListener listener1;
EXPECT_TRUE(m.MatchAndExplain(42, &listener1));
EXPECT_EQ("which is 42 more than 0", listener1.str());
StringMatchResultListener listener2;
EXPECT_FALSE(m.MatchAndExplain(-9, &listener2));
EXPECT_EQ("which is 9 less than 0", listener2.str());
}
// Tests that a C-string literal can be implicitly converted to a
// Matcher<std::string> or Matcher<const std::string&>.
TEST(StringMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) {
Matcher<std::string> m1 = "hi";
EXPECT_TRUE(m1.Matches("hi"));
EXPECT_FALSE(m1.Matches("hello"));
Matcher<const std::string&> m2 = "hi";
EXPECT_TRUE(m2.Matches("hi"));
EXPECT_FALSE(m2.Matches("hello"));
}
// Tests that a string object can be implicitly converted to a
// Matcher<std::string> or Matcher<const std::string&>.
TEST(StringMatcherTest, CanBeImplicitlyConstructedFromString) {
Matcher<std::string> m1 = std::string("hi");
EXPECT_TRUE(m1.Matches("hi"));
EXPECT_FALSE(m1.Matches("hello"));
Matcher<const std::string&> m2 = std::string("hi");
EXPECT_TRUE(m2.Matches("hi"));
EXPECT_FALSE(m2.Matches("hello"));
}
#if GTEST_INTERNAL_HAS_STRING_VIEW
// Tests that a C-string literal can be implicitly converted to a
// Matcher<StringView> or Matcher<const StringView&>.
TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromCStringLiteral) {
Matcher<internal::StringView> m1 = "cats";
EXPECT_TRUE(m1.Matches("cats"));
EXPECT_FALSE(m1.Matches("dogs"));
Matcher<const internal::StringView&> m2 = "cats";
EXPECT_TRUE(m2.Matches("cats"));
EXPECT_FALSE(m2.Matches("dogs"));
}
// Tests that a std::string object can be implicitly converted to a
// Matcher<StringView> or Matcher<const StringView&>.
TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromString) {
Matcher<internal::StringView> m1 = std::string("cats");
EXPECT_TRUE(m1.Matches("cats"));
EXPECT_FALSE(m1.Matches("dogs"));
Matcher<const internal::StringView&> m2 = std::string("cats");
EXPECT_TRUE(m2.Matches("cats"));
EXPECT_FALSE(m2.Matches("dogs"));
}
// Tests that a StringView object can be implicitly converted to a
// Matcher<StringView> or Matcher<const StringView&>.
TEST(StringViewMatcherTest, CanBeImplicitlyConstructedFromStringView) {
Matcher<internal::StringView> m1 = internal::StringView("cats");
EXPECT_TRUE(m1.Matches("cats"));
EXPECT_FALSE(m1.Matches("dogs"));
Matcher<const internal::StringView&> m2 = internal::StringView("cats");
EXPECT_TRUE(m2.Matches("cats"));
EXPECT_FALSE(m2.Matches("dogs"));
}
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
// Tests that a std::reference_wrapper<std::string> object can be implicitly
// converted to a Matcher<std::string> or Matcher<const std::string&> via Eq().
TEST(StringMatcherTest,
CanBeImplicitlyConstructedFromEqReferenceWrapperString) {
std::string value = "cats";
Matcher<std::string> m1 = Eq(std::ref(value));
EXPECT_TRUE(m1.Matches("cats"));
EXPECT_FALSE(m1.Matches("dogs"));
Matcher<const std::string&> m2 = Eq(std::ref(value));
EXPECT_TRUE(m2.Matches("cats"));
EXPECT_FALSE(m2.Matches("dogs"));
}
// Tests that MakeMatcher() constructs a Matcher<T> from a
// MatcherInterface* without requiring the user to explicitly
// write the type.
TEST(MakeMatcherTest, ConstructsMatcherFromMatcherInterface) {
const MatcherInterface<int>* dummy_impl = new EvenMatcherImpl;
Matcher<int> m = MakeMatcher(dummy_impl);
}
// Tests that MakePolymorphicMatcher() can construct a polymorphic
// matcher from its implementation using the old API.
const int g_bar = 1;
class ReferencesBarOrIsZeroImpl {
public:
template <typename T>
bool MatchAndExplain(const T& x, MatchResultListener* /* listener */) const {
const void* p = &x;
return p == &g_bar || x == 0;
}
void DescribeTo(ostream* os) const { *os << "g_bar or zero"; }
void DescribeNegationTo(ostream* os) const {
*os << "doesn't reference g_bar and is not zero";
}
};
// This function verifies that MakePolymorphicMatcher() returns a
// PolymorphicMatcher<T> where T is the argument's type.
PolymorphicMatcher<ReferencesBarOrIsZeroImpl> ReferencesBarOrIsZero() {
return MakePolymorphicMatcher(ReferencesBarOrIsZeroImpl());
}
TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingOldAPI) {
// Using a polymorphic matcher to match a reference type.
Matcher<const int&> m1 = ReferencesBarOrIsZero();
EXPECT_TRUE(m1.Matches(0));
// Verifies that the identity of a by-reference argument is preserved.
EXPECT_TRUE(m1.Matches(g_bar));
EXPECT_FALSE(m1.Matches(1));
EXPECT_EQ("g_bar or zero", Describe(m1));
// Using a polymorphic matcher to match a value type.
Matcher<double> m2 = ReferencesBarOrIsZero();
EXPECT_TRUE(m2.Matches(0.0));
EXPECT_FALSE(m2.Matches(0.1));
EXPECT_EQ("g_bar or zero", Describe(m2));
}
// Tests implementing a polymorphic matcher using MatchAndExplain().
class PolymorphicIsEvenImpl {
public:
void DescribeTo(ostream* os) const { *os << "is even"; }
void DescribeNegationTo(ostream* os) const { *os << "is odd"; }
template <typename T>
bool MatchAndExplain(const T& x, MatchResultListener* listener) const {
// Verifies that we can stream to the listener directly.
*listener << "% " << 2;
if (listener->stream() != nullptr) {
// Verifies that we can stream to the listener's underlying stream
// too.
*listener->stream() << " == " << (x % 2);
}
return (x % 2) == 0;
}
};
PolymorphicMatcher<PolymorphicIsEvenImpl> PolymorphicIsEven() {
return MakePolymorphicMatcher(PolymorphicIsEvenImpl());
}
TEST(MakePolymorphicMatcherTest, ConstructsMatcherUsingNewAPI) {
// Using PolymorphicIsEven() as a Matcher<int>.
const Matcher<int> m1 = PolymorphicIsEven();
EXPECT_TRUE(m1.Matches(42));
EXPECT_FALSE(m1.Matches(43));
EXPECT_EQ("is even", Describe(m1));
const Matcher<int> not_m1 = Not(m1);
EXPECT_EQ("is odd", Describe(not_m1));
EXPECT_EQ("% 2 == 0", Explain(m1, 42));
// Using PolymorphicIsEven() as a Matcher<char>.
const Matcher<char> m2 = PolymorphicIsEven();
EXPECT_TRUE(m2.Matches('\x42'));
EXPECT_FALSE(m2.Matches('\x43'));
EXPECT_EQ("is even", Describe(m2));
const Matcher<char> not_m2 = Not(m2);
EXPECT_EQ("is odd", Describe(not_m2));
EXPECT_EQ("% 2 == 0", Explain(m2, '\x42'));
}
INSTANTIATE_GTEST_MATCHER_TEST_P(MatcherCastTest);
// Tests that MatcherCast<T>(m) works when m is a polymorphic matcher.
TEST_P(MatcherCastTestP, FromPolymorphicMatcher) {
Matcher<int16_t> m;
if (use_gtest_matcher_) {
m = MatcherCast<int16_t>(GtestGreaterThan(int64_t{5}));
} else {
m = MatcherCast<int16_t>(Gt(int64_t{5}));
}
EXPECT_TRUE(m.Matches(6));
EXPECT_FALSE(m.Matches(4));
}
// For testing casting matchers between compatible types.
class IntValue {
public:
// An int can be statically (although not implicitly) cast to a
// IntValue.
explicit IntValue(int a_value) : value_(a_value) {}
int value() const { return value_; }
private:
int value_;
};
// For testing casting matchers between compatible types.
bool IsPositiveIntValue(const IntValue& foo) { return foo.value() > 0; }
// Tests that MatcherCast<T>(m) works when m is a Matcher<U> where T
// can be statically converted to U.
TEST(MatcherCastTest, FromCompatibleType) {
Matcher<double> m1 = Eq(2.0);
Matcher<int> m2 = MatcherCast<int>(m1);
EXPECT_TRUE(m2.Matches(2));
EXPECT_FALSE(m2.Matches(3));
Matcher<IntValue> m3 = Truly(IsPositiveIntValue);
Matcher<int> m4 = MatcherCast<int>(m3);
// In the following, the arguments 1 and 0 are statically converted
// to IntValue objects, and then tested by the IsPositiveIntValue()
// predicate.
EXPECT_TRUE(m4.Matches(1));
EXPECT_FALSE(m4.Matches(0));
}
// Tests that MatcherCast<T>(m) works when m is a Matcher<const T&>.
TEST(MatcherCastTest, FromConstReferenceToNonReference) {
Matcher<const int&> m1 = Eq(0);
Matcher<int> m2 = MatcherCast<int>(m1);
EXPECT_TRUE(m2.Matches(0));
EXPECT_FALSE(m2.Matches(1));
}
// Tests that MatcherCast<T>(m) works when m is a Matcher<T&>.
TEST(MatcherCastTest, FromReferenceToNonReference) {
Matcher<int&> m1 = Eq(0);
Matcher<int> m2 = MatcherCast<int>(m1);
EXPECT_TRUE(m2.Matches(0));
EXPECT_FALSE(m2.Matches(1));
}
// Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>.
TEST(MatcherCastTest, FromNonReferenceToConstReference) {
Matcher<int> m1 = Eq(0);
Matcher<const int&> m2 = MatcherCast<const int&>(m1);
EXPECT_TRUE(m2.Matches(0));
EXPECT_FALSE(m2.Matches(1));
}
// Tests that MatcherCast<T&>(m) works when m is a Matcher<T>.
TEST(MatcherCastTest, FromNonReferenceToReference) {
Matcher<int> m1 = Eq(0);
Matcher<int&> m2 = MatcherCast<int&>(m1);
int n = 0;
EXPECT_TRUE(m2.Matches(n));
n = 1;
EXPECT_FALSE(m2.Matches(n));
}
// Tests that MatcherCast<T>(m) works when m is a Matcher<T>.
TEST(MatcherCastTest, FromSameType) {
Matcher<int> m1 = Eq(0);
Matcher<int> m2 = MatcherCast<int>(m1);
EXPECT_TRUE(m2.Matches(0));
EXPECT_FALSE(m2.Matches(1));
}
// Tests that MatcherCast<T>(m) works when m is a value of the same type as the
// value type of the Matcher.
TEST(MatcherCastTest, FromAValue) {
Matcher<int> m = MatcherCast<int>(42);
EXPECT_TRUE(m.Matches(42));
EXPECT_FALSE(m.Matches(239));
}
// Tests that MatcherCast<T>(m) works when m is a value of the type implicitly
// convertible to the value type of the Matcher.
