// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Author: wan@google.com (Zhanyong Wan) // Google Mock - a framework for writing C++ mock classes. // // This file tests the built-in actions generated by a script. #include "gmock/gmock-generated-actions.h" #include #include #include #include "gmock/gmock.h" #include "gtest/gtest.h" namespace testing { namespace gmock_generated_actions_test { using ::std::plus; using ::std::string; using testing::get; using testing::make_tuple; using testing::tuple; using testing::tuple_element; using testing::_; using testing::Action; using testing::ActionInterface; using testing::ByRef; using testing::DoAll; using testing::Invoke; using testing::Return; using testing::ReturnNew; using testing::SetArgPointee; using testing::StaticAssertTypeEq; using testing::Unused; using testing::WithArgs; // For suppressing compiler warnings on conversion possibly losing precision. inline short Short(short n) { return n; } // NOLINT inline char Char(char ch) { return ch; } // Sample functions and functors for testing various actions. int Nullary() { return 1; } class NullaryFunctor { public: int operator()() { return 2; } }; bool g_done = false; bool Unary(int x) { return x < 0; } const char* Plus1(const char* s) { return s + 1; } bool ByConstRef(const std::string& s) { return s == "Hi"; } const double g_double = 0; bool ReferencesGlobalDouble(const double& x) { return &x == &g_double; } std::string ByNonConstRef(std::string& s) { return s += "+"; } // NOLINT struct UnaryFunctor { int operator()(bool x) { return x ? 1 : -1; } }; const char* Binary(const char* input, short n) { return input + n; } // NOLINT void VoidBinary(int, char) { g_done = true; } int Ternary(int x, char y, short z) { return x + y + z; } // NOLINT void VoidTernary(int, char, bool) { g_done = true; } int SumOf4(int a, int b, int c, int d) { return a + b + c + d; } std::string Concat4(const char* s1, const char* s2, const char* s3, const char* s4) { return std::string(s1) + s2 + s3 + s4; } int SumOf5(int a, int b, int c, int d, int e) { return a + b + c + d + e; } struct SumOf5Functor { int operator()(int a, int b, int c, int d, int e) { return a + b + c + d + e; } }; std::string Concat5(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5) { return std::string(s1) + s2 + s3 + s4 + s5; } int SumOf6(int a, int b, int c, int d, int e, int f) { return a + b + c + d + e + f; } struct SumOf6Functor { int operator()(int a, int b, int c, int d, int e, int f) { return a + b + c + d + e + f; } }; std::string Concat6(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6) { return std::string(s1) + s2 + s3 + s4 + s5 + s6; } std::string Concat7(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6, const char* s7) { return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7; } std::string Concat8(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6, const char* s7, const char* s8) { return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8; } std::string Concat9(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6, const char* s7, const char* s8, const char* s9) { return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9; } std::string Concat10(const char* s1, const char* s2, const char* s3, const char* s4, const char* s5, const char* s6, const char* s7, const char* s8, const char* s9, const char* s10) { return std::string(s1) + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 + s10; } // A helper that turns the type of a C-string literal from const // char[N] to const char*. inline const char* CharPtr(const char* s) { return s; } // Tests InvokeArgument(...). // Tests using InvokeArgument with a nullary function. TEST(InvokeArgumentTest, Function0) { Action a = InvokeArgument<1>(); // NOLINT EXPECT_EQ(1, a.Perform(make_tuple(2, &Nullary))); } // Tests using InvokeArgument with a unary function. TEST(InvokeArgumentTest, Functor1) { Action a = InvokeArgument<0>(true); // NOