Tom Hughes 23142843f7 Use "#ifdef GTEST_OS_..." instead of "#if GTEST_OS_..."
This is compatible with compiling with "-Wundef" (#3267).

PiperOrigin-RevId: 513943378
Change-Id: I47cf5fabbb77be061c4483a0adc54511af6b191c
2023-03-06 07:14:21 -08:00

2298 lines
86 KiB
C++

// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Mock - a framework for writing C++ mock classes.
//
// The ACTION* family of macros can be used in a namespace scope to
// define custom actions easily. The syntax:
//
// ACTION(name) { statements; }
//
// will define an action with the given name that executes the
// statements. The value returned by the statements will be used as
// the return value of the action. Inside the statements, you can
// refer to the K-th (0-based) argument of the mock function by
// 'argK', and refer to its type by 'argK_type'. For example:
//
// ACTION(IncrementArg1) {
// arg1_type temp = arg1;
// return ++(*temp);
// }
//
// allows you to write
//
// ...WillOnce(IncrementArg1());
//
// You can also refer to the entire argument tuple and its type by
// 'args' and 'args_type', and refer to the mock function type and its
// return type by 'function_type' and 'return_type'.
//
// Note that you don't need to specify the types of the mock function
// arguments. However rest assured that your code is still type-safe:
// you'll get a compiler error if *arg1 doesn't support the ++
// operator, or if the type of ++(*arg1) isn't compatible with the
// mock function's return type, for example.
//
// Sometimes you'll want to parameterize the action. For that you can use
// another macro:
//
// ACTION_P(name, param_name) { statements; }
//
// For example:
//
// ACTION_P(Add, n) { return arg0 + n; }
//
// will allow you to write:
//
// ...WillOnce(Add(5));
//
// Note that you don't need to provide the type of the parameter
// either. If you need to reference the type of a parameter named
// 'foo', you can write 'foo_type'. For example, in the body of
// ACTION_P(Add, n) above, you can write 'n_type' to refer to the type
// of 'n'.
//
// We also provide ACTION_P2, ACTION_P3, ..., up to ACTION_P10 to support
// multi-parameter actions.
//
// For the purpose of typing, you can view
//
// ACTION_Pk(Foo, p1, ..., pk) { ... }
//
// as shorthand for
//
// template <typename p1_type, ..., typename pk_type>
// FooActionPk<p1_type, ..., pk_type> Foo(p1_type p1, ..., pk_type pk) { ... }
//
// In particular, you can provide the template type arguments
// explicitly when invoking Foo(), as in Foo<long, bool>(5, false);
// although usually you can rely on the compiler to infer the types
// for you automatically. You can assign the result of expression
// Foo(p1, ..., pk) to a variable of type FooActionPk<p1_type, ...,
// pk_type>. This can be useful when composing actions.
//
// You can also overload actions with different numbers of parameters:
//
// ACTION_P(Plus, a) { ... }
// ACTION_P2(Plus, a, b) { ... }
//
// While it's tempting to always use the ACTION* macros when defining
// a new action, you should also consider implementing ActionInterface
// or using MakePolymorphicAction() instead, especially if you need to
// use the action a lot. While these approaches require more work,
// they give you more control on the types of the mock function
// arguments and the action parameters, which in general leads to
// better compiler error messages that pay off in the long run. They
// also allow overloading actions based on parameter types (as opposed
// to just based on the number of parameters).
//
// CAVEAT:
//
// ACTION*() can only be used in a namespace scope as templates cannot be
// declared inside of a local class.
// Users can, however, define any local functors (e.g. a lambda) that
// can be used as actions.
//
// MORE INFORMATION:
//
// To learn more about using these macros, please search for 'ACTION' on
// https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md
// IWYU pragma: private, include "gmock/gmock.h"
// IWYU pragma: friend gmock/.*
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#ifndef _WIN32_WCE
#include <errno.h>
#endif
#include <algorithm>
#include <functional>
#include <memory>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include "gmock/internal/gmock-internal-utils.h"
#include "gmock/internal/gmock-port.h"
#include "gmock/internal/gmock-pp.h"
GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100)
namespace testing {
// To implement an action Foo, define:
// 1. a class FooAction that implements the ActionInterface interface, and
// 2. a factory function that creates an Action object from a
// const FooAction*.
//
// The two-level delegation design follows that of Matcher, providing
// consistency for extension developers. It also eases ownership
// management as Action objects can now be copied like plain values.
namespace internal {
// BuiltInDefaultValueGetter<T, true>::Get() returns a
// default-constructed T value. BuiltInDefaultValueGetter<T,
// false>::Get() crashes with an error.
//
// This primary template is used when kDefaultConstructible is true.
template <typename T, bool kDefaultConstructible>
struct BuiltInDefaultValueGetter {
static T Get() { return T(); }
};
template <typename T>
struct BuiltInDefaultValueGetter<T, false> {
static T Get() {
Assert(false, __FILE__, __LINE__,
"Default action undefined for the function return type.");
return internal::Invalid<T>();
// The above statement will never be reached, but is required in
// order for this function to compile.
}
};
// BuiltInDefaultValue<T>::Get() returns the "built-in" default value
// for type T, which is NULL when T is a raw pointer type, 0 when T is
// a numeric type, false when T is bool, or "" when T is string or
// std::string. In addition, in C++11 and above, it turns a
// default-constructed T value if T is default constructible. For any
// other type T, the built-in default T value is undefined, and the
// function will abort the process.
template <typename T>
class BuiltInDefaultValue {
public:
// This function returns true if and only if type T has a built-in default
// value.
static bool Exists() { return ::std::is_default_constructible<T>::value; }
static T Get() {
return BuiltInDefaultValueGetter<
T, ::std::is_default_constructible<T>::value>::Get();
}
};
// This partial specialization says that we use the same built-in
// default value for T and const T.
template <typename T>
class BuiltInDefaultValue<const T> {
public:
static bool Exists() { return BuiltInDefaultValue<T>::Exists(); }
static T Get() { return BuiltInDefaultValue<T>::Get(); }
};
// This partial specialization defines the default values for pointer
// types.
template <typename T>
class BuiltInDefaultValue<T*> {
public:
static bool Exists() { return true; }
static T* Get() { return nullptr; }
};
// The following specializations define the default values for
// specific types we care about.
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
template <> \
class BuiltInDefaultValue<type> { \
public: \
static bool Exists() { return true; } \
static type Get() { return value; } \
}
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(::std::string, "");
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(bool, false);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed char, '\0');
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(char, '\0');
// There's no need for a default action for signed wchar_t, as that
// type is the same as wchar_t for gcc, and invalid for MSVC.
//
// There's also no need for a default action for unsigned wchar_t, as
// that type is the same as unsigned int for gcc, and invalid for
// MSVC.
#if GMOCK_WCHAR_T_IS_NATIVE_
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(wchar_t, 0U); // NOLINT
#endif
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
// Partial implementations of metaprogramming types from the standard library
// not available in C++11.
template <typename P>
struct negation
// NOLINTNEXTLINE
: std::integral_constant<bool, bool(!P::value)> {};
// Base case: with zero predicates the answer is always true.
template <typename...>
struct conjunction : std::true_type {};
// With a single predicate, the answer is that predicate.
template <typename P1>
struct conjunction<P1> : P1 {};
// With multiple predicates the answer is the first predicate if that is false,
// and we recurse otherwise.
template <typename P1, typename... Ps>
struct conjunction<P1, Ps...>
: std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {};
template <typename...>
struct disjunction : std::false_type {};
template <typename P1>
struct disjunction<P1> : P1 {};
template <typename P1, typename... Ps>
struct disjunction<P1, Ps...>
// NOLINTNEXTLINE
: std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {};
template <typename...>
using void_t = void;
// Detects whether an expression of type `From` can be implicitly converted to
// `To` according to [conv]. In C++17, [conv]/3 defines this as follows:
//
// An expression e can be implicitly converted to a type T if and only if
// the declaration T t=e; is well-formed, for some invented temporary
// variable t ([dcl.init]).
//
// [conv]/2 implies we can use function argument passing to detect whether this
// initialization is valid.
//
// Note that this is distinct from is_convertible, which requires this be valid:
//
// To test() {
// return declval<From>();
// }
//
// In particular, is_convertible doesn't give the correct answer when `To` and
// `From` are the same non-moveable type since `declval<From>` will be an rvalue
// reference, defeating the guaranteed copy elision that would otherwise make
// this function work.
//
// REQUIRES: `From` is not cv void.
template <typename From, typename To>
struct is_implicitly_convertible {
private:
// A function that accepts a parameter of type T. This can be called with type
// U successfully only if U is implicitly convertible to T.
template <typename T>
static void Accept(T);
// A function that creates a value of type T.
template <typename T>
static T Make();
// An overload be selected when implicit conversion from T to To is possible.
template <typename T, typename = decltype(Accept<To>(Make<T>()))>
static std::true_type TestImplicitConversion(int);
// A fallback overload selected in all other cases.
template <typename T>
static std::false_type TestImplicitConversion(...);
public:
using type = decltype(TestImplicitConversion<From>(0));
static constexpr bool value = type::value;
};
// Like std::invoke_result_t from C++17, but works only for objects with call
// operators (not e.g. member function pointers, which we don't need specific
// support for in OnceAction because std::function deals with them).
template <typename F, typename... Args>
using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...));
template <typename Void, typename R, typename F, typename... Args>
struct is_callable_r_impl : std::false_type {};
// Specialize the struct for those template arguments where call_result_t is
// well-formed. When it's not, the generic template above is chosen, resulting
// in std::false_type.
template <typename R, typename F, typename... Args>
struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...>
: std::conditional<
std::is_void<R>::value, //
std::true_type, //
is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {};
// Like std::is_invocable_r from C++17, but works only for objects with call
// operators. See the note on call_result_t.
template <typename R, typename F, typename... Args>
using is_callable_r = is_callable_r_impl<void, R, F, Args...>;
// Like std::as_const from C++17.
template <typename T>
typename std::add_const<T>::type& as_const(T& t) {
return t;
}
} // namespace internal
// Specialized for function types below.
template <typename F>
class OnceAction;
// An action that can only be used once.
//
// This is accepted by WillOnce, which doesn't require the underlying action to
// be copy-constructible (only move-constructible), and promises to invoke it as
// an rvalue reference. This allows the action to work with move-only types like
// std::move_only_function in a type-safe manner.
//
// For example:
//
// // Assume we have some API that needs to accept a unique pointer to some
// // non-copyable object Foo.
// void AcceptUniquePointer(std::unique_ptr<Foo> foo);
//
// // We can define an action that provides a Foo to that API. Because It
// // has to give away its unique pointer, it must not be called more than
// // once, so its call operator is &&-qualified.
// struct ProvideFoo {
// std::unique_ptr<Foo> foo;
//
// void operator()() && {
// AcceptUniquePointer(std::move(Foo));
// }
// };
//
// // This action can be used with WillOnce.
// EXPECT_CALL(mock, Call)
// .WillOnce(ProvideFoo{std::make_unique<Foo>(...)});
//
// // But a call to WillRepeatedly will fail to compile. This is correct,
// // since the action cannot correctly be used repeatedly.
// EXPECT_CALL(mock, Call)
// .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)});
//
// A less-contrived example would be an action that returns an arbitrary type,
// whose &&-qualified call operator is capable of dealing with move-only types.
template <typename Result, typename... Args>
class OnceAction<Result(Args...)> final {
private:
// True iff we can use the given callable type (or lvalue reference) directly
// via StdFunctionAdaptor.
template <typename Callable>
using IsDirectlyCompatible = internal::conjunction<
// It must be possible to capture the callable in StdFunctionAdaptor.
std::is_constructible<typename std::decay<Callable>::type, Callable>,
// The callable must be compatible with our signature.
internal::is_callable_r<Result, typename std::decay<Callable>::type,
Args...>>;
// True iff we can use the given callable type via StdFunctionAdaptor once we
// ignore incoming arguments.
template <typename Callable>
using IsCompatibleAfterIgnoringArguments = internal::conjunction<
// It must be possible to capture the callable in a lambda.
std::is_constructible<typename std::decay<Callable>::type, Callable>,
// The callable must be invocable with zero arguments, returning something
// convertible to Result.
internal::is_callable_r<Result, typename std::decay<Callable>::type>>;
public:
// Construct from a callable that is directly compatible with our mocked
// signature: it accepts our function type's arguments and returns something
// convertible to our result type.
template <typename Callable,
typename std::enable_if<
internal::conjunction<
// Teach clang on macOS that we're not talking about a
// copy/move constructor here. Otherwise it gets confused
// when checking the is_constructible requirement of our
// traits above.
internal::negation<std::is_same<
OnceAction, typename std::decay<Callable>::type>>,
IsDirectlyCompatible<Callable>> //
::value,
int>::type = 0>
OnceAction(Callable&& callable) // NOLINT
: function_(StdFunctionAdaptor<typename std::decay<Callable>::type>(
{}, std::forward<Callable>(callable))) {}
// As above, but for a callable that ignores the mocked function's arguments.
template <typename Callable,
typename std::enable_if<
internal::conjunction<
// Teach clang on macOS that we're not talking about a
// copy/move constructor here. Otherwise it gets confused
// when checking the is_constructible requirement of our
// traits above.
internal::negation<std::is_same<
OnceAction, typename std::decay<Callable>::type>>,
// Exclude callables for which the overload above works.
// We'd rather provide the arguments if possible.
internal::negation<IsDirectlyCompatible<Callable>>,
IsCompatibleAfterIgnoringArguments<Callable>>::value,
int>::type = 0>
OnceAction(Callable&& callable) // NOLINT
// Call the constructor above with a callable
// that ignores the input arguments.
: OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{
std::forward<Callable>(callable)}) {}
// We are naturally copyable because we store only an std::function, but
// semantically we should not be copyable.
OnceAction(const OnceAction&) = delete;
OnceAction& operator=(const OnceAction&) = delete;
OnceAction(OnceAction&&) = default;
// Invoke the underlying action callable with which we were constructed,
// handing it the supplied arguments.
Result Call(Args... args) && {
return function_(std::forward<Args>(args)...);
}
private:
// An adaptor that wraps a callable that is compatible with our signature and
// being invoked as an rvalue reference so that it can be used as an
// StdFunctionAdaptor. This throws away type safety, but that's fine because
// this is only used by WillOnce, which we know calls at most once.
//
// Once we have something like std::move_only_function from C++23, we can do
// away with this.
template <typename Callable>
class StdFunctionAdaptor final {
public:
// A tag indicating that the (otherwise universal) constructor is accepting
// the callable itself, instead of e.g. stealing calls for the move
// constructor.
struct CallableTag final {};
template <typename F>
explicit StdFunctionAdaptor(CallableTag, F&& callable)
: callable_(std::make_shared<Callable>(std::forward<F>(callable))) {}
// Rather than explicitly returning Result, we return whatever the wrapped
// callable returns. This allows for compatibility with existing uses like
// the following, when the mocked function returns void:
//
// EXPECT_CALL(mock_fn_, Call)
// .WillOnce([&] {
// [...]
// return 0;
// });
//
// Such a callable can be turned into std::function<void()>. If we use an
// explicit return type of Result here then it *doesn't* work with
// std::function, because we'll get a "void function should not return a
// value" error.
//
// We need not worry about incompatible result types because the SFINAE on
// OnceAction already checks this for us. std::is_invocable_r_v itself makes
// the same allowance for void result types.
template <typename... ArgRefs>
internal::call_result_t<Callable, ArgRefs...> operator()(
ArgRefs&&... args) const {
return std::move(*callable_)(std::forward<ArgRefs>(args)...);
}
private:
// We must put the callable on the heap so that we are copyable, which
// std::function needs.
std::shared_ptr<Callable> callable_;
};
// An adaptor that makes a callable that accepts zero arguments callable with
// our mocked arguments.
template <typename Callable>
struct IgnoreIncomingArguments {
internal::call_result_t<Callable> operator()(Args&&...) {
return std::move(callable)();
}
Callable callable;
};
std::function<Result(Args...)> function_;
};
// When an unexpected function call is encountered, Google Mock will
// let it return a default value if the user has specified one for its
// return type, or if the return type has a built-in default value;
// otherwise Google Mock won't know what value to return and will have
// to abort the process.
//
// The DefaultValue<T> class allows a user to specify the
// default value for a type T that is both copyable and publicly
// destructible (i.e. anything that can be used as a function return
// type). The usage is:
//
// // Sets the default value for type T to be foo.
// DefaultValue<T>::Set(foo);
template <typename T>
class DefaultValue {
public:
// Sets the default value for type T; requires T to be
// copy-constructable and have a public destructor.
static void Set(T x) {
delete producer_;
producer_ = new FixedValueProducer(x);
}
// Provides a factory function to be called to generate the default value.
// This method can be used even if T is only move-constructible, but it is not
// limited to that case.
typedef T (*FactoryFunction)();
static void SetFactory(FactoryFunction factory) {
delete producer_;
producer_ = new FactoryValueProducer(factory);
}
// Unsets the default value for type T.
static void Clear() {
delete producer_;
producer_ = nullptr;
}
// Returns true if and only if the user has set the default value for type T.
static bool IsSet() { return producer_ != nullptr; }
// Returns true if T has a default return value set by the user or there
// exists a built-in default value.
static bool Exists() {
return IsSet() || internal::BuiltInDefaultValue<T>::Exists();
}
// Returns the default value for type T if the user has set one;
// otherwise returns the built-in default value. Requires that Exists()
// is true, which ensures that the return value is well-defined.
static T Get() {
return producer_ == nullptr ? internal::BuiltInDefaultValue<T>::Get()
: producer_->Produce();
}
private:
class ValueProducer {
public:
virtual ~ValueProducer() {}
virtual T Produce() = 0;
};
class FixedValueProducer : public ValueProducer {
public:
explicit FixedValueProducer(T value) : value_(value) {}
T Produce() override { return value_; }
private:
const T value_;
FixedValueProducer(const FixedValueProducer&) = delete;
FixedValueProducer& operator=(const FixedValueProducer&) = delete;
};
class FactoryValueProducer : public ValueProducer {
public:
explicit FactoryValueProducer(FactoryFunction factory)
: factory_(factory) {}
T Produce() override { return factory_(); }
private:
const FactoryFunction factory_;
FactoryValueProducer(const FactoryValueProducer&) = delete;
FactoryValueProducer& operator=(const FactoryValueProducer&) = delete;
};
static ValueProducer* producer_;
};
// This partial specialization allows a user to set default values for
// reference types.
template <typename T>
class DefaultValue<T&> {
public:
// Sets the default value for type T&.
static void Set(T& x) { // NOLINT
address_ = &x;
}
// Unsets the default value for type T&.
static void Clear() { address_ = nullptr; }
// Returns true if and only if the user has set the default value for type T&.
static bool IsSet() { return address_ != nullptr; }
// Returns true if T has a default return value set by the user or there
// exists a built-in default value.
static bool Exists() {
return IsSet() || internal::BuiltInDefaultValue<T&>::Exists();
}
// Returns the default value for type T& if the user has set one;
// otherwise returns the built-in default value if there is one;
// otherwise aborts the process.
static T& Get() {
return address_ == nullptr ? internal::BuiltInDefaultValue<T&>::Get()
: *address_;
}
private:
static T* address_;
};
// This specialization allows DefaultValue<void>::Get() to
// compile.
template <>
class DefaultValue<void> {
public:
static bool Exists() { return true; }
static void Get() {}
};
// Points to the user-set default value for type T.
template <typename T>
typename DefaultValue<T>::ValueProducer* DefaultValue<T>::producer_ = nullptr;
// Points to the user-set default value for type T&.
template <typename T>
T* DefaultValue<T&>::address_ = nullptr;
// Implement this interface to define an action for function type F.
template <typename F>
class ActionInterface {
public:
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
ActionInterface() {}
virtual ~ActionInterface() {}
// Performs the action. This method is not const, as in general an
// action can have side effects and be stateful. For example, a
// get-the-next-element-from-the-collection action will need to
// remember the current element.
virtual Result Perform(const ArgumentTuple& args) = 0;
private:
ActionInterface(const ActionInterface&) = delete;
ActionInterface& operator=(const ActionInterface&) = delete;
};
template <typename F>
class Action;
// An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment)
// object that represents an action to be taken when a mock function of type
// R(Args...) is called. The implementation of Action<T> is just a
// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You
// can view an object implementing ActionInterface<F> as a concrete action
// (including its current state), and an Action<F> object as a handle to it.
template <typename R, typename... Args>
class Action<R(Args...)> {
private:
using F = R(Args...);
// Adapter class to allow constructing Action from a legacy ActionInterface.
// New code should create Actions from functors instead.
struct ActionAdapter {
// Adapter must be copyable to satisfy std::function requirements.
::std::shared_ptr<ActionInterface<F>> impl_;
template <typename... InArgs>
typename internal::Function<F>::Result operator()(InArgs&&... args) {
return impl_->Perform(
::std::forward_as_tuple(::std::forward<InArgs>(args)...));
}
};
template <typename G>
using IsCompatibleFunctor = std::is_constructible<std::function<F>, G>;
public:
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
// Constructs a null Action. Needed for storing Action objects in
// STL containers.
Action() {}
// Construct an Action from a specified callable.
// This cannot take std::function directly, because then Action would not be
// directly constructible from lambda (it would require two conversions).
template <
typename G,
typename = typename std::enable_if<internal::disjunction<
IsCompatibleFunctor<G>, std::is_constructible<std::function<Result()>,
G>>::value>::type>
Action(G&& fun) { // NOLINT
Init(::std::forward<G>(fun), IsCompatibleFunctor<G>());
}
// Constructs an Action from its implementation.
explicit Action(ActionInterface<F>* impl)
: fun_(ActionAdapter{::std::shared_ptr<ActionInterface<F>>(impl)}) {}
// This constructor allows us to turn an Action<Func> object into an
// Action<F>, as long as F's arguments can be implicitly converted
// to Func's and Func's return type can be implicitly converted to F's.
template <typename Func>
Action(const Action<Func>& action) // NOLINT
: fun_(action.fun_) {}
// Returns true if and only if this is the DoDefault() action.
bool IsDoDefault() const { return fun_ == nullptr; }
// Performs the action. Note that this method is const even though
// the corresponding method in ActionInterface is not. The reason
// is that a const Action<F> means that it cannot be re-bound to
// another concrete action, not that the concrete action it binds to
// cannot change state. (Think of the difference between a const
// pointer and a pointer to const.)
Result Perform(ArgumentTuple args) const {
if (IsDoDefault()) {
internal::IllegalDoDefault(__FILE__, __LINE__);
}
return internal::Apply(fun_, ::std::move(args));
}
// An action can be used as a OnceAction, since it's obviously safe to call it
// once.
operator OnceAction<F>() const { // NOLINT
// Return a OnceAction-compatible callable that calls Perform with the
// arguments it is provided. We could instead just return fun_, but then
// we'd need to handle the IsDoDefault() case separately.
struct OA {
Action<F> action;
R operator()(Args... args) && {
return action.Perform(
std::forward_as_tuple(std::forward<Args>(args)...));
}
};
return OA{*this};
}
private:
template <typename G>
friend class Action;
template <typename G>
void Init(G&& g, ::std::true_type) {
fun_ = ::std::forward<G>(g);
}
template <typename G>
void Init(G&& g, ::std::false_type) {
fun_ = IgnoreArgs<typename ::std::decay<G>::type>{::std::forward<G>(g)};
}
template <typename FunctionImpl>
struct IgnoreArgs {
template <typename... InArgs>
Result operator()(const InArgs&...) const {
return function_impl();
}
FunctionImpl function_impl;
};
// fun_ is an empty function if and only if this is the DoDefault() action.
::std::function<F> fun_;
};
// The PolymorphicAction class template makes it easy to implement a
// polymorphic action (i.e. an action that can be used in mock
// functions of than one type, e.g. Return()).
//
// To define a polymorphic action, a user first provides a COPYABLE
// implementation class that has a Perform() method template:
//
// class FooAction {
// public:
// template <typename Result, typename ArgumentTuple>
// Result Perform(const ArgumentTuple& args) const {
// // Processes the arguments and returns a result, using
// // std::get<N>(args) to get the N-th (0-based) argument in the tuple.
// }
// ...
// };
//
// Then the user creates the polymorphic action using
// MakePolymorphicAction(object) where object has type FooAction. See
// the definition of Return(void) and SetArgumentPointee<N>(value) for
// complete examples.
template <typename Impl>
class PolymorphicAction {
public:
explicit PolymorphicAction(const Impl& impl) : impl_(impl) {}
template <typename F>
operator Action<F>() const {
return Action<F>(new MonomorphicImpl<F>(impl_));
}
private:
template <typename F>
class MonomorphicImpl : public ActionInterface<F> {
public:
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {}
Result Perform(const ArgumentTuple& args) override {
return impl_.template Perform<Result>(args);
}
private:
Impl impl_;
};
Impl impl_;
};
// Creates an Action from its implementation and returns it. The
// created Action object owns the implementation.
template <typename F>
Action<F> MakeAction(ActionInterface<F>* impl) {
return Action<F>(impl);
}
// Creates a polymorphic action from its implementation. This is
// easier to use than the PolymorphicAction<Impl> constructor as it
// doesn't require you to explicitly write the template argument, e.g.
//
// MakePolymorphicAction(foo);
// vs
// PolymorphicAction<TypeOfFoo>(foo);
template <typename Impl>
inline PolymorphicAction<Impl> MakePolymorphicAction(const Impl& impl) {
return PolymorphicAction<Impl>(impl);
}
namespace internal {
// Helper struct to specialize ReturnAction to execute a move instead of a copy
// on return. Useful for move-only types, but could be used on any type.
template <typename T>
struct ByMoveWrapper {
explicit ByMoveWrapper(T value) : payload(std::move(value)) {}
T payload;
};
// The general implementation of Return(R). Specializations follow below.
template <typename R>
class ReturnAction final {
public:
explicit ReturnAction(R value) : value_(std::move(value)) {}
template <typename U, typename... Args,
typename = typename std::enable_if<conjunction<
// See the requirements documented on Return.
negation<std::is_same<void, U>>, //
negation<std::is_reference<U>>, //
std::is_convertible<R, U>, //
std::is_move_constructible<U>>::value>::type>
operator OnceAction<U(Args...)>() && { // NOLINT
return Impl<U>(std::move(value_));
}
template <typename U, typename... Args,
typename = typename std::enable_if<conjunction<
// See the requirements documented on Return.
negation<std::is_same<void, U>>, //
negation<std::is_reference<U>>, //
std::is_convertible<const R&, U>, //
std::is_copy_constructible<U>>::value>::type>
operator Action<U(Args...)>() const { // NOLINT
return Impl<U>(value_);
}
private:
// Implements the Return(x) action for a mock function that returns type U.
template <typename U>
class Impl final {
public:
// The constructor used when the return value is allowed to move from the
// input value (i.e. we are converting to OnceAction).
explicit Impl(R&& input_value)
: state_(new State(std::move(input_value))) {}
// The constructor used when the return value is not allowed to move from
// the input value (i.e. we are converting to Action).
explicit Impl(const R& input_value) : state_(new State(input_value)) {}
U operator()() && { return std::move(state_->value); }
U operator()() const& { return state_->value; }
private:
// We put our state on the heap so that the compiler-generated copy/move
// constructors work correctly even when U is a reference-like type. This is
// necessary only because we eagerly create State::value (see the note on
// that symbol for details). If we instead had only the input value as a
// member then the default constructors would work fine.
//
// For example, when R is std::string and U is std::string_view, value is a
// reference to the string backed by input_value. The copy constructor would
// copy both, so that we wind up with a new input_value object (with the
// same contents) and a reference to the *old* input_value object rather
// than the new one.
struct State {
explicit State(const R& input_value_in)
: input_value(input_value_in),
// Make an implicit conversion to Result before initializing the U
// object we store, avoiding calling any explicit constructor of U
// from R.
//
// This simulates the language rules: a function with return type U
// that does `return R()` requires R to be implicitly convertible to
// U, and uses that path for the conversion, even U Result has an
// explicit constructor from R.
value(ImplicitCast_<U>(internal::as_const(input_value))) {}
// As above, but for the case where we're moving from the ReturnAction
// object because it's being used as a OnceAction.
explicit State(R&& input_value_in)
: input_value(std::move(input_value_in)),
// For the same reason as above we make an implicit conversion to U
// before initializing the value.
//
// Unlike above we provide the input value as an rvalue to the
// implicit conversion because this is a OnceAction: it's fine if it
// wants to consume the input value.
value(ImplicitCast_<U>(std::move(input_value))) {}
// A copy of the value originally provided by the user. We retain this in
// addition to the value of the mock function's result type below in case
// the latter is a reference-like type. See the std::string_view example
// in the documentation on Return.
R input_value;
// The value we actually return, as the type returned by the mock function
// itself.
//
// We eagerly initialize this here, rather than lazily doing the implicit
// conversion automatically each time Perform is called, for historical
// reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126)
// made the Action<U()> conversion operator eagerly convert the R value to
// U, but without keeping the R alive. This broke the use case discussed
// in the documentation for Return, making reference-like types such as
// std::string_view not safe to use as U where the input type R is a
// value-like type such as std::string.
//
// The example the commit gave was not very clear, nor was the issue
// thread (https://github.com/google/googlemock/issues/86), but it seems
// the worry was about reference-like input types R that flatten to a
// value-like type U when being implicitly converted. An example of this
// is std::vector<bool>::reference, which is often a proxy type with an
// reference to the underlying vector:
//
// // Helper method: have the mock function return bools according
// // to the supplied script.
// void SetActions(MockFunction<bool(size_t)>& mock,
// const std::vector<bool>& script) {
// for (size_t i = 0; i < script.size(); ++i) {
// EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i]));
// }
// }
//
// TEST(Foo, Bar) {
// // Set actions using a temporary vector, whose operator[]
// // returns proxy objects that references that will be
// // dangling once the call to SetActions finishes and the
// // vector is destroyed.
// MockFunction<bool(size_t)> mock;
// SetActions(mock, {false, true});
//
// EXPECT_FALSE(mock.AsStdFunction()(0));
// EXPECT_TRUE(mock.AsStdFunction()(1));
// }
//
// This eager conversion helps with a simple case like this, but doesn't
// fully make these types work in general. For example the following still
// uses a dangling reference:
//
// TEST(Foo, Baz) {
// MockFunction<std::vector<std::string>()> mock;
//
// // Return the same vector twice, and then the empty vector
// // thereafter.
// auto action = Return(std::initializer_list<std::string>{
// "taco", "burrito",
// });
//
// EXPECT_CALL(mock, Call)
// .WillOnce(action)
// .WillOnce(action)
// .WillRepeatedly(Return(std::vector<std::string>{}));
//
// EXPECT_THAT(mock.AsStdFunction()(),
// ElementsAre("taco", "burrito"));
// EXPECT_THAT(mock.AsStdFunction()(),
// ElementsAre("taco", "burrito"));
// EXPECT_THAT(mock.AsStdFunction()(), IsEmpty());
// }
//
U value;
};
const std::shared_ptr<State> state_;
};
R value_;
};
// A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T.
//
// This version applies the type system-defeating hack of moving from T even in
// the const call operator, checking at runtime that it isn't called more than
// once, since the user has declared their intent to do so by using ByMove.
template <typename T>
class ReturnAction<ByMoveWrapper<T>> final {
public:
explicit ReturnAction(ByMoveWrapper<T> wrapper)
: state_(new State(std::move(wrapper.payload))) {}
T operator()() const {
GTEST_CHECK_(!state_->called)
<< "A ByMove() action must be performed at most once.";
state_->called = true;
return std::move(state_->value);
}
private:
// We store our state on the heap so that we are copyable as required by
// Action, despite the fact that we are stateful and T may not be copyable.
struct State {
explicit State(T&& value_in) : value(std::move(value_in)) {}
T value;
bool called = false;
};
const std::shared_ptr<State> state_;
};
// Implements the ReturnNull() action.
class ReturnNullAction {
public:
// Allows ReturnNull() to be used in any pointer-returning function. In C++11
// this is enforced by returning nullptr, and in non-C++11 by asserting a
// pointer type on compile time.
template <typename Result, typename ArgumentTuple>
static Result Perform(const ArgumentTuple&) {
return nullptr;
}
};
// Implements the Return() action.
class ReturnVoidAction {
public:
// Allows Return() to be used in any void-returning function.
template <typename Result, typename ArgumentTuple>
static void Perform(const ArgumentTuple&) {
static_assert(std::is_void<Result>::value, "Result should be void.");
}
};
// Implements the polymorphic ReturnRef(x) action, which can be used
// in any function that returns a reference to the type of x,
// regardless of the argument types.
template <typename T>
class ReturnRefAction {
public:
// Constructs a ReturnRefAction object from the reference to be returned.
explicit ReturnRefAction(T& ref) : ref_(ref) {} // NOLINT
// This template type conversion operator allows ReturnRef(x) to be
// used in ANY function that returns a reference to x's type.
template <typename F>
operator Action<F>() const {
typedef typename Function<F>::Result Result;
// Asserts that the function return type is a reference. This
// catches the user error of using ReturnRef(x) when Return(x)
// should be used, and generates some helpful error message.
static_assert(std::is_reference<Result>::value,
"use Return instead of ReturnRef to return a value");
return Action<F>(new Impl<F>(ref_));
}
private:
// Implements the ReturnRef(x) action for a particular function type F.