TEST(MatcherCastTest, FromAnImplicitlyConvertibleValue) {
const int kExpected = 'c';
Matcher<int> m = MatcherCast<int>('c');
EXPECT_TRUE(m.Matches(kExpected));
EXPECT_FALSE(m.Matches(kExpected + 1));
}
struct NonImplicitlyConstructibleTypeWithOperatorEq {
friend bool operator==(
const NonImplicitlyConstructibleTypeWithOperatorEq& /* ignored */,
int rhs) {
return 42 == rhs;
}
friend bool operator==(
int lhs,
const NonImplicitlyConstructibleTypeWithOperatorEq& /* ignored */) {
return lhs == 42;
}
};
// Tests that MatcherCast<T>(m) works when m is a neither a matcher nor
// implicitly convertible to the value type of the Matcher, but the value type
// of the matcher has operator==() overload accepting m.
TEST(MatcherCastTest, NonImplicitlyConstructibleTypeWithOperatorEq) {
Matcher<NonImplicitlyConstructibleTypeWithOperatorEq> m1 =
MatcherCast<NonImplicitlyConstructibleTypeWithOperatorEq>(42);
EXPECT_TRUE(m1.Matches(NonImplicitlyConstructibleTypeWithOperatorEq()));
Matcher<NonImplicitlyConstructibleTypeWithOperatorEq> m2 =
MatcherCast<NonImplicitlyConstructibleTypeWithOperatorEq>(239);
EXPECT_FALSE(m2.Matches(NonImplicitlyConstructibleTypeWithOperatorEq()));
// When updating the following lines please also change the comment to
// namespace convertible_from_any.
Matcher<int> m3 =
MatcherCast<int>(NonImplicitlyConstructibleTypeWithOperatorEq());
EXPECT_TRUE(m3.Matches(42));
EXPECT_FALSE(m3.Matches(239));
}
// ConvertibleFromAny does not work with MSVC. resulting in
// error C2440: 'initializing': cannot convert from 'Eq' to 'M'
// No constructor could take the source type, or constructor overload
// resolution was ambiguous
#if !defined _MSC_VER
// The below ConvertibleFromAny struct is implicitly constructible from anything
// and when in the same namespace can interact with other tests. In particular,
// if it is in the same namespace as other tests and one removes
// NonImplicitlyConstructibleTypeWithOperatorEq::operator==(int lhs, ...);
// then the corresponding test still compiles (and it should not!) by implicitly
// converting NonImplicitlyConstructibleTypeWithOperatorEq to ConvertibleFromAny
// in m3.Matcher().
namespace convertible_from_any {
// Implicitly convertible from any type.
struct ConvertibleFromAny {
ConvertibleFromAny(int a_value) : value(a_value) {}
template <typename T>
ConvertibleFromAny(const T& /*a_value*/) : value(-1) {
ADD_FAILURE() << "Conversion constructor called";
}
int value;
};
bool operator==(const ConvertibleFromAny& a, const ConvertibleFromAny& b) {
return a.value == b.value;
}
ostream& operator<<(ostream& os, const ConvertibleFromAny& a) {
return os << a.value;
}
TEST(MatcherCastTest, ConversionConstructorIsUsed) {
Matcher<ConvertibleFromAny> m = MatcherCast<ConvertibleFromAny>(1);
EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
}
TEST(MatcherCastTest, FromConvertibleFromAny) {
Matcher<ConvertibleFromAny> m =
MatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1)));
EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
}
} // namespace convertible_from_any
#endif // !defined _MSC_VER
struct IntReferenceWrapper {
IntReferenceWrapper(const int& a_value) : value(&a_value) {}
const int* value;
};
bool operator==(const IntReferenceWrapper& a, const IntReferenceWrapper& b) {
return a.value == b.value;
}
TEST(MatcherCastTest, ValueIsNotCopied) {
int n = 42;
Matcher<IntReferenceWrapper> m = MatcherCast<IntReferenceWrapper>(n);
// Verify that the matcher holds a reference to n, not to its temporary copy.
EXPECT_TRUE(m.Matches(n));
}
class Base {
public:
virtual ~Base() = default;
Base() = default;
private:
Base(const Base&) = delete;
Base& operator=(const Base&) = delete;
};
class Derived : public Base {
public:
Derived() : Base() {}
int i;
};
class OtherDerived : public Base {};
INSTANTIATE_GTEST_MATCHER_TEST_P(SafeMatcherCastTest);
// Tests that SafeMatcherCast<T>(m) works when m is a polymorphic matcher.
TEST_P(SafeMatcherCastTestP, FromPolymorphicMatcher) {
Matcher<char> m2;
if (use_gtest_matcher_) {
m2 = SafeMatcherCast<char>(GtestGreaterThan(32));
} else {
m2 = SafeMatcherCast<char>(Gt(32));
}
EXPECT_TRUE(m2.Matches('A'));
EXPECT_FALSE(m2.Matches('\n'));
}
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where
// T and U are arithmetic types and T can be losslessly converted to
// U.
TEST(SafeMatcherCastTest, FromLosslesslyConvertibleArithmeticType) {
Matcher<double> m1 = DoubleEq(1.0);
Matcher<float> m2 = SafeMatcherCast<float>(m1);
EXPECT_TRUE(m2.Matches(1.0f));
EXPECT_FALSE(m2.Matches(2.0f));
Matcher<char> m3 = SafeMatcherCast<char>(TypedEq<int>('a'));
EXPECT_TRUE(m3.Matches('a'));
EXPECT_FALSE(m3.Matches('b'));
}
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<U> where T and U
// are pointers or references to a derived and a base class, correspondingly.
TEST(SafeMatcherCastTest, FromBaseClass) {
Derived d, d2;
Matcher<Base*> m1 = Eq(&d);
Matcher<Derived*> m2 = SafeMatcherCast<Derived*>(m1);
EXPECT_TRUE(m2.Matches(&d));
EXPECT_FALSE(m2.Matches(&d2));
Matcher<Base&> m3 = Ref(d);
Matcher<Derived&> m4 = SafeMatcherCast<Derived&>(m3);
EXPECT_TRUE(m4.Matches(d));
EXPECT_FALSE(m4.Matches(d2));
}
// Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<const T&>.
TEST(SafeMatcherCastTest, FromConstReferenceToReference) {
int n = 0;
Matcher<const int&> m1 = Ref(n);
Matcher<int&> m2 = SafeMatcherCast<int&>(m1);
int n1 = 0;
EXPECT_TRUE(m2.Matches(n));
EXPECT_FALSE(m2.Matches(n1));
}
// Tests that MatcherCast<const T&>(m) works when m is a Matcher<T>.
TEST(SafeMatcherCastTest, FromNonReferenceToConstReference) {
Matcher<std::unique_ptr<int>> m1 = IsNull();
Matcher<const std::unique_ptr<int>&> m2 =
SafeMatcherCast<const std::unique_ptr<int>&>(m1);
EXPECT_TRUE(m2.Matches(std::unique_ptr<int>()));
EXPECT_FALSE(m2.Matches(std::unique_ptr<int>(new int)));
}
// Tests that SafeMatcherCast<T&>(m) works when m is a Matcher<T>.
TEST(SafeMatcherCastTest, FromNonReferenceToReference) {
Matcher<int> m1 = Eq(0);
Matcher<int&> m2 = SafeMatcherCast<int&>(m1);
int n = 0;
EXPECT_TRUE(m2.Matches(n));
n = 1;
EXPECT_FALSE(m2.Matches(n));
}
// Tests that SafeMatcherCast<T>(m) works when m is a Matcher<T>.
TEST(SafeMatcherCastTest, FromSameType) {
Matcher<int> m1 = Eq(0);
Matcher<int> m2 = SafeMatcherCast<int>(m1);
EXPECT_TRUE(m2.Matches(0));
EXPECT_FALSE(m2.Matches(1));
}
#if !defined _MSC_VER
namespace convertible_from_any {
TEST(SafeMatcherCastTest, ConversionConstructorIsUsed) {
Matcher<ConvertibleFromAny> m = SafeMatcherCast<ConvertibleFromAny>(1);
EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
}
TEST(SafeMatcherCastTest, FromConvertibleFromAny) {
Matcher<ConvertibleFromAny> m =
SafeMatcherCast<ConvertibleFromAny>(Eq(ConvertibleFromAny(1)));
EXPECT_TRUE(m.Matches(ConvertibleFromAny(1)));
EXPECT_FALSE(m.Matches(ConvertibleFromAny(2)));
}
} // namespace convertible_from_any
#endif // !defined _MSC_VER
TEST(SafeMatcherCastTest, ValueIsNotCopied) {
int n = 42;
Matcher<IntReferenceWrapper> m = SafeMatcherCast<IntReferenceWrapper>(n);
// Verify that the matcher holds a reference to n, not to its temporary copy.
EXPECT_TRUE(m.Matches(n));
}
TEST(ExpectThat, TakesLiterals) {
EXPECT_THAT(1, 1);
EXPECT_THAT(1.0, 1.0);
EXPECT_THAT(std::string(), "");
}
TEST(ExpectThat, TakesFunctions) {
struct Helper {
static void Func() {}
};
void (*func)() = Helper::Func;
EXPECT_THAT(func, Helper::Func);
EXPECT_THAT(func, &Helper::Func);
}
// Tests that A<T>() matches any value of type T.
TEST(ATest, MatchesAnyValue) {
// Tests a matcher for a value type.
Matcher<double> m1 = A<double>();
EXPECT_TRUE(m1.Matches(91.43));
EXPECT_TRUE(m1.Matches(-15.32));
// Tests a matcher for a reference type.
int a = 2;
int b = -6;
Matcher<int&> m2 = A<int&>();
EXPECT_TRUE(m2.Matches(a));
EXPECT_TRUE(m2.Matches(b));
}
TEST(ATest, WorksForDerivedClass) {
Base base;
Derived derived;
EXPECT_THAT(&base, A<Base*>());
// This shouldn't compile: EXPECT_THAT(&base, A<Derived*>());
EXPECT_THAT(&derived, A<Base*>());
EXPECT_THAT(&derived, A<Derived*>());
}
// Tests that A<T>() describes itself properly.
TEST(ATest, CanDescribeSelf) { EXPECT_EQ("is anything", Describe(A<bool>())); }
// Tests that An<T>() matches any value of type T.
TEST(AnTest, MatchesAnyValue) {
// Tests a matcher for a value type.
Matcher<int> m1 = An<int>();
EXPECT_TRUE(m1.Matches(9143));
EXPECT_TRUE(m1.Matches(-1532));
// Tests a matcher for a reference type.
int a = 2;
int b = -6;
Matcher<int&> m2 = An<int&>();
EXPECT_TRUE(m2.Matches(a));
EXPECT_TRUE(m2.Matches(b));
}
// Tests that An<T>() describes itself properly.
TEST(AnTest, CanDescribeSelf) { EXPECT_EQ("is anything", Describe(An<int>())); }
// Tests that _ can be used as a matcher for any type and matches any
// value of that type.
TEST(UnderscoreTest, MatchesAnyValue) {
// Uses _ as a matcher for a value type.
Matcher<int> m1 = _;
EXPECT_TRUE(m1.Matches(123));
EXPECT_TRUE(m1.Matches(-242));
// Uses _ as a matcher for a reference type.
bool a = false;
const bool b = true;
Matcher<const bool&> m2 = _;
EXPECT_TRUE(m2.Matches(a));
EXPECT_TRUE(m2.Matches(b));
}
// Tests that _ describes itself properly.
TEST(UnderscoreTest, CanDescribeSelf) {
Matcher<int> m = _;
EXPECT_EQ("is anything", Describe(m));
}
// Tests that Eq(x) matches any value equal to x.
TEST(EqTest, MatchesEqualValue) {
// 2 C-strings with same content but different addresses.
const char a1[] = "hi";
const char a2[] = "hi";
Matcher<const char*> m1 = Eq(a1);
EXPECT_TRUE(m1.Matches(a1));
EXPECT_FALSE(m1.Matches(a2));
}
// Tests that Eq(v) describes itself properly.
class Unprintable {
public:
Unprintable() : c_('a') {}
bool operator==(const Unprintable& /* rhs */) const { return true; }
// -Wunused-private-field: dummy accessor for `c_`.
char dummy_c() { return c_; }
private:
char c_;
};
TEST(EqTest, CanDescribeSelf) {
Matcher<Unprintable> m = Eq(Unprintable());
EXPECT_EQ("is equal to 1-byte object <61>", Describe(m));
}
// Tests that Eq(v) can be used to match any type that supports
// comparing with type T, where T is v's type.
TEST(EqTest, IsPolymorphic) {
Matcher<int> m1 = Eq(1);
EXPECT_TRUE(m1.Matches(1));
EXPECT_FALSE(m1.Matches(2));
Matcher<char> m2 = Eq(1);
EXPECT_TRUE(m2.Matches('\1'));
EXPECT_FALSE(m2.Matches('a'));
}
// Tests that TypedEq<T>(v) matches values of type T that's equal to v.
TEST(TypedEqTest, ChecksEqualityForGivenType) {
Matcher<char> m1 = TypedEq<char>('a');
EXPECT_TRUE(m1.Matches('a'));
EXPECT_FALSE(m1.Matches('b'));
Matcher<int> m2 = TypedEq<int>(6);
EXPECT_TRUE(m2.Matches(6));
EXPECT_FALSE(m2.Matches(7));
}
// Tests that TypedEq(v) describes itself properly.
TEST(TypedEqTest, CanDescribeSelf) {
EXPECT_EQ("is equal to 2", Describe(TypedEq<int>(2)));
}
// Tests that TypedEq<T>(v) has type Matcher<T>.
// Type<T>::IsTypeOf(v) compiles if and only if the type of value v is T, where
// T is a "bare" type (i.e. not in the form of const U or U&). If v's type is
// not T, the compiler will generate a message about "undefined reference".
template <typename T>
struct Type {
static bool IsTypeOf(const T& /* v */) { return true; }
template <typename T2>
static void IsTypeOf(T2 v);
};
TEST(TypedEqTest, HasSpecifiedType) {
// Verifies that the type of TypedEq<T>(v) is Matcher<T>.
Type<Matcher<int>>::IsTypeOf(TypedEq<int>(5));
Type<Matcher<double>>::IsTypeOf(TypedEq<double>(5));
}
// Tests that Ge(v) matches anything >= v.
TEST(GeTest, ImplementsGreaterThanOrEqual) {
Matcher<int> m1 = Ge(0);
EXPECT_TRUE(m1.Matches(1));
EXPECT_TRUE(m1.Matches(0));
EXPECT_FALSE(m1.Matches(-1));
}
// Tests that Ge(v) describes itself properly.
TEST(GeTest, CanDescribeSelf) {
Matcher<int> m = Ge(5);
EXPECT_EQ("is >= 5", Describe(m));
}
// Tests that Gt(v) matches anything > v.
TEST(GtTest, ImplementsGreaterThan) {
Matcher<double> m1 = Gt(0);
EXPECT_TRUE(m1.Matches(1.0));
EXPECT_FALSE(m1.Matches(0.0));
EXPECT_FALSE(m1.Matches(-1.0));
}
// Tests that Gt(v) describes itself properly.
TEST(GtTest, CanDescribeSelf) {
Matcher<int> m = Gt(5);
EXPECT_EQ("is > 5", Describe(m));
}
// Tests that Le(v) matches anything <= v.
TEST(LeTest, ImplementsLessThanOrEqual) {
Matcher<char> m1 = Le('b');
EXPECT_TRUE(m1.Matches('a'));
EXPECT_TRUE(m1.Matches('b'));
EXPECT_FALSE(m1.Matches('c'));
}
// Tests that Le(v) describes itself properly.
TEST(LeTest, CanDescribeSelf) {
Matcher<int> m = Le(5);
EXPECT_EQ("is <= 5", Describe(m));
}
// Tests that Lt(v) matches anything < v.
TEST(LtTest, ImplementsLessThan) {
Matcher<const std::string&> m1 = Lt("Hello");
EXPECT_TRUE(m1.Matches("Abc"));
EXPECT_FALSE(m1.Matches("Hello"));
EXPECT_FALSE(m1.Matches("Hello, world!"));
}
// Tests that Lt(v) describes itself properly.
TEST(LtTest, CanDescribeSelf) {
Matcher<int> m = Lt(5);
EXPECT_EQ("is < 5", Describe(m));
}
// Tests that Ne(v) matches anything != v.
TEST(NeTest, ImplementsNotEqual) {
Matcher<int> m1 = Ne(0);
EXPECT_TRUE(m1.Matches(1));
EXPECT_TRUE(m1.Matches(-1));
EXPECT_FALSE(m1.Matches(0));
}
// Tests that Ne(v) describes itself properly.
TEST(NeTest, CanDescribeSelf) {
Matcher<int> m = Ne(5);
EXPECT_EQ("isn't equal to 5", Describe(m));
}
class MoveOnly {
public:
explicit MoveOnly(int i) : i_(i) {}
MoveOnly(const MoveOnly&) = delete;
MoveOnly(MoveOnly&&) = default;
MoveOnly& operator=(const MoveOnly&) = delete;
MoveOnly& operator=(MoveOnly&&) = default;
bool operator==(const MoveOnly& other) const { return i_ == other.i_; }
bool operator!=(const MoveOnly& other) const { return i_ != other.i_; }
bool operator<(const MoveOnly& other) const { return i_ < other.i_; }
bool operator<=(const MoveOnly& other) const { return i_ <= other.i_; }
bool operator>(const MoveOnly& other) const { return i_ > other.i_; }
bool operator>=(const MoveOnly& other) const { return i_ >= other.i_; }
private:
int i_;
};
struct MoveHelper {
MOCK_METHOD1(Call, void(MoveOnly));
};
// Disable this test in VS 2015 (version 14), where it fails when SEH is enabled
#if defined(_MSC_VER) && (_MSC_VER < 1910)
TEST(ComparisonBaseTest, DISABLED_WorksWithMoveOnly) {
#else
TEST(ComparisonBaseTest, WorksWithMoveOnly) {
#endif
MoveOnly m{0};
MoveHelper helper;
EXPECT_CALL(helper, Call(Eq(ByRef(m))));
helper.Call(MoveOnly(0));
EXPECT_CALL(helper, Call(Ne(ByRef(m))));
helper.Call(MoveOnly(1));
EXPECT_CALL(helper, Call(Le(ByRef(m))));
helper.Call(MoveOnly(0));
EXPECT_CALL(helper, Call(Lt(ByRef(m))));
helper.Call(MoveOnly(-1));
EXPECT_CALL(helper, Call(Ge(ByRef(m))));
helper.Call(MoveOnly(0));
EXPECT_CALL(helper, Call(Gt(ByRef(m))));
helper.Call(MoveOnly(1));
}
TEST(IsEmptyTest, MatchesContainer) {
const Matcher<std::vector<int>> m = IsEmpty();
std::vector<int> a = {};
std::vector<int> b = {1};
EXPECT_TRUE(m.Matches(a));
EXPECT_FALSE(m.Matches(b));
}
TEST(IsEmptyTest, MatchesStdString) {
const Matcher<std::string> m = IsEmpty();
std::string a = "z";
std::string b = "";
EXPECT_FALSE(m.Matches(a));
EXPECT_TRUE(m.Matches(b));
}
TEST(IsEmptyTest, MatchesCString) {
const Matcher<const char*> m = IsEmpty();
const char a[] = "";
const char b[] = "x";
EXPECT_TRUE(m.Matches(a));
EXPECT_FALSE(m.Matches(b));
}
// Tests that IsNull() matches any NULL pointer of any type.
TEST(IsNullTest, MatchesNullPointer) {
Matcher<int*> m1 = IsNull();
int* p1 = nullptr;
int n = 0;
EXPECT_TRUE(m1.Matches(p1));
EXPECT_FALSE(m1.Matches(&n));
Matcher<const char*> m2 = IsNull();
const char* p2 = nullptr;
EXPECT_TRUE(m2.Matches(p2));
EXPECT_FALSE(m2.Matches("hi"));
Matcher<void*> m3 = IsNull();
void* p3 = nullptr;
EXPECT_TRUE(m3.Matches(p3));
EXPECT_FALSE(m3.Matches(reinterpret_cast<void*>(0xbeef)));
}
TEST(IsNullTest, StdFunction) {
const Matcher<std::function<void()>> m = IsNull();
EXPECT_TRUE(m.Matches(std::function<void()>()));
EXPECT_FALSE(m.Matches([] {}));
}
// Tests that IsNull() describes itself properly.
TEST(IsNullTest, CanDescribeSelf) {
Matcher<int*> m = IsNull();
EXPECT_EQ("is NULL", Describe(m));
EXPECT_EQ("isn't NULL", DescribeNegation(m));
}
// Tests that NotNull() matches any non-NULL pointer of any type.
TEST(NotNullTest, MatchesNonNullPointer) {
Matcher<int*> m1 = NotNull();
int* p1 = nullptr;
int n = 0;
EXPECT_FALSE(m1.Matches(p1));
EXPECT_TRUE(m1.Matches(&n));
Matcher<const char*> m2 = NotNull();
const char* p2 = nullptr;
EXPECT_FALSE(m2.Matches(p2));
EXPECT_TRUE(m2.Matches("hi"));
}
TEST(NotNullTest, LinkedPtr) {
const Matcher<std::shared_ptr<int>> m = NotNull();
const std::shared_ptr<int> null_p;
const std::shared_ptr<int> non_null_p(new int);
EXPECT_FALSE(m.Matches(null_p));
EXPECT_TRUE(m.Matches(non_null_p));
}
TEST(NotNullTest, ReferenceToConstLinkedPtr) {
const Matcher<const std::shared_ptr<double>&> m = NotNull();
const std::shared_ptr<double> null_p;
const std::shared_ptr<double> non_null_p(new double);
EXPECT_FALSE(m.Matches(null_p));
EXPECT_TRUE(m.Matches(non_null_p));
}
TEST(NotNullTest, StdFunction) {
const Matcher<std::function<void()>> m = NotNull();
EXPECT_TRUE(m.Matches([] {}));
EXPECT_FALSE(m.Matches(std::function<void()>()));
}
// Tests that NotNull() describes itself properly.