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(T& ref) : ref_(ref) {} // NOLINT
Result Perform(const ArgumentTuple&) override { return ref_; }
private:
T& ref_;
};
T& ref_;
};
// Implements the polymorphic ReturnRefOfCopy(x) action, which can be
// used in any function that returns a reference to the type of x,
// regardless of the argument types.
template <typename T>
class ReturnRefOfCopyAction {
public:
// Constructs a ReturnRefOfCopyAction object from the reference to
// be returned.
explicit ReturnRefOfCopyAction(const T& value) : value_(value) {} // NOLINT
// This template type conversion operator allows ReturnRefOfCopy(x) to be
// used in ANY function that returns a reference to x's type.
template <typename F>
operator Action<F>() const {
typedef typename Function<F>::Result Result;
// Asserts that the function return type is a reference. This
// catches the user error of using ReturnRefOfCopy(x) when Return(x)
// should be used, and generates some helpful error message.
static_assert(std::is_reference<Result>::value,
"use Return instead of ReturnRefOfCopy to return a value");
return Action<F>(new Impl<F>(value_));
}
private:
// Implements the ReturnRefOfCopy(x) action for a particular function type F.
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename Function<F>::Result Result;
typedef typename Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(const T& value) : value_(value) {} // NOLINT
Result Perform(const ArgumentTuple&) override { return value_; }
private:
T value_;
};
const T value_;
};
// Implements the polymorphic ReturnRoundRobin(v) action, which can be
// used in any function that returns the element_type of v.
template <typename T>
class ReturnRoundRobinAction {
public:
explicit ReturnRoundRobinAction(std::vector<T> values) {
GTEST_CHECK_(!values.empty())
<< "ReturnRoundRobin requires at least one element.";
state_->values = std::move(values);
}
template <typename... Args>
T operator()(Args&&...) const {
return state_->Next();
}
private:
struct State {
T Next() {
T ret_val = values[i++];
if (i == values.size()) i = 0;
return ret_val;
}
std::vector<T> values;
size_t i = 0;
};
std::shared_ptr<State> state_ = std::make_shared<State>();
};
// Implements the polymorphic DoDefault() action.
class DoDefaultAction {
public:
// This template type conversion operator allows DoDefault() to be
// used in any function.
template <typename F>
operator Action<F>() const {
return Action<F>();
} // NOLINT
};
// Implements the Assign action to set a given pointer referent to a
// particular value.
template <typename T1, typename T2>
class AssignAction {
public:
AssignAction(T1* ptr, T2 value) : ptr_(ptr), value_(value) {}
template <typename Result, typename ArgumentTuple>
void Perform(const ArgumentTuple& /* args */) const {
*ptr_ = value_;
}
private:
T1* const ptr_;
const T2 value_;
};
#ifndef GTEST_OS_WINDOWS_MOBILE
// Implements the SetErrnoAndReturn action to simulate return from
// various system calls and libc functions.
template <typename T>
class SetErrnoAndReturnAction {
public:
SetErrnoAndReturnAction(int errno_value, T result)
: errno_(errno_value), result_(result) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& /* args */) const {
errno = errno_;
return result_;
}
private:
const int errno_;
const T result_;
};
#endif // !GTEST_OS_WINDOWS_MOBILE
// Implements the SetArgumentPointee<N>(x) action for any function
// whose N-th argument (0-based) is a pointer to x's type.
template <size_t N, typename A, typename = void>
struct SetArgumentPointeeAction {
A value;
template <typename... Args>
void operator()(const Args&... args) const {
*::std::get<N>(std::tie(args...)) = value;
}
};
// Implements the Invoke(object_ptr, &Class::Method) action.
template <class Class, typename MethodPtr>
struct InvokeMethodAction {
Class* const obj_ptr;
const MethodPtr method_ptr;
template <typename... Args>
auto operator()(Args&&... args) const
-> decltype((obj_ptr->*method_ptr)(std::forward<Args>(args)...)) {
return (obj_ptr->*method_ptr)(std::forward<Args>(args)...);
}
};
// Implements the InvokeWithoutArgs(f) action. The template argument
// FunctionImpl is the implementation type of f, which can be either a
// function pointer or a functor. InvokeWithoutArgs(f) can be used as an
// Action<F> as long as f's type is compatible with F.
template <typename FunctionImpl>
struct InvokeWithoutArgsAction {
FunctionImpl function_impl;
// Allows InvokeWithoutArgs(f) to be used as any action whose type is
// compatible with f.
template <typename... Args>
auto operator()(const Args&...) -> decltype(function_impl()) {
return function_impl();
}
};
// Implements the InvokeWithoutArgs(object_ptr, &Class::Method) action.
template <class Class, typename MethodPtr>
struct InvokeMethodWithoutArgsAction {
Class* const obj_ptr;
const MethodPtr method_ptr;
using ReturnType =
decltype((std::declval<Class*>()->*std::declval<MethodPtr>())());
template <typename... Args>
ReturnType operator()(const Args&...) const {
return (obj_ptr->*method_ptr)();
}
};
// Implements the IgnoreResult(action) action.
template <typename A>
class IgnoreResultAction {
public:
explicit IgnoreResultAction(const A& action) : action_(action) {}
template <typename F>
operator Action<F>() const {
// Assert statement belongs here because this is the best place to verify
// conditions on F. It produces the clearest error messages
// in most compilers.
// Impl really belongs in this scope as a local class but can't
// because MSVC produces duplicate symbols in different translation units
// in this case. Until MS fixes that bug we put Impl into the class scope
// and put the typedef both here (for use in assert statement) and
// in the Impl class. But both definitions must be the same.
typedef typename internal::Function<F>::Result Result;
// Asserts at compile time that F returns void.
static_assert(std::is_void<Result>::value, "Result type should be void.");
return Action<F>(new Impl<F>(action_));
}
private:
template <typename F>
class Impl : public ActionInterface<F> {
public:
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
explicit Impl(const A& action) : action_(action) {}
void Perform(const ArgumentTuple& args) override {
// Performs the action and ignores its result.
action_.Perform(args);
}
private:
// Type OriginalFunction is the same as F except that its return
// type is IgnoredValue.
typedef
typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction;
const Action<OriginalFunction> action_;
};
const A action_;
};
template <typename InnerAction, size_t... I>
struct WithArgsAction {
InnerAction inner_action;
// The signature of the function as seen by the inner action, given an out
// action with the given result and argument types.
template <typename R, typename... Args>
using InnerSignature =
R(typename std::tuple_element<I, std::tuple<Args...>>::type...);
// Rather than a call operator, we must define conversion operators to
// particular action types. This is necessary for embedded actions like
// DoDefault(), which rely on an action conversion operators rather than
// providing a call operator because even with a particular set of arguments
// they don't have a fixed return type.
template <
typename R, typename... Args,
typename std::enable_if<
std::is_convertible<InnerAction,
// Unfortunately we can't use the InnerSignature
// alias here; MSVC complains about the I
// parameter pack not being expanded (error C3520)
// despite it being expanded in the type alias.
// TupleElement is also an MSVC workaround.
// See its definition for details.
OnceAction<R(internal::TupleElement<
I, std::tuple<Args...>>...)>>::value,
int>::type = 0>
operator OnceAction<R(Args...)>() && { // NOLINT
struct OA {
OnceAction<InnerSignature<R, Args...>> inner_action;
R operator()(Args&&... args) && {
return std::move(inner_action)
.Call(std::get<I>(
std::forward_as_tuple(std::forward<Args>(args)...))...);
}
};
return OA{std::move(inner_action)};
}
template <
typename R, typename... Args,
typename std::enable_if<
std::is_convertible<const InnerAction&,
// Unfortunately we can't use the InnerSignature
// alias here; MSVC complains about the I
// parameter pack not being expanded (error C3520)
// despite it being expanded in the type alias.
// TupleElement is also an MSVC workaround.
// See its definition for details.
Action<R(internal::TupleElement<
I, std::tuple<Args...>>...)>>::value,
int>::type = 0>
operator Action<R(Args...)>() const { // NOLINT
Action<InnerSignature<R, Args...>> converted(inner_action);
return [converted](Args&&... args) -> R {
return converted.Perform(std::forward_as_tuple(
std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
};
}
};
template <typename... Actions>
class DoAllAction;
// Base case: only a single action.
template <typename FinalAction>
class DoAllAction<FinalAction> {
public:
struct UserConstructorTag {};
template <typename T>
explicit DoAllAction(UserConstructorTag, T&& action)
: final_action_(std::forward<T>(action)) {}
// Rather than a call operator, we must define conversion operators to
// particular action types. This is necessary for embedded actions like
// DoDefault(), which rely on an action conversion operators rather than
// providing a call operator because even with a particular set of arguments
// they don't have a fixed return type.
template <typename R, typename... Args,
typename std::enable_if<
std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value,
int>::type = 0>
operator OnceAction<R(Args...)>() && { // NOLINT
return std::move(final_action_);
}
template <
typename R, typename... Args,
typename std::enable_if<
std::is_convertible<const FinalAction&, Action<R(Args...)>>::value,
int>::type = 0>
operator Action<R(Args...)>() const { // NOLINT
return final_action_;
}
private:
FinalAction final_action_;
};
// Recursive case: support N actions by calling the initial action and then
// calling through to the base class containing N-1 actions.
template <typename InitialAction, typename... OtherActions>
class DoAllAction<InitialAction, OtherActions...>
: private DoAllAction<OtherActions...> {
private:
using Base = DoAllAction<OtherActions...>;
// The type of reference that should be provided to an initial action for a
// mocked function parameter of type T.