TEST(NotNullTest, CanDescribeSelf) {
Matcher<int*> m = NotNull();
EXPECT_EQ("isn't NULL", Describe(m));
}
// Tests that Ref(variable) matches an argument that references
// 'variable'.
TEST(RefTest, MatchesSameVariable) {
int a = 0;
int b = 0;
Matcher<int&> m = Ref(a);
EXPECT_TRUE(m.Matches(a));
EXPECT_FALSE(m.Matches(b));
}
// Tests that Ref(variable) describes itself properly.
TEST(RefTest, CanDescribeSelf) {
int n = 5;
Matcher<int&> m = Ref(n);
stringstream ss;
ss << "references the variable @" << &n << " 5";
EXPECT_EQ(ss.str(), Describe(m));
}
// Test that Ref(non_const_varialbe) can be used as a matcher for a
// const reference.
TEST(RefTest, CanBeUsedAsMatcherForConstReference) {
int a = 0;
int b = 0;
Matcher<const int&> m = Ref(a);
EXPECT_TRUE(m.Matches(a));
EXPECT_FALSE(m.Matches(b));
}
// Tests that Ref(variable) is covariant, i.e. Ref(derived) can be
// used wherever Ref(base) can be used (Ref(derived) is a sub-type
// of Ref(base), but not vice versa.
TEST(RefTest, IsCovariant) {
Base base, base2;
Derived derived;
Matcher<const Base&> m1 = Ref(base);
EXPECT_TRUE(m1.Matches(base));
EXPECT_FALSE(m1.Matches(base2));
EXPECT_FALSE(m1.Matches(derived));
m1 = Ref(derived);
EXPECT_TRUE(m1.Matches(derived));
EXPECT_FALSE(m1.Matches(base));
EXPECT_FALSE(m1.Matches(base2));
}
TEST(RefTest, ExplainsResult) {
int n = 0;
EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), n),
StartsWith("which is located @"));
int m = 0;
EXPECT_THAT(Explain(Matcher<const int&>(Ref(n)), m),
StartsWith("which is located @"));
}
// Tests string comparison matchers.
template <typename T = std::string>
std::string FromStringLike(internal::StringLike<T> str) {
return std::string(str);
}
TEST(StringLike, TestConversions) {
EXPECT_EQ("foo", FromStringLike("foo"));
EXPECT_EQ("foo", FromStringLike(std::string("foo")));
#if GTEST_INTERNAL_HAS_STRING_VIEW
EXPECT_EQ("foo", FromStringLike(internal::StringView("foo")));
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
// Non deducible types.
EXPECT_EQ("", FromStringLike({}));
EXPECT_EQ("foo", FromStringLike({'f', 'o', 'o'}));
const char buf[] = "foo";
EXPECT_EQ("foo", FromStringLike({buf, buf + 3}));
}
TEST(StrEqTest, MatchesEqualString) {
Matcher<const char*> m = StrEq(std::string("Hello"));
EXPECT_TRUE(m.Matches("Hello"));
EXPECT_FALSE(m.Matches("hello"));
EXPECT_FALSE(m.Matches(nullptr));
Matcher<const std::string&> m2 = StrEq("Hello");
EXPECT_TRUE(m2.Matches("Hello"));
EXPECT_FALSE(m2.Matches("Hi"));
#if GTEST_INTERNAL_HAS_STRING_VIEW
Matcher<const internal::StringView&> m3 =
StrEq(internal::StringView("Hello"));
EXPECT_TRUE(m3.Matches(internal::StringView("Hello")));
EXPECT_FALSE(m3.Matches(internal::StringView("hello")));
EXPECT_FALSE(m3.Matches(internal::StringView()));
Matcher<const internal::StringView&> m_empty = StrEq("");
EXPECT_TRUE(m_empty.Matches(internal::StringView("")));
EXPECT_TRUE(m_empty.Matches(internal::StringView()));
EXPECT_FALSE(m_empty.Matches(internal::StringView("hello")));
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
}
TEST(StrEqTest, CanDescribeSelf) {
Matcher<std::string> m = StrEq("Hi-\'\"?\\\a\b\f\n\r\t\v\xD3");
EXPECT_EQ("is equal to \"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\\xD3\"",
Describe(m));
std::string str("01204500800");
str[3] = '\0';
Matcher<std::string> m2 = StrEq(str);
EXPECT_EQ("is equal to \"012\\04500800\"", Describe(m2));
str[0] = str[6] = str[7] = str[9] = str[10] = '\0';
Matcher<std::string> m3 = StrEq(str);
EXPECT_EQ("is equal to \"\\012\\045\\0\\08\\0\\0\"", Describe(m3));
}
TEST(StrNeTest, MatchesUnequalString) {
Matcher<const char*> m = StrNe("Hello");
EXPECT_TRUE(m.Matches(""));
EXPECT_TRUE(m.Matches(nullptr));
EXPECT_FALSE(m.Matches("Hello"));
Matcher<std::string> m2 = StrNe(std::string("Hello"));
EXPECT_TRUE(m2.Matches("hello"));
EXPECT_FALSE(m2.Matches("Hello"));
#if GTEST_INTERNAL_HAS_STRING_VIEW
Matcher<const internal::StringView> m3 = StrNe(internal::StringView("Hello"));
EXPECT_TRUE(m3.Matches(internal::StringView("")));
EXPECT_TRUE(m3.Matches(internal::StringView()));
EXPECT_FALSE(m3.Matches(internal::StringView("Hello")));
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
}
TEST(StrNeTest, CanDescribeSelf) {
Matcher<const char*> m = StrNe("Hi");
EXPECT_EQ("isn't equal to \"Hi\"", Describe(m));
}
TEST(StrCaseEqTest, MatchesEqualStringIgnoringCase) {
Matcher<const char*> m = StrCaseEq(std::string("Hello"));
EXPECT_TRUE(m.Matches("Hello"));
EXPECT_TRUE(m.Matches("hello"));
EXPECT_FALSE(m.Matches("Hi"));
EXPECT_FALSE(m.Matches(nullptr));
Matcher<const std::string&> m2 = StrCaseEq("Hello");
EXPECT_TRUE(m2.Matches("hello"));
EXPECT_FALSE(m2.Matches("Hi"));
#if GTEST_INTERNAL_HAS_STRING_VIEW
Matcher<const internal::StringView&> m3 =
StrCaseEq(internal::StringView("Hello"));
EXPECT_TRUE(m3.Matches(internal::StringView("Hello")));
EXPECT_TRUE(m3.Matches(internal::StringView("hello")));
EXPECT_FALSE(m3.Matches(internal::StringView("Hi")));
EXPECT_FALSE(m3.Matches(internal::StringView()));
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
}
TEST(StrCaseEqTest, MatchesEqualStringWith0IgnoringCase) {
std::string str1("oabocdooeoo");
std::string str2("OABOCDOOEOO");
Matcher<const std::string&> m0 = StrCaseEq(str1);
EXPECT_FALSE(m0.Matches(str2 + std::string(1, '\0')));
str1[3] = str2[3] = '\0';
Matcher<const std::string&> m1 = StrCaseEq(str1);
EXPECT_TRUE(m1.Matches(str2));
str1[0] = str1[6] = str1[7] = str1[10] = '\0';
str2[0] = str2[6] = str2[7] = str2[10] = '\0';
Matcher<const std::string&> m2 = StrCaseEq(str1);
str1[9] = str2[9] = '\0';
EXPECT_FALSE(m2.Matches(str2));
Matcher<const std::string&> m3 = StrCaseEq(str1);
EXPECT_TRUE(m3.Matches(str2));
EXPECT_FALSE(m3.Matches(str2 + "x"));
str2.append(1, '\0');
EXPECT_FALSE(m3.Matches(str2));
EXPECT_FALSE(m3.Matches(std::string(str2, 0, 9)));
}
TEST(StrCaseEqTest, CanDescribeSelf) {
Matcher<std::string> m = StrCaseEq("Hi");
EXPECT_EQ("is equal to (ignoring case) \"Hi\"", Describe(m));
}
TEST(StrCaseNeTest, MatchesUnequalStringIgnoringCase) {
Matcher<const char*> m = StrCaseNe("Hello");
EXPECT_TRUE(m.Matches("Hi"));
EXPECT_TRUE(m.Matches(nullptr));
EXPECT_FALSE(m.Matches("Hello"));
EXPECT_FALSE(m.Matches("hello"));
Matcher<std::string> m2 = StrCaseNe(std::string("Hello"));
EXPECT_TRUE(m2.Matches(""));
EXPECT_FALSE(m2.Matches("Hello"));
#if GTEST_INTERNAL_HAS_STRING_VIEW
Matcher<const internal::StringView> m3 =
StrCaseNe(internal::StringView("Hello"));
EXPECT_TRUE(m3.Matches(internal::StringView("Hi")));
EXPECT_TRUE(m3.Matches(internal::StringView()));
EXPECT_FALSE(m3.Matches(internal::StringView("Hello")));
EXPECT_FALSE(m3.Matches(internal::StringView("hello")));
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
}
TEST(StrCaseNeTest, CanDescribeSelf) {
Matcher<const char*> m = StrCaseNe("Hi");
EXPECT_EQ("isn't equal to (ignoring case) \"Hi\"", Describe(m));
}
// Tests that HasSubstr() works for matching string-typed values.
TEST(HasSubstrTest, WorksForStringClasses) {
const Matcher<std::string> m1 = HasSubstr("foo");
EXPECT_TRUE(m1.Matches(std::string("I love food.")));
EXPECT_FALSE(m1.Matches(std::string("tofo")));
const Matcher<const std::string&> m2 = HasSubstr("foo");
EXPECT_TRUE(m2.Matches(std::string("I love food.")));
EXPECT_FALSE(m2.Matches(std::string("tofo")));
const Matcher<std::string> m_empty = HasSubstr("");
EXPECT_TRUE(m_empty.Matches(std::string()));
EXPECT_TRUE(m_empty.Matches(std::string("not empty")));
}
// Tests that HasSubstr() works for matching C-string-typed values.
TEST(HasSubstrTest, WorksForCStrings) {
const Matcher<char*> m1 = HasSubstr("foo");
EXPECT_TRUE(m1.Matches(const_cast<char*>("I love food.")));
EXPECT_FALSE(m1.Matches(const_cast<char*>("tofo")));
EXPECT_FALSE(m1.Matches(nullptr));
const Matcher<const char*> m2 = HasSubstr("foo");
EXPECT_TRUE(m2.Matches("I love food."));
EXPECT_FALSE(m2.Matches("tofo"));
EXPECT_FALSE(m2.Matches(nullptr));
const Matcher<const char*> m_empty = HasSubstr("");
EXPECT_TRUE(m_empty.Matches("not empty"));
EXPECT_TRUE(m_empty.Matches(""));
EXPECT_FALSE(m_empty.Matches(nullptr));
}
#if GTEST_INTERNAL_HAS_STRING_VIEW
// Tests that HasSubstr() works for matching StringView-typed values.