//
// There are two quirks here:
//
// * Unlike most forwarding functions, we pass scalars through by value.
// This isn't strictly necessary because an lvalue reference would work
// fine too and be consistent with other non-reference types, but it's
// perhaps less surprising.
//
// For example if the mocked function has signature void(int), then it
// might seem surprising for the user's initial action to need to be
// convertible to Action<void(const int&)>. This is perhaps less
// surprising for a non-scalar type where there may be a performance
// impact, or it might even be impossible, to pass by value.
//
// * More surprisingly, `const T&` is often not a const reference type.
// By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to
// U& or U&& for some non-scalar type U, then InitialActionArgType<T> is
// U&. In other words, we may hand over a non-const reference.
//
// So for example, given some non-scalar type Obj we have the following
// mappings:
//
// T InitialActionArgType<T>
// ------- -----------------------
// Obj const Obj&
// Obj& Obj&
// Obj&& Obj&
// const Obj const Obj&
// const Obj& const Obj&
// const Obj&& const Obj&
//
// In other words, the initial actions get a mutable view of an non-scalar
// argument if and only if the mock function itself accepts a non-const
// reference type. They are never given an rvalue reference to an
// non-scalar type.
//
// This situation makes sense if you imagine use with a matcher that is
// designed to write through a reference. For example, if the caller wants
// to fill in a reference argument and then return a canned value:
//
// EXPECT_CALL(mock, Call)
// .WillOnce(DoAll(SetArgReferee<0>(17), Return(19)));
//
template <typename T>
using InitialActionArgType =
typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
public:
struct UserConstructorTag {};
template <typename T, typename... U>
explicit DoAllAction(UserConstructorTag, T&& initial_action,
U&&... other_actions)
: Base({}, std::forward<U>(other_actions)...),
initial_action_(std::forward<T>(initial_action)) {}
template <typename R, typename... Args,
typename std::enable_if<
conjunction<
// Both the initial action and the rest must support
// conversion to OnceAction.
std::is_convertible<
InitialAction,
OnceAction<void(InitialActionArgType<Args>...)>>,
std::is_convertible<Base, OnceAction<R(Args...)>>>::value,
int>::type = 0>
operator OnceAction<R(Args...)>() && { // NOLINT
// Return an action that first calls the initial action with arguments
// filtered through InitialActionArgType, then forwards arguments directly
// to the base class to deal with the remaining actions.
struct OA {
OnceAction<void(InitialActionArgType<Args>...)> initial_action;
OnceAction<R(Args...)> remaining_actions;
R operator()(Args... args) && {
std::move(initial_action)
.Call(static_cast<InitialActionArgType<Args>>(args)...);
return std::move(remaining_actions).Call(std::forward<Args>(args)...);
}
};
return OA{
std::move(initial_action_),
std::move(static_cast<Base&>(*this)),
};
}
template <
typename R, typename... Args,
typename std::enable_if<
conjunction<
// Both the initial action and the rest must support conversion to
// Action.
std::is_convertible<const InitialAction&,
Action<void(InitialActionArgType<Args>...)>>,
std::is_convertible<const Base&, Action<R(Args...)>>>::value,
int>::type = 0>
operator Action<R(Args...)>() const { // NOLINT
// Return an action that first calls the initial action with arguments
// filtered through InitialActionArgType, then forwards arguments directly
// to the base class to deal with the remaining actions.
struct OA {
Action<void(InitialActionArgType<Args>...)> initial_action;
Action<R(Args...)> remaining_actions;
R operator()(Args... args) const {
initial_action.Perform(std::forward_as_tuple(
static_cast<InitialActionArgType<Args>>(args)...));
return remaining_actions.Perform(
std::forward_as_tuple(std::forward<Args>(args)...));
}
};
return OA{
initial_action_,
static_cast<const Base&>(*this),
};
}
private:
InitialAction initial_action_;
};
template <typename T, typename... Params>
struct ReturnNewAction {
T* operator()() const {
return internal::Apply(
[](const Params&... unpacked_params) {
return new T(unpacked_params...);
},
params);
}
std::tuple<Params...> params;
};
template <size_t k>
struct ReturnArgAction {
template <typename... Args,
typename = typename std::enable_if<(k < sizeof...(Args))>::type>
auto operator()(Args&&... args) const -> decltype(std::get<k>(
std::forward_as_tuple(std::forward<Args>(args)...))) {
return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...));
}
};
template <size_t k, typename Ptr>
struct SaveArgAction {
Ptr pointer;
template <typename... Args>
void operator()(const Args&... args) const {
*pointer = std::get<k>(std::tie(args...));
}
};
template <size_t k, typename Ptr>
struct SaveArgPointeeAction {
Ptr pointer;
template <typename... Args>
void operator()(const Args&... args) const {
*pointer = *std::get<k>(std::tie(args...));
}
};
template <size_t k, typename T>
struct SetArgRefereeAction {
T value;
template <typename... Args>
void operator()(Args&&... args) const {
using argk_type =
typename ::std::tuple_element<k, std::tuple<Args...>>::type;
static_assert(std::is_lvalue_reference<argk_type>::value,
"Argument must be a reference type.");
std::get<k>(std::tie(args...)) = value;
}
};
template <size_t k, typename I1, typename I2>
struct SetArrayArgumentAction {
I1 first;
I2 last;
template <typename... Args>
void operator()(const Args&... args) const {
auto value = std::get<k>(std::tie(args...));
for (auto it = first; it != last; ++it, (void)++value) {
*value = *it;
}
}
};
template <size_t k>
struct DeleteArgAction {
template <typename... Args>
void operator()(const Args&... args) const {
delete std::get<k>(std::tie(args...));
}
};
template <typename Ptr>
struct ReturnPointeeAction {
Ptr pointer;
template <typename... Args>
auto operator()(const Args&...) const -> decltype(*pointer) {
return *pointer;
}
};
#if GTEST_HAS_EXCEPTIONS
template <typename T>
struct ThrowAction {
T exception;
// We use a conversion operator to adapt to any return type.
template <typename R, typename... Args>
operator Action<R(Args...)>() const { // NOLINT
T copy = exception;
return [copy](Args...) -> R { throw copy; };
}
};
#endif // GTEST_HAS_EXCEPTIONS
} // namespace internal
// An Unused object can be implicitly constructed from ANY value.
// This is handy when defining actions that ignore some or all of the
// mock function arguments. For example, given
//
// MOCK_METHOD3(Foo, double(const string& label, double x, double y));
// MOCK_METHOD3(Bar, double(int index, double x, double y));
//
// instead of
//
// double DistanceToOriginWithLabel(const string& label, double x, double y) {
// return sqrt(x*x + y*y);
// }
// double DistanceToOriginWithIndex(int index, double x, double y) {
// return sqrt(x*x + y*y);
// }
// ...
// EXPECT_CALL(mock, Foo("abc", _, _))
// .WillOnce(Invoke(DistanceToOriginWithLabel));
// EXPECT_CALL(mock, Bar(5, _, _))
// .WillOnce(Invoke(DistanceToOriginWithIndex));
//
// you could write
//
// // We can declare any uninteresting argument as Unused.
// double DistanceToOrigin(Unused, double x, double y) {
// return sqrt(x*x + y*y);
// }
// ...