TEST(HasSubstrTest, WorksForStringViewClasses) {
const Matcher<internal::StringView> m1 =
HasSubstr(internal::StringView("foo"));
EXPECT_TRUE(m1.Matches(internal::StringView("I love food.")));
EXPECT_FALSE(m1.Matches(internal::StringView("tofo")));
EXPECT_FALSE(m1.Matches(internal::StringView()));
const Matcher<const internal::StringView&> m2 = HasSubstr("foo");
EXPECT_TRUE(m2.Matches(internal::StringView("I love food.")));
EXPECT_FALSE(m2.Matches(internal::StringView("tofo")));
EXPECT_FALSE(m2.Matches(internal::StringView()));
const Matcher<const internal::StringView&> m3 = HasSubstr("");
EXPECT_TRUE(m3.Matches(internal::StringView("foo")));
EXPECT_TRUE(m3.Matches(internal::StringView("")));
EXPECT_TRUE(m3.Matches(internal::StringView()));
}
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
// Tests that HasSubstr(s) describes itself properly.
TEST(HasSubstrTest, CanDescribeSelf) {
Matcher<std::string> m = HasSubstr("foo\n\"");
EXPECT_EQ("has substring \"foo\\n\\\"\"", Describe(m));
}
INSTANTIATE_GTEST_MATCHER_TEST_P(KeyTest);
TEST(KeyTest, CanDescribeSelf) {
Matcher<const pair<std::string, int>&> m = Key("foo");
EXPECT_EQ("has a key that is equal to \"foo\"", Describe(m));
EXPECT_EQ("doesn't have a key that is equal to \"foo\"", DescribeNegation(m));
}
TEST_P(KeyTestP, ExplainsResult) {
Matcher<pair<int, bool>> m = Key(GreaterThan(10));
EXPECT_EQ("whose first field is a value which is 5 less than 10",
Explain(m, make_pair(5, true)));
EXPECT_EQ("whose first field is a value which is 5 more than 10",
Explain(m, make_pair(15, true)));
}
TEST(KeyTest, MatchesCorrectly) {
pair<int, std::string> p(25, "foo");
EXPECT_THAT(p, Key(25));
EXPECT_THAT(p, Not(Key(42)));
EXPECT_THAT(p, Key(Ge(20)));
EXPECT_THAT(p, Not(Key(Lt(25))));
}
TEST(KeyTest, WorksWithMoveOnly) {
pair<std::unique_ptr<int>, std::unique_ptr<int>> p;
EXPECT_THAT(p, Key(Eq(nullptr)));
}
INSTANTIATE_GTEST_MATCHER_TEST_P(PairTest);
template <size_t I>
struct Tag {};
struct PairWithGet {
int member_1;
std::string member_2;
using first_type = int;
using second_type = std::string;
const int& GetImpl(Tag<0>) const { return member_1; }
const std::string& GetImpl(Tag<1>) const { return member_2; }
};
template <size_t I>
auto get(const PairWithGet& value) -> decltype(value.GetImpl(Tag<I>())) {
return value.GetImpl(Tag<I>());
}
TEST(PairTest, MatchesPairWithGetCorrectly) {
PairWithGet p{25, "foo"};
EXPECT_THAT(p, Key(25));
EXPECT_THAT(p, Not(Key(42)));
EXPECT_THAT(p, Key(Ge(20)));
EXPECT_THAT(p, Not(Key(Lt(25))));
std::vector<PairWithGet> v = {{11, "Foo"}, {29, "gMockIsBestMock"}};
EXPECT_THAT(v, Contains(Key(29)));
}
TEST(KeyTest, SafelyCastsInnerMatcher) {
Matcher<int> is_positive = Gt(0);
Matcher<int> is_negative = Lt(0);
pair<char, bool> p('a', true);
EXPECT_THAT(p, Key(is_positive));
EXPECT_THAT(p, Not(Key(is_negative)));
}
TEST(KeyTest, InsideContainsUsingMap) {
map<int, char> container;
container.insert(make_pair(1, 'a'));
container.insert(make_pair(2, 'b'));
container.insert(make_pair(4, 'c'));
EXPECT_THAT(container, Contains(Key(1)));
EXPECT_THAT(container, Not(Contains(Key(3))));
}
TEST(KeyTest, InsideContainsUsingMultimap) {
multimap<int, char> container;
container.insert(make_pair(1, 'a'));
container.insert(make_pair(2, 'b'));
container.insert(make_pair(4, 'c'));
EXPECT_THAT(container, Not(Contains(Key(25))));
container.insert(make_pair(25, 'd'));
EXPECT_THAT(container, Contains(Key(25)));
container.insert(make_pair(25, 'e'));
EXPECT_THAT(container, Contains(Key(25)));
EXPECT_THAT(container, Contains(Key(1)));
EXPECT_THAT(container, Not(Contains(Key(3))));
}
TEST(PairTest, Typing) {
// Test verifies the following type conversions can be compiled.
Matcher<const pair<const char*, int>&> m1 = Pair("foo", 42);
Matcher<const pair<const char*, int>> m2 = Pair("foo", 42);
Matcher<pair<const char*, int>> m3 = Pair("foo", 42);
Matcher<pair<int, const std::string>> m4 = Pair(25, "42");
Matcher<pair<const std::string, int>> m5 = Pair("25", 42);
}
TEST(PairTest, CanDescribeSelf) {
Matcher<const pair<std::string, int>&> m1 = Pair("foo", 42);
EXPECT_EQ(
"has a first field that is equal to \"foo\""
", and has a second field that is equal to 42",
Describe(m1));
EXPECT_EQ(
"has a first field that isn't equal to \"foo\""
", or has a second field that isn't equal to 42",
DescribeNegation(m1));
// Double and triple negation (1 or 2 times not and description of negation).
Matcher<const pair<int, int>&> m2 = Not(Pair(Not(13), 42));
EXPECT_EQ(
"has a first field that isn't equal to 13"
", and has a second field that is equal to 42",
DescribeNegation(m2));
}
TEST_P(PairTestP, CanExplainMatchResultTo) {
// If neither field matches, Pair() should explain about the first
// field.
const Matcher<pair<int, int>> m = Pair(GreaterThan(0), GreaterThan(0));
EXPECT_EQ("whose first field does not match, which is 1 less than 0",
Explain(m, make_pair(-1, -2)));
// If the first field matches but the second doesn't, Pair() should
// explain about the second field.
EXPECT_EQ("whose second field does not match, which is 2 less than 0",
Explain(m, make_pair(1, -2)));
// If the first field doesn't match but the second does, Pair()
// should explain about the first field.
EXPECT_EQ("whose first field does not match, which is 1 less than 0",
Explain(m, make_pair(-1, 2)));
// If both fields match, Pair() should explain about them both.
EXPECT_EQ(
"whose both fields match, where the first field is a value "
"which is 1 more than 0, and the second field is a value "
"which is 2 more than 0",
Explain(m, make_pair(1, 2)));
// If only the first match has an explanation, only this explanation should
// be printed.
const Matcher<pair<int, int>> explain_first = Pair(GreaterThan(0), 0);
EXPECT_EQ(
"whose both fields match, where the first field is a value "
"which is 1 more than 0",
Explain(explain_first, make_pair(1, 0)));
// If only the second match has an explanation, only this explanation should
// be printed.
const Matcher<pair<int, int>> explain_second = Pair(0, GreaterThan(0));
EXPECT_EQ(
"whose both fields match, where the second field is a value "
"which is 1 more than 0",
Explain(explain_second, make_pair(0, 1)));
}
TEST(PairTest, MatchesCorrectly) {
pair<int, std::string> p(25, "foo");
// Both fields match.
EXPECT_THAT(p, Pair(25, "foo"));
EXPECT_THAT(p, Pair(Ge(20), HasSubstr("o")));
// 'first' doesn't match, but 'second' matches.
EXPECT_THAT(p, Not(Pair(42, "foo")));
EXPECT_THAT(p, Not(Pair(Lt(25), "foo")));
// 'first' matches, but 'second' doesn't match.
EXPECT_THAT(p, Not(Pair(25, "bar")));
EXPECT_THAT(p, Not(Pair(25, Not("foo"))));
// Neither field matches.
EXPECT_THAT(p, Not(Pair(13, "bar")));
EXPECT_THAT(p, Not(Pair(Lt(13), HasSubstr("a"))));
}
TEST(PairTest, WorksWithMoveOnly) {
pair<std::unique_ptr<int>, std::unique_ptr<int>> p;
p.second = std::make_unique<int>(7);
EXPECT_THAT(p, Pair(Eq(nullptr), Ne(nullptr)));
}
TEST(PairTest, SafelyCastsInnerMatchers) {
Matcher<int> is_positive = Gt(0);
Matcher<int> is_negative = Lt(0);
pair<char, bool> p('a', true);
EXPECT_THAT(p, Pair(is_positive, _));
EXPECT_THAT(p, Not(Pair(is_negative, _)));
EXPECT_THAT(p, Pair(_, is_positive));
EXPECT_THAT(p, Not(Pair(_, is_negative)));
}
TEST(PairTest, InsideContainsUsingMap) {
map<int, char> container;
container.insert(make_pair(1, 'a'));
container.insert(make_pair(2, 'b'));
container.insert(make_pair(4, 'c'));
EXPECT_THAT(container, Contains(Pair(1, 'a')));
EXPECT_THAT(container, Contains(Pair(1, _)));
EXPECT_THAT(container, Contains(Pair(_, 'a')));
EXPECT_THAT(container, Not(Contains(Pair(3, _))));
}
INSTANTIATE_GTEST_MATCHER_TEST_P(FieldsAreTest);
TEST(FieldsAreTest, MatchesCorrectly) {
std::tuple<int, std::string, double> p(25, "foo", .5);
// All fields match.
EXPECT_THAT(p, FieldsAre(25, "foo", .5));
EXPECT_THAT(p, FieldsAre(Ge(20), HasSubstr("o"), DoubleEq(.5)));
// Some don't match.
EXPECT_THAT(p, Not(FieldsAre(26, "foo", .5)));
EXPECT_THAT(p, Not(FieldsAre(25, "fo", .5)));
EXPECT_THAT(p, Not(FieldsAre(25, "foo", .6)));
}
TEST(FieldsAreTest, CanDescribeSelf) {
Matcher<const pair<std::string, int>&> m1 = FieldsAre("foo", 42);
EXPECT_EQ(
"has field #0 that is equal to \"foo\""
", and has field #1 that is equal to 42",
Describe(m1));
EXPECT_EQ(
"has field #0 that isn't equal to \"foo\""
", or has field #1 that isn't equal to 42",
DescribeNegation(m1));
}
TEST_P(FieldsAreTestP, CanExplainMatchResultTo) {
// The first one that fails is the one that gives the error.
Matcher<std::tuple<int, int, int>> m =
FieldsAre(GreaterThan(0), GreaterThan(0), GreaterThan(0));
EXPECT_EQ("whose field #0 does not match, which is 1 less than 0",
Explain(m, std::make_tuple(-1, -2, -3)));
EXPECT_EQ("whose field #1 does not match, which is 2 less than 0",
Explain(m, std::make_tuple(1, -2, -3)));
EXPECT_EQ("whose field #2 does not match, which is 3 less than 0",
Explain(m, std::make_tuple(1, 2, -3)));
// If they all match, we get a long explanation of success.