// EXPECT_CALL(mock, Foo("abc", _, _)).WillOnce(Invoke(DistanceToOrigin));
// EXPECT_CALL(mock, Bar(5, _, _)).WillOnce(Invoke(DistanceToOrigin));
typedef internal::IgnoredValue Unused;
// Creates an action that does actions a1, a2, ..., sequentially in
// each invocation. All but the last action will have a readonly view of the
// arguments.
template <typename... Action>
internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
Action&&... action) {
return internal::DoAllAction<typename std::decay<Action>::type...>(
{}, std::forward<Action>(action)...);
}
// WithArg<k>(an_action) creates an action that passes the k-th
// (0-based) argument of the mock function to an_action and performs
// it. It adapts an action accepting one argument to one that accepts
// multiple arguments. For convenience, we also provide
// WithArgs<k>(an_action) (defined below) as a synonym.
template <size_t k, typename InnerAction>
internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg(
InnerAction&& action) {
return {std::forward<InnerAction>(action)};
}
// WithArgs<N1, N2, ..., Nk>(an_action) creates an action that passes
// the selected arguments of the mock function to an_action and
// performs it. It serves as an adaptor between actions with
// different argument lists.
template <size_t k, size_t... ks, typename InnerAction>
internal::WithArgsAction<typename std::decay<InnerAction>::type, k, ks...>
WithArgs(InnerAction&& action) {
return {std::forward<InnerAction>(action)};
}
// WithoutArgs(inner_action) can be used in a mock function with a
// non-empty argument list to perform inner_action, which takes no
// argument. In other words, it adapts an action accepting no
// argument to one that accepts (and ignores) arguments.
template <typename InnerAction>
internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs(
InnerAction&& action) {
return {std::forward<InnerAction>(action)};
}
// Creates an action that returns a value.
//
// The returned type can be used with a mock function returning a non-void,
// non-reference type U as follows:
//
// * If R is convertible to U and U is move-constructible, then the action can
// be used with WillOnce.
//
// * If const R& is convertible to U and U is copy-constructible, then the
// action can be used with both WillOnce and WillRepeatedly.
//
// The mock expectation contains the R value from which the U return value is
// constructed (a move/copy of the argument to Return). This means that the R
// value will survive at least until the mock object's expectations are cleared
// or the mock object is destroyed, meaning that U can safely be a
// reference-like type such as std::string_view:
//
// // The mock function returns a view of a copy of the string fed to
// // Return. The view is valid even after the action is performed.
// MockFunction<std::string_view()> mock;
// EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco")));
// const std::string_view result = mock.AsStdFunction()();
// EXPECT_EQ("taco", result);
//
template <typename R>
internal::ReturnAction<R> Return(R value) {
return internal::ReturnAction<R>(std::move(value));
}
// Creates an action that returns NULL.
inline PolymorphicAction<internal::ReturnNullAction> ReturnNull() {
return MakePolymorphicAction(internal::ReturnNullAction());
}
// Creates an action that returns from a void function.
inline PolymorphicAction<internal::ReturnVoidAction> Return() {
return MakePolymorphicAction(internal::ReturnVoidAction());
}
// Creates an action that returns the reference to a variable.
template <typename R>
inline internal::ReturnRefAction<R> ReturnRef(R& x) { // NOLINT
return internal::ReturnRefAction<R>(x);
}
// Prevent using ReturnRef on reference to temporary.
template <typename R, R* = nullptr>
internal::ReturnRefAction<R> ReturnRef(R&&) = delete;
// Creates an action that returns the reference to a copy of the
// argument. The copy is created when the action is constructed and
// lives as long as the action.
template <typename R>
inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
return internal::ReturnRefOfCopyAction<R>(x);
}
// DEPRECATED: use Return(x) directly with WillOnce.
//
// Modifies the parent action (a Return() action) to perform a move of the
// argument instead of a copy.
// Return(ByMove()) actions can only be executed once and will assert this
// invariant.
template <typename R>
internal::ByMoveWrapper<R> ByMove(R x) {
return internal::ByMoveWrapper<R>(std::move(x));
}
// Creates an action that returns an element of `vals`. Calling this action will
// repeatedly return the next value from `vals` until it reaches the end and
// will restart from the beginning.
template <typename T>
internal::ReturnRoundRobinAction<T> ReturnRoundRobin(std::vector<T> vals) {
return internal::ReturnRoundRobinAction<T>(std::move(vals));
}
// Creates an action that returns an element of `vals`. Calling this action will
// repeatedly return the next value from `vals` until it reaches the end and
// will restart from the beginning.
template <typename T>
internal::ReturnRoundRobinAction<T> ReturnRoundRobin(
std::initializer_list<T> vals) {
return internal::ReturnRoundRobinAction<T>(std::vector<T>(vals));
}
// Creates an action that does the default action for the give mock function.
inline internal::DoDefaultAction DoDefault() {
return internal::DoDefaultAction();
}
// Creates an action that sets the variable pointed by the N-th
// (0-based) function argument to 'value'.
template <size_t N, typename T>
internal::SetArgumentPointeeAction<N, T> SetArgPointee(T value) {
return {std::move(value)};
}
// The following version is DEPRECATED.
template <size_t N, typename T>
internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
return {std::move(value)};
}
// Creates an action that sets a pointer referent to a given value.
template <typename T1, typename T2>
PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) {
return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
}
#ifndef GTEST_OS_WINDOWS_MOBILE
// Creates an action that sets errno and returns the appropriate error.
template <typename T>
PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn(
int errval, T result) {
return MakePolymorphicAction(
internal::SetErrnoAndReturnAction<T>(errval, result));
}
#endif // !GTEST_OS_WINDOWS_MOBILE
// Various overloads for Invoke().
// Legacy function.
// Actions can now be implicitly constructed from callables. No need to create
// wrapper objects.
// This function exists for backwards compatibility.
template <typename FunctionImpl>
typename std::decay<FunctionImpl>::type Invoke(FunctionImpl&& function_impl) {
return std::forward<FunctionImpl>(function_impl);
}
// Creates an action that invokes the given method on the given object
// with the mock function's arguments.
template <class Class, typename MethodPtr>
internal::InvokeMethodAction<Class, MethodPtr> Invoke(Class* obj_ptr,
MethodPtr method_ptr) {
return {obj_ptr, method_ptr};
}
// Creates an action that invokes 'function_impl' with no argument.
template <typename FunctionImpl>
internal::InvokeWithoutArgsAction<typename std::decay<FunctionImpl>::type>
InvokeWithoutArgs(FunctionImpl function_impl) {
return {std::move(function_impl)};
}
// Creates an action that invokes the given method on the given object
// with no argument.
template <class Class, typename MethodPtr>
internal::InvokeMethodWithoutArgsAction<Class, MethodPtr> InvokeWithoutArgs(
Class* obj_ptr, MethodPtr method_ptr) {
return {obj_ptr, method_ptr};
}
// Creates an action that performs an_action and throws away its
// result. In other words, it changes the return type of an_action to
// void. an_action MUST NOT return void, or the code won't compile.
template <typename A>
inline internal::IgnoreResultAction<A> IgnoreResult(const A& an_action) {
return internal::IgnoreResultAction<A>(an_action);
}
// Creates a reference wrapper for the given L-value. If necessary,
// you can explicitly specify the type of the reference. For example,
// suppose 'derived' is an object of type Derived, ByRef(derived)
// would wrap a Derived&. If you want to wrap a const Base& instead,
// where Base is a base class of Derived, just write:
//
// ByRef<const Base>(derived)
//
// N.B. ByRef is redundant with std::ref, std::cref and std::reference_wrapper.
// However, it may still be used for consistency with ByMove().
template <typename T>
inline ::std::reference_wrapper<T> ByRef(T& l_value) { // NOLINT
return ::std::reference_wrapper<T>(l_value);
}
// The ReturnNew<T>(a1, a2, ..., a_k) action returns a pointer to a new
// instance of type T, constructed on the heap with constructor arguments
// a1, a2, ..., and a_k. The caller assumes ownership of the returned value.
template <typename T, typename... Params>
internal::ReturnNewAction<T, typename std::decay<Params>::type...> ReturnNew(
Params&&... params) {
return {std::forward_as_tuple(std::forward<Params>(params)...)};
}
// Action ReturnArg<k>() returns the k-th argument of the mock function.
template <size_t k>
internal::ReturnArgAction<k> ReturnArg() {
return {};
}
// Action SaveArg<k>(pointer) saves the k-th (0-based) argument of the
// mock function to *pointer.
template <size_t k, typename Ptr>
internal::SaveArgAction<k, Ptr> SaveArg(Ptr pointer) {
return {pointer};
}
// Action SaveArgPointee<k>(pointer) saves the value pointed to
// by the k-th (0-based) argument of the mock function to *pointer.
template <size_t k, typename Ptr>
internal::SaveArgPointeeAction<k, Ptr> SaveArgPointee(Ptr pointer) {
return {pointer};
}
// Action SetArgReferee<k>(value) assigns 'value' to the variable
// referenced by the k-th (0-based) argument of the mock function.
template <size_t k, typename T>
internal::SetArgRefereeAction<k, typename std::decay<T>::type> SetArgReferee(
T&& value) {
return {std::forward<T>(value)};
}
// Action SetArrayArgument<k>(first, last) copies the elements in
// source range [first, last) to the array pointed to by the k-th
// (0-based) argument, which can be either a pointer or an
// iterator. The action does not take ownership of the elements in the
// source range.
template <size_t k, typename I1, typename I2>
internal::SetArrayArgumentAction<k, I1, I2> SetArrayArgument(I1 first,
I2 last) {
return {first, last};
}
// Action DeleteArg<k>() deletes the k-th (0-based) argument of the mock
// function.
template <size_t k>
internal::DeleteArgAction<k> DeleteArg() {
return {};
}
// This action returns the value pointed to by 'pointer'.
template <typename Ptr>
internal::ReturnPointeeAction<Ptr> ReturnPointee(Ptr pointer) {
return {pointer};
}
// Action Throw(exception) can be used in a mock function of any type
// to throw the given exception. Any copyable value can be thrown.