EXPECT_EQ(
"whose all elements match, "
"where field #0 is a value which is 1 more than 0"
", and field #1 is a value which is 2 more than 0"
", and field #2 is a value which is 3 more than 0",
Explain(m, std::make_tuple(1, 2, 3)));
// Only print those that have an explanation.
m = FieldsAre(GreaterThan(0), 0, GreaterThan(0));
EXPECT_EQ(
"whose all elements match, "
"where field #0 is a value which is 1 more than 0"
", and field #2 is a value which is 3 more than 0",
Explain(m, std::make_tuple(1, 0, 3)));
// If only one has an explanation, then print that one.
m = FieldsAre(0, GreaterThan(0), 0);
EXPECT_EQ(
"whose all elements match, "
"where field #1 is a value which is 1 more than 0",
Explain(m, std::make_tuple(0, 1, 0)));
}
#if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
TEST(FieldsAreTest, StructuredBindings) {
// testing::FieldsAre can also match aggregates and such with C++17 and up.
struct MyType {
int i;
std::string str;
};
EXPECT_THAT((MyType{17, "foo"}), FieldsAre(Eq(17), HasSubstr("oo")));
// Test all the supported arities.
struct MyVarType1 {
int a;
};
EXPECT_THAT(MyVarType1{}, FieldsAre(0));
struct MyVarType2 {
int a, b;
};
EXPECT_THAT(MyVarType2{}, FieldsAre(0, 0));
struct MyVarType3 {
int a, b, c;
};
EXPECT_THAT(MyVarType3{}, FieldsAre(0, 0, 0));
struct MyVarType4 {
int a, b, c, d;
};
EXPECT_THAT(MyVarType4{}, FieldsAre(0, 0, 0, 0));
struct MyVarType5 {
int a, b, c, d, e;
};
EXPECT_THAT(MyVarType5{}, FieldsAre(0, 0, 0, 0, 0));
struct MyVarType6 {
int a, b, c, d, e, f;
};
EXPECT_THAT(MyVarType6{}, FieldsAre(0, 0, 0, 0, 0, 0));
struct MyVarType7 {
int a, b, c, d, e, f, g;
};
EXPECT_THAT(MyVarType7{}, FieldsAre(0, 0, 0, 0, 0, 0, 0));
struct MyVarType8 {
int a, b, c, d, e, f, g, h;
};
EXPECT_THAT(MyVarType8{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0));
struct MyVarType9 {
int a, b, c, d, e, f, g, h, i;
};
EXPECT_THAT(MyVarType9{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0));
struct MyVarType10 {
int a, b, c, d, e, f, g, h, i, j;
};
EXPECT_THAT(MyVarType10{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
struct MyVarType11 {
int a, b, c, d, e, f, g, h, i, j, k;
};
EXPECT_THAT(MyVarType11{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
struct MyVarType12 {
int a, b, c, d, e, f, g, h, i, j, k, l;
};
EXPECT_THAT(MyVarType12{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
struct MyVarType13 {
int a, b, c, d, e, f, g, h, i, j, k, l, m;
};
EXPECT_THAT(MyVarType13{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
struct MyVarType14 {
int a, b, c, d, e, f, g, h, i, j, k, l, m, n;
};
EXPECT_THAT(MyVarType14{},
FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
struct MyVarType15 {
int a, b, c, d, e, f, g, h, i, j, k, l, m, n, o;
};
EXPECT_THAT(MyVarType15{},
FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
struct MyVarType16 {
int a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p;
};
EXPECT_THAT(MyVarType16{},
FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
struct MyVarType17 {
int a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q;
};
EXPECT_THAT(MyVarType17{},
FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
struct MyVarType18 {
int a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r;
};
EXPECT_THAT(MyVarType18{},
FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
struct MyVarType19 {
int a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s;
};
EXPECT_THAT(MyVarType19{}, FieldsAre(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0));
}
#endif
TEST(PairTest, UseGetInsteadOfMembers) {
PairWithGet pair{7, "ABC"};
EXPECT_THAT(pair, Pair(7, "ABC"));
EXPECT_THAT(pair, Pair(Ge(7), HasSubstr("AB")));
EXPECT_THAT(pair, Not(Pair(Lt(7), "ABC")));
std::vector<PairWithGet> v = {{11, "Foo"}, {29, "gMockIsBestMock"}};
EXPECT_THAT(v,
ElementsAre(Pair(11, std::string("Foo")), Pair(Ge(10), Not(""))));
}
// Tests StartsWith(s).
TEST(StartsWithTest, MatchesStringWithGivenPrefix) {
const Matcher<const char*> m1 = StartsWith(std::string(""));
EXPECT_TRUE(m1.Matches("Hi"));
EXPECT_TRUE(m1.Matches(""));
EXPECT_FALSE(m1.Matches(nullptr));
const Matcher<const std::string&> m2 = StartsWith("Hi");
EXPECT_TRUE(m2.Matches("Hi"));
EXPECT_TRUE(m2.Matches("Hi Hi!"));
EXPECT_TRUE(m2.Matches("High"));
EXPECT_FALSE(m2.Matches("H"));
EXPECT_FALSE(m2.Matches(" Hi"));
#if GTEST_INTERNAL_HAS_STRING_VIEW
const Matcher<internal::StringView> m_empty =
StartsWith(internal::StringView(""));
EXPECT_TRUE(m_empty.Matches(internal::StringView()));
EXPECT_TRUE(m_empty.Matches(internal::StringView("")));
EXPECT_TRUE(m_empty.Matches(internal::StringView("not empty")));
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
}
TEST(StartsWithTest, CanDescribeSelf) {
Matcher<const std::string> m = StartsWith("Hi");
EXPECT_EQ("starts with \"Hi\"", Describe(m));
}
TEST(StartsWithTest, WorksWithStringMatcherOnStringViewMatchee) {
#if GTEST_INTERNAL_HAS_STRING_VIEW
EXPECT_THAT(internal::StringView("talk to me goose"),
StartsWith(std::string("talk")));
#else
GTEST_SKIP() << "Not applicable without internal::StringView.";
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
}
// Tests EndsWith(s).
TEST(EndsWithTest, MatchesStringWithGivenSuffix) {
const Matcher<const char*> m1 = EndsWith("");
EXPECT_TRUE(m1.Matches("Hi"));
EXPECT_TRUE(m1.Matches(""));
EXPECT_FALSE(m1.Matches(nullptr));
const Matcher<const std::string&> m2 = EndsWith(std::string("Hi"));
EXPECT_TRUE(m2.Matches("Hi"));
EXPECT_TRUE(m2.Matches("Wow Hi Hi"));
EXPECT_TRUE(m2.Matches("Super Hi"));
EXPECT_FALSE(m2.Matches("i"));
EXPECT_FALSE(m2.Matches("Hi "));
#if GTEST_INTERNAL_HAS_STRING_VIEW
const Matcher<const internal::StringView&> m4 =
EndsWith(internal::StringView(""));
EXPECT_TRUE(m4.Matches("Hi"));
EXPECT_TRUE(m4.Matches(""));
EXPECT_TRUE(m4.Matches(internal::StringView()));
EXPECT_TRUE(m4.Matches(internal::StringView("")));
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
}
TEST(EndsWithTest, CanDescribeSelf) {
Matcher<const std::string> m = EndsWith("Hi");
EXPECT_EQ("ends with \"Hi\"", Describe(m));
}
// Tests WhenBase64Unescaped.
TEST(WhenBase64UnescapedTest, MatchesUnescapedBase64Strings) {
const Matcher<const char*> m1 = WhenBase64Unescaped(EndsWith("!"));
EXPECT_FALSE(m1.Matches("invalid base64"));
EXPECT_FALSE(m1.Matches("aGVsbG8gd29ybGQ=")); // hello world
EXPECT_TRUE(m1.Matches("aGVsbG8gd29ybGQh")); // hello world!
EXPECT_TRUE(m1.Matches("+/-_IQ")); // \xfb\xff\xbf!
const Matcher<const std::string&> m2 = WhenBase64Unescaped(EndsWith("!"));
EXPECT_FALSE(m2.Matches("invalid base64"));
EXPECT_FALSE(m2.Matches("aGVsbG8gd29ybGQ=")); // hello world
EXPECT_TRUE(m2.Matches("aGVsbG8gd29ybGQh")); // hello world!
EXPECT_TRUE(m2.Matches("+/-_IQ")); // \xfb\xff\xbf!
#if GTEST_INTERNAL_HAS_STRING_VIEW
const Matcher<const internal::StringView&> m3 =
WhenBase64Unescaped(EndsWith("!"));
EXPECT_FALSE(m3.Matches("invalid base64"));
EXPECT_FALSE(m3.Matches("aGVsbG8gd29ybGQ=")); // hello world
EXPECT_TRUE(m3.Matches("aGVsbG8gd29ybGQh")); // hello world!
EXPECT_TRUE(m3.Matches("+/-_IQ")); // \xfb\xff\xbf!
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
}
TEST(WhenBase64UnescapedTest, CanDescribeSelf) {
const Matcher<const char*> m = WhenBase64Unescaped(EndsWith("!"));
EXPECT_EQ("matches after Base64Unescape ends with \"!\"", Describe(m));
}
// Tests MatchesRegex().
TEST(MatchesRegexTest, MatchesStringMatchingGivenRegex) {
const Matcher<const char*> m1 = MatchesRegex("a.*z");
EXPECT_TRUE(m1.Matches("az"));
EXPECT_TRUE(m1.Matches("abcz"));
EXPECT_FALSE(m1.Matches(nullptr));
const Matcher<const std::string&> m2 = MatchesRegex(new RE("a.*z"));
EXPECT_TRUE(m2.Matches("azbz"));
EXPECT_FALSE(m2.Matches("az1"));
EXPECT_FALSE(m2.Matches("1az"));
#if GTEST_INTERNAL_HAS_STRING_VIEW
const Matcher<const internal::StringView&> m3 = MatchesRegex("a.*z");
EXPECT_TRUE(m3.Matches(internal::StringView("az")));
EXPECT_TRUE(m3.Matches(internal::StringView("abcz")));
EXPECT_FALSE(m3.Matches(internal::StringView("1az")));
EXPECT_FALSE(m3.Matches(internal::StringView()));
const Matcher<const internal::StringView&> m4 =
MatchesRegex(internal::StringView(""));
EXPECT_TRUE(m4.Matches(internal::StringView("")));
EXPECT_TRUE(m4.Matches(internal::StringView()));
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
}
TEST(MatchesRegexTest, CanDescribeSelf) {
Matcher<const std::string> m1 = MatchesRegex(std::string("Hi.*"));
EXPECT_EQ("matches regular expression \"Hi.*\"", Describe(m1));
Matcher<const char*> m2 = MatchesRegex(new RE("a.*"));
EXPECT_EQ("matches regular expression \"a.*\"", Describe(m2));
#if GTEST_INTERNAL_HAS_STRING_VIEW
Matcher<const internal::StringView> m3 = MatchesRegex(new RE("0.*"));
EXPECT_EQ("matches regular expression \"0.*\"", Describe(m3));
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
}
// Tests ContainsRegex().
TEST(ContainsRegexTest, MatchesStringContainingGivenRegex) {
const Matcher<const char*> m1 = ContainsRegex(std::string("a.*z"));
EXPECT_TRUE(m1.Matches("az"));
EXPECT_TRUE(m1.Matches("0abcz1"));
EXPECT_FALSE(m1.Matches(nullptr));
const Matcher<const std::string&> m2 = ContainsRegex(new RE("a.*z"));
EXPECT_TRUE(m2.Matches("azbz"));
EXPECT_TRUE(m2.Matches("az1"));
EXPECT_FALSE(m2.Matches("1a"));
#if GTEST_INTERNAL_HAS_STRING_VIEW
const Matcher<const internal::StringView&> m3 = ContainsRegex(new RE("a.*z"));
EXPECT_TRUE(m3.Matches(internal::StringView("azbz")));
EXPECT_TRUE(m3.Matches(internal::StringView("az1")));
EXPECT_FALSE(m3.Matches(internal::StringView("1a")));
EXPECT_FALSE(m3.Matches(internal::StringView()));
const Matcher<const internal::StringView&> m4 =
ContainsRegex(internal::StringView(""));
EXPECT_TRUE(m4.Matches(internal::StringView("")));
EXPECT_TRUE(m4.Matches(internal::StringView()));
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
}
TEST(ContainsRegexTest, CanDescribeSelf) {
Matcher<const std::string> m1 = ContainsRegex("Hi.*");
EXPECT_EQ("contains regular expression \"Hi.*\"", Describe(m1));
Matcher<const char*> m2 = ContainsRegex(new RE("a.*"));
EXPECT_EQ("contains regular expression \"a.*\"", Describe(m2));
#if GTEST_INTERNAL_HAS_STRING_VIEW
Matcher<const internal::StringView> m3 = ContainsRegex(new RE("0.*"));
EXPECT_EQ("contains regular expression \"0.*\"", Describe(m3));
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
}
// Tests for wide strings.
#if GTEST_HAS_STD_WSTRING
TEST(StdWideStrEqTest, MatchesEqual) {
Matcher<const wchar_t*> m = StrEq(::std::wstring(L"Hello"));
EXPECT_TRUE(m.Matches(L"Hello"));
EXPECT_FALSE(m.Matches(L"hello"));
EXPECT_FALSE(m.Matches(nullptr));
Matcher<const ::std::wstring&> m2 = StrEq(L"Hello");
EXPECT_TRUE(m2.Matches(L"Hello"));
EXPECT_FALSE(m2.Matches(L"Hi"));
Matcher<const ::std::wstring&> m3 = StrEq(L"\xD3\x576\x8D3\xC74D");
EXPECT_TRUE(m3.Matches(L"\xD3\x576\x8D3\xC74D"));
EXPECT_FALSE(m3.Matches(L"\xD3\x576\x8D3\xC74E"));
::std::wstring str(L"01204500800");
str[3] = L'\0';
Matcher<const ::std::wstring&> m4 = StrEq(str);
EXPECT_TRUE(m4.Matches(str));
str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
Matcher<const ::std::wstring&> m5 = StrEq(str);
EXPECT_TRUE(m5.Matches(str));
}
TEST(StdWideStrEqTest, CanDescribeSelf) {
Matcher<::std::wstring> m = StrEq(L"Hi-\'\"?\\\a\b\f\n\r\t\v");
EXPECT_EQ("is equal to L\"Hi-\'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\"",
Describe(m));
Matcher<::std::wstring> m2 = StrEq(L"\xD3\x576\x8D3\xC74D");
EXPECT_EQ("is equal to L\"\\xD3\\x576\\x8D3\\xC74D\"", Describe(m2));
::std::wstring str(L"01204500800");
str[3] = L'\0';
Matcher<const ::std::wstring&> m4 = StrEq(str);
EXPECT_EQ("is equal to L\"012\\04500800\"", Describe(m4));
str[0] = str[6] = str[7] = str[9] = str[10] = L'\0';
Matcher<const ::std::wstring&> m5 = StrEq(str);
EXPECT_EQ("is equal to L\"\\012\\045\\0\\08\\0\\0\"", Describe(m5));
}
TEST(StdWideStrNeTest, MatchesUnequalString) {
Matcher<const wchar_t*> m = StrNe(L"Hello");
EXPECT_TRUE(m.Matches(L""));
EXPECT_TRUE(m.Matches(nullptr));
EXPECT_FALSE(m.Matches(L"Hello"));
Matcher<::std::wstring> m2 = StrNe(::std::wstring(L"Hello"));
EXPECT_TRUE(m2.Matches(L"hello"));
EXPECT_FALSE(m2.Matches(L"Hello"));
}
TEST(StdWideStrNeTest, CanDescribeSelf) {
Matcher<const wchar_t*> m = StrNe(L"Hi");
EXPECT_EQ("isn't equal to L\"Hi\"", Describe(m));
}
TEST(StdWideStrCaseEqTest, MatchesEqualStringIgnoringCase) {
Matcher<const wchar_t*> m = StrCaseEq(::std::wstring(L"Hello"));
EXPECT_TRUE(m.Matches(L"Hello"));
EXPECT_TRUE(m.Matches(L"hello"));
EXPECT_FALSE(m.Matches(L"Hi"));
EXPECT_FALSE(m.Matches(nullptr));
Matcher<const ::std::wstring&> m2 = StrCaseEq(L"Hello");
EXPECT_TRUE(m2.Matches(L"hello"));
EXPECT_FALSE(m2.Matches(L"Hi"));
}
TEST(StdWideStrCaseEqTest, MatchesEqualStringWith0IgnoringCase) {
::std::wstring str1(L"oabocdooeoo");
::std::wstring str2(L"OABOCDOOEOO");
Matcher<const ::std::wstring&> m0 = StrCaseEq(str1);
EXPECT_FALSE(m0.Matches(str2 + ::std::wstring(1, L'\0')));
str1[3] = str2[3] = L'\0';
Matcher<const ::std::wstring&> m1 = StrCaseEq(str1);
EXPECT_TRUE(m1.Matches(str2));
str1[0] = str1[6] = str1[7] = str1[10] = L'\0';
str2[0] = str2[6] = str2[7] = str2[10] = L'\0';
Matcher<const ::std::wstring&> m2 = StrCaseEq(str1);
str1[9] = str2[9] = L'\0';
EXPECT_FALSE(m2.Matches(str2));
Matcher<const ::std::wstring&> m3 = StrCaseEq(str1);
EXPECT_TRUE(m3.Matches(str2));
EXPECT_FALSE(m3.Matches(str2 + L"x"));
str2.append(1, L'\0');
EXPECT_FALSE(m3.Matches(str2));
EXPECT_FALSE(m3.Matches(::std::wstring(str2, 0, 9)));
}
TEST(StdWideStrCaseEqTest, CanDescribeSelf) {
Matcher<::std::wstring> m = StrCaseEq(L"Hi");
EXPECT_EQ("is equal to (ignoring case) L\"Hi\"", Describe(m));
}
TEST(StdWideStrCaseNeTest, MatchesUnequalStringIgnoringCase) {
Matcher<const wchar_t*> m = StrCaseNe(L"Hello");
EXPECT_TRUE(m.Matches(L"Hi"));
EXPECT_TRUE(m.Matches(nullptr));
EXPECT_FALSE(m.Matches(L"Hello"));
EXPECT_FALSE(m.Matches(L"hello"));
Matcher<::std::wstring> m2 = StrCaseNe(::std::wstring(L"Hello"));
EXPECT_TRUE(m2.Matches(L""));
EXPECT_FALSE(m2.Matches(L"Hello"));
}
TEST(StdWideStrCaseNeTest, CanDescribeSelf) {
Matcher<const wchar_t*> m = StrCaseNe(L"Hi");
EXPECT_EQ("isn't equal to (ignoring case) L\"Hi\"", Describe(m));
}
// Tests that HasSubstr() works for matching wstring-typed values.
TEST(StdWideHasSubstrTest, WorksForStringClasses) {
const Matcher<::std::wstring> m1 = HasSubstr(L"foo");
EXPECT_TRUE(m1.Matches(::std::wstring(L"I love food.")));
EXPECT_FALSE(m1.Matches(::std::wstring(L"tofo")));
const Matcher<const ::std::wstring&> m2 = HasSubstr(L"foo");
EXPECT_TRUE(m2.Matches(::std::wstring(L"I love food.")));
EXPECT_FALSE(m2.Matches(::std::wstring(L"tofo")));
}
// Tests that HasSubstr() works for matching C-wide-string-typed values.
TEST(StdWideHasSubstrTest, WorksForCStrings) {
const Matcher<wchar_t*> m1 = HasSubstr(L"foo");
EXPECT_TRUE(m1.Matches(const_cast<wchar_t*>(L"I love food.")));
EXPECT_FALSE(m1.Matches(const_cast<wchar_t*>(L"tofo")));
EXPECT_FALSE(m1.Matches(nullptr));
const Matcher<const wchar_t*> m2 = HasSubstr(L"foo");
EXPECT_TRUE(m2.Matches(L"I love food."));
EXPECT_FALSE(m2.Matches(L"tofo"));
EXPECT_FALSE(m2.Matches(nullptr));
}
// Tests that HasSubstr(s) describes itself properly.
TEST(StdWideHasSubstrTest, CanDescribeSelf) {
Matcher<::std::wstring> m = HasSubstr(L"foo\n\"");
EXPECT_EQ("has substring L\"foo\\n\\\"\"", Describe(m));
}
// Tests StartsWith(s).
TEST(StdWideStartsWithTest, MatchesStringWithGivenPrefix) {
const Matcher<const wchar_t*> m1 = StartsWith(::std::wstring(L""));
EXPECT_TRUE(m1.Matches(L"Hi"));
EXPECT_TRUE(m1.Matches(L""));
EXPECT_FALSE(m1.Matches(nullptr));
const Matcher<const ::std::wstring&> m2 = StartsWith(L"Hi");
EXPECT_TRUE(m2.Matches(L"Hi"));
EXPECT_TRUE(m2.Matches(L"Hi Hi!"));
EXPECT_TRUE(m2.Matches(L"High"));
EXPECT_FALSE(m2.Matches(L"H"));
EXPECT_FALSE(m2.Matches(L" Hi"));
}
TEST(StdWideStartsWithTest, CanDescribeSelf) {
Matcher<const ::std::wstring> m = StartsWith(L"Hi");
EXPECT_EQ("starts with L\"Hi\"", Describe(m));
}
// Tests EndsWith(s).