#if GTEST_HAS_EXCEPTIONS
template <typename T>
internal::ThrowAction<typename std::decay<T>::type> Throw(T&& exception) {
return {std::forward<T>(exception)};
}
#endif // GTEST_HAS_EXCEPTIONS
namespace internal {
// A macro from the ACTION* family (defined later in gmock-generated-actions.h)
// defines an action that can be used in a mock function. Typically,
// these actions only care about a subset of the arguments of the mock
// function. For example, if such an action only uses the second
// argument, it can be used in any mock function that takes >= 2
// arguments where the type of the second argument is compatible.
//
// Therefore, the action implementation must be prepared to take more
// arguments than it needs. The ExcessiveArg type is used to
// represent those excessive arguments. In order to keep the compiler
// error messages tractable, we define it in the testing namespace
// instead of testing::internal. However, this is an INTERNAL TYPE
// and subject to change without notice, so a user MUST NOT USE THIS
// TYPE DIRECTLY.
struct ExcessiveArg {};
// Builds an implementation of an Action<> for some particular signature, using
// a class defined by an ACTION* macro.
template <typename F, typename Impl>
struct ActionImpl;
template <typename Impl>
struct ImplBase {
struct Holder {
// Allows each copy of the Action<> to get to the Impl.
explicit operator const Impl&() const { return *ptr; }
std::shared_ptr<Impl> ptr;
};
using type = typename std::conditional<std::is_constructible<Impl>::value,
Impl, Holder>::type;
};
template <typename R, typename... Args, typename Impl>
struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
using Base = typename ImplBase<Impl>::type;
using function_type = R(Args...);
using args_type = std::tuple<Args...>;
ActionImpl() = default; // Only defined if appropriate for Base.
explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {}
R operator()(Args&&... arg) const {
static constexpr size_t kMaxArgs =
sizeof...(Args) <= 10 ? sizeof...(Args) : 10;
return Apply(MakeIndexSequence<kMaxArgs>{},
MakeIndexSequence<10 - kMaxArgs>{},
args_type{std::forward<Args>(arg)...});
}
template <std::size_t... arg_id, std::size_t... excess_id>
R Apply(IndexSequence<arg_id...>, IndexSequence<excess_id...>,
const args_type& args) const {
// Impl need not be specific to the signature of action being implemented;
// only the implementing function body needs to have all of the specific
// types instantiated. Up to 10 of the args that are provided by the
// args_type get passed, followed by a dummy of unspecified type for the
// remainder up to 10 explicit args.
static constexpr ExcessiveArg kExcessArg{};
return static_cast<const Impl&>(*this)
.template gmock_PerformImpl<
/*function_type=*/function_type, /*return_type=*/R,
/*args_type=*/args_type,
/*argN_type=*/
typename std::tuple_element<arg_id, args_type>::type...>(
/*args=*/args, std::get<arg_id>(args)...,
((void)excess_id, kExcessArg)...);
}
};
// Stores a default-constructed Impl as part of the Action<>'s
// std::function<>. The Impl should be trivial to copy.
template <typename F, typename Impl>
::testing::Action<F> MakeAction() {
return ::testing::Action<F>(ActionImpl<F, Impl>());
}
// Stores just the one given instance of Impl.
template <typename F, typename Impl>
::testing::Action<F> MakeAction(std::shared_ptr<Impl> impl) {
return ::testing::Action<F>(ActionImpl<F, Impl>(std::move(impl)));
}
#define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
, const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \
const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
GMOCK_INTERNAL_ARG_UNUSED, , 10)
#define GMOCK_INTERNAL_ARG(i, data, el) , const arg##i##_type& arg##i
#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_ \
const args_type& args GMOCK_PP_REPEAT(GMOCK_INTERNAL_ARG, , 10)
#define GMOCK_INTERNAL_TEMPLATE_ARG(i, data, el) , typename arg##i##_type
#define GMOCK_ACTION_TEMPLATE_ARGS_NAMES_ \
GMOCK_PP_TAIL(GMOCK_PP_REPEAT(GMOCK_INTERNAL_TEMPLATE_ARG, , 10))
#define GMOCK_INTERNAL_TYPENAME_PARAM(i, data, param) , typename param##_type
#define GMOCK_ACTION_TYPENAME_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPENAME_PARAM, , params))
#define GMOCK_INTERNAL_TYPE_PARAM(i, data, param) , param##_type
#define GMOCK_ACTION_TYPE_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_PARAM, , params))
#define GMOCK_INTERNAL_TYPE_GVALUE_PARAM(i, data, param) \
, param##_type gmock_p##i
#define GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_TYPE_GVALUE_PARAM, , params))
#define GMOCK_INTERNAL_GVALUE_PARAM(i, data, param) \
, std::forward<param##_type>(gmock_p##i)
#define GMOCK_ACTION_GVALUE_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_GVALUE_PARAM, , params))
#define GMOCK_INTERNAL_INIT_PARAM(i, data, param) \
, param(::std::forward<param##_type>(gmock_p##i))
#define GMOCK_ACTION_INIT_PARAMS_(params) \
GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_INIT_PARAM, , params))
#define GMOCK_INTERNAL_FIELD_PARAM(i, data, param) param##_type param;
#define GMOCK_ACTION_FIELD_PARAMS_(params) \
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
#define GMOCK_INTERNAL_ACTION(name, full_name, params) \
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
class full_name { \
public: \
explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
: impl_(std::make_shared<gmock_Impl>( \
GMOCK_ACTION_GVALUE_PARAMS_(params))) {} \
full_name(const full_name&) = default; \
full_name(full_name&&) noexcept = default; \
template <typename F> \
operator ::testing::Action<F>() const { \
return ::testing::internal::MakeAction<F>(impl_); \
} \
\
private: \
class gmock_Impl { \
public: \
explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
: GMOCK_ACTION_INIT_PARAMS_(params) {} \
template <typename function_type, typename return_type, \
typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
GMOCK_ACTION_FIELD_PARAMS_(params) \
}; \
std::shared_ptr<const gmock_Impl> impl_; \
}; \
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_; \
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \
return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \
GMOCK_ACTION_GVALUE_PARAMS_(params)); \
} \
template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
template <typename function_type, typename return_type, typename args_type, \
GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
return_type \
full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
} // namespace internal
// Similar to GMOCK_INTERNAL_ACTION, but no bound parameters are stored.
#define ACTION(name) \
class name##Action { \
public: \
explicit name##Action() noexcept {} \
name##Action(const name##Action&) noexcept {} \
template <typename F> \
operator ::testing::Action<F>() const { \
return ::testing::internal::MakeAction<F, gmock_Impl>(); \
} \
\
private: \
class gmock_Impl { \
public: \
template <typename function_type, typename return_type, \
typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
}; \
}; \
inline name##Action name() GTEST_MUST_USE_RESULT_; \
inline name##Action name() { return name##Action(); } \
template <typename function_type, typename return_type, typename args_type, \
GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
return_type name##Action::gmock_Impl::gmock_PerformImpl( \
GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
#define ACTION_P(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP, (__VA_ARGS__))
#define ACTION_P2(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP2, (__VA_ARGS__))
#define ACTION_P3(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP3, (__VA_ARGS__))
#define ACTION_P4(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP4, (__VA_ARGS__))
#define ACTION_P5(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP5, (__VA_ARGS__))
#define ACTION_P6(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP6, (__VA_ARGS__))
#define ACTION_P7(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP7, (__VA_ARGS__))
#define ACTION_P8(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP8, (__VA_ARGS__))
#define ACTION_P9(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP9, (__VA_ARGS__))
#define ACTION_P10(name, ...) \
GMOCK_INTERNAL_ACTION(name, name##ActionP10, (__VA_ARGS__))
} // namespace testing
GTEST_DISABLE_MSC_WARNINGS_POP_() // 4100
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_