TEST(StdWideEndsWithTest, MatchesStringWithGivenSuffix) {
const Matcher<const wchar_t*> m1 = EndsWith(L"");
EXPECT_TRUE(m1.Matches(L"Hi"));
EXPECT_TRUE(m1.Matches(L""));
EXPECT_FALSE(m1.Matches(nullptr));
const Matcher<const ::std::wstring&> m2 = EndsWith(::std::wstring(L"Hi"));
EXPECT_TRUE(m2.Matches(L"Hi"));
EXPECT_TRUE(m2.Matches(L"Wow Hi Hi"));
EXPECT_TRUE(m2.Matches(L"Super Hi"));
EXPECT_FALSE(m2.Matches(L"i"));
EXPECT_FALSE(m2.Matches(L"Hi "));
}
TEST(StdWideEndsWithTest, CanDescribeSelf) {
Matcher<const ::std::wstring> m = EndsWith(L"Hi");
EXPECT_EQ("ends with L\"Hi\"", Describe(m));
}
#endif // GTEST_HAS_STD_WSTRING
TEST(ExplainMatchResultTest, WorksWithPolymorphicMatcher) {
StringMatchResultListener listener1;
EXPECT_TRUE(ExplainMatchResult(PolymorphicIsEven(), 42, &listener1));
EXPECT_EQ("% 2 == 0", listener1.str());
StringMatchResultListener listener2;
EXPECT_FALSE(ExplainMatchResult(Ge(42), 1.5, &listener2));
EXPECT_EQ("", listener2.str());
}
TEST(ExplainMatchResultTest, WorksWithMonomorphicMatcher) {
const Matcher<int> is_even = PolymorphicIsEven();
StringMatchResultListener listener1;
EXPECT_TRUE(ExplainMatchResult(is_even, 42, &listener1));
EXPECT_EQ("% 2 == 0", listener1.str());
const Matcher<const double&> is_zero = Eq(0);
StringMatchResultListener listener2;
EXPECT_FALSE(ExplainMatchResult(is_zero, 1.5, &listener2));
EXPECT_EQ("", listener2.str());
}
MATCHER(ConstructNoArg, "") { return true; }
MATCHER_P(Construct1Arg, arg1, "") { return true; }
MATCHER_P2(Construct2Args, arg1, arg2, "") { return true; }
TEST(MatcherConstruct, ExplicitVsImplicit) {
{
// No arg constructor can be constructed with empty brace.
ConstructNoArgMatcher m = {};
(void)m;
// And with no args
ConstructNoArgMatcher m2;
(void)m2;
}
{
// The one arg constructor has an explicit constructor.
// This is to prevent the implicit conversion.
using M = Construct1ArgMatcherP<int>;
EXPECT_TRUE((std::is_constructible<M, int>::value));
EXPECT_FALSE((std::is_convertible<int, M>::value));
}
{
// Multiple arg matchers can be constructed with an implicit construction.
Construct2ArgsMatcherP2<int, double> m = {1, 2.2};
(void)m;
}
}
MATCHER_P(Really, inner_matcher, "") {
return ExplainMatchResult(inner_matcher, arg, result_listener);
}
TEST(ExplainMatchResultTest, WorksInsideMATCHER) {
EXPECT_THAT(0, Really(Eq(0)));
}
TEST(DescribeMatcherTest, WorksWithValue) {
EXPECT_EQ("is equal to 42", DescribeMatcher<int>(42));
EXPECT_EQ("isn't equal to 42", DescribeMatcher<int>(42, true));
}
TEST(DescribeMatcherTest, WorksWithMonomorphicMatcher) {
const Matcher<int> monomorphic = Le(0);
EXPECT_EQ("is <= 0", DescribeMatcher<int>(monomorphic));
EXPECT_EQ("isn't <= 0", DescribeMatcher<int>(monomorphic, true));
}
TEST(DescribeMatcherTest, WorksWithPolymorphicMatcher) {
EXPECT_EQ("is even", DescribeMatcher<int>(PolymorphicIsEven()));
EXPECT_EQ("is odd", DescribeMatcher<int>(PolymorphicIsEven(), true));
}
MATCHER_P(FieldIIs, inner_matcher, "") {
return ExplainMatchResult(inner_matcher, arg.i, result_listener);
}
#if GTEST_HAS_RTTI
TEST(WhenDynamicCastToTest, SameType) {
Derived derived;
derived.i = 4;
// Right type. A pointer is passed down.
Base* as_base_ptr = &derived;
EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(Not(IsNull())));
EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(Pointee(FieldIIs(4))));
EXPECT_THAT(as_base_ptr,
Not(WhenDynamicCastTo<Derived*>(Pointee(FieldIIs(5)))));
}
TEST(WhenDynamicCastToTest, WrongTypes) {
Base base;
Derived derived;
OtherDerived other_derived;
// Wrong types. NULL is passed.
EXPECT_THAT(&base, Not(WhenDynamicCastTo<Derived*>(Pointee(_))));
EXPECT_THAT(&base, WhenDynamicCastTo<Derived*>(IsNull()));
Base* as_base_ptr = &derived;
EXPECT_THAT(as_base_ptr, Not(WhenDynamicCastTo<OtherDerived*>(Pointee(_))));
EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<OtherDerived*>(IsNull()));
as_base_ptr = &other_derived;
EXPECT_THAT(as_base_ptr, Not(WhenDynamicCastTo<Derived*>(Pointee(_))));
EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(IsNull()));
}
TEST(WhenDynamicCastToTest, AlreadyNull) {
// Already NULL.
Base* as_base_ptr = nullptr;
EXPECT_THAT(as_base_ptr, WhenDynamicCastTo<Derived*>(IsNull()));
}
struct AmbiguousCastTypes {
class VirtualDerived : public virtual Base {};
class DerivedSub1 : public VirtualDerived {};
class DerivedSub2 : public VirtualDerived {};
class ManyDerivedInHierarchy : public DerivedSub1, public DerivedSub2 {};
};
TEST(WhenDynamicCastToTest, AmbiguousCast) {
AmbiguousCastTypes::DerivedSub1 sub1;
AmbiguousCastTypes::ManyDerivedInHierarchy many_derived;
// Multiply derived from Base. dynamic_cast<> returns NULL.
Base* as_base_ptr =
static_cast<AmbiguousCastTypes::DerivedSub1*>(&many_derived);
EXPECT_THAT(as_base_ptr,
WhenDynamicCastTo<AmbiguousCastTypes::VirtualDerived*>(IsNull()));
as_base_ptr = &sub1;
EXPECT_THAT(
as_base_ptr,
WhenDynamicCastTo<AmbiguousCastTypes::VirtualDerived*>(Not(IsNull())));
}
TEST(WhenDynamicCastToTest, Describe) {
Matcher<Base*> matcher = WhenDynamicCastTo<Derived*>(Pointee(_));
const std::string prefix =
"when dynamic_cast to " + internal::GetTypeName<Derived*>() + ", ";
EXPECT_EQ(prefix + "points to a value that is anything", Describe(matcher));
EXPECT_EQ(prefix + "does not point to a value that is anything",
DescribeNegation(matcher));
}
TEST(WhenDynamicCastToTest, Explain) {
Matcher<Base*> matcher = WhenDynamicCastTo<Derived*>(Pointee(_));
Base* null = nullptr;
EXPECT_THAT(Explain(matcher, null), HasSubstr("NULL"));
Derived derived;
EXPECT_TRUE(matcher.Matches(&derived));
EXPECT_THAT(Explain(matcher, &derived), HasSubstr("which points to "));
// With references, the matcher itself can fail. Test for that one.
Matcher<const Base&> ref_matcher = WhenDynamicCastTo<const OtherDerived&>(_);
EXPECT_THAT(Explain(ref_matcher, derived),
HasSubstr("which cannot be dynamic_cast"));
}
TEST(WhenDynamicCastToTest, GoodReference) {
Derived derived;
derived.i = 4;
Base& as_base_ref = derived;
EXPECT_THAT(as_base_ref, WhenDynamicCastTo<const Derived&>(FieldIIs(4)));
EXPECT_THAT(as_base_ref, WhenDynamicCastTo<const Derived&>(Not(FieldIIs(5))));
}
TEST(WhenDynamicCastToTest, BadReference) {
Derived derived;
Base& as_base_ref = derived;
EXPECT_THAT(as_base_ref, Not(WhenDynamicCastTo<const OtherDerived&>(_)));
}
#endif // GTEST_HAS_RTTI
class DivisibleByImpl {
public:
explicit DivisibleByImpl(int a_divider) : divider_(a_divider) {}
// For testing using ExplainMatchResultTo() with polymorphic matchers.
template <typename T>
bool MatchAndExplain(const T& n, MatchResultListener* listener) const {
*listener << "which is " << (n % divider_) << " modulo " << divider_;
return (n % divider_) == 0;
}
void DescribeTo(ostream* os) const { *os << "is divisible by " << divider_; }
void DescribeNegationTo(ostream* os) const {
*os << "is not divisible by " << divider_;
}
void set_divider(int a_divider) { divider_ = a_divider; }
int divider() const { return divider_; }
private:
int divider_;
};
PolymorphicMatcher<DivisibleByImpl> DivisibleBy(int n) {
return MakePolymorphicMatcher(DivisibleByImpl(n));
}
// Tests that when AllOf() fails, only the first failing matcher is
// asked to explain why.
TEST(ExplainMatchResultTest, AllOf_False_False) {
const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3));
EXPECT_EQ("which is 1 modulo 4", Explain(m, 5));
}
// Tests that when AllOf() fails, only the first failing matcher is
// asked to explain why.
TEST(ExplainMatchResultTest, AllOf_False_True) {
const Matcher<int> m = AllOf(DivisibleBy(4), DivisibleBy(3));
EXPECT_EQ("which is 2 modulo 4", Explain(m, 6));
}
// Tests that when AllOf() fails, only the first failing matcher is
// asked to explain why.
TEST(ExplainMatchResultTest, AllOf_True_False) {
const Matcher<int> m = AllOf(Ge(1), DivisibleBy(3));
EXPECT_EQ("which is 2 modulo 3", Explain(m, 5));
}
// Tests that when AllOf() succeeds, all matchers are asked to explain
// why.
TEST(ExplainMatchResultTest, AllOf_True_True) {
const Matcher<int> m = AllOf(DivisibleBy(2), DivisibleBy(3));
EXPECT_EQ("which is 0 modulo 2, and which is 0 modulo 3", Explain(m, 6));
}
// Tests that when AllOf() succeeds, but matchers have no explanation,
// the matcher description is used.
TEST(ExplainMatchResultTest, AllOf_True_True_2) {
const Matcher<int> m = AllOf(Ge(2), Le(3));
EXPECT_EQ("is >= 2, and is <= 3", Explain(m, 2));
}
INSTANTIATE_GTEST_MATCHER_TEST_P(ExplainmatcherResultTest);
TEST_P(ExplainmatcherResultTestP, MonomorphicMatcher) {
const Matcher<int> m = GreaterThan(5);
EXPECT_EQ("which is 1 more than 5", Explain(m, 6));
}
// Tests PolymorphicMatcher::mutable_impl().
TEST(PolymorphicMatcherTest, CanAccessMutableImpl) {
PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42));
DivisibleByImpl& impl = m.mutable_impl();
EXPECT_EQ(42, impl.divider());
impl.set_divider(0);
EXPECT_EQ(0, m.mutable_impl().divider());
}
// Tests PolymorphicMatcher::impl().
TEST(PolymorphicMatcherTest, CanAccessImpl) {
const PolymorphicMatcher<DivisibleByImpl> m(DivisibleByImpl(42));
const DivisibleByImpl& impl = m.impl();
EXPECT_EQ(42, impl.divider());
}
} // namespace
} // namespace gmock_matchers_test
} // namespace testing
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4244 4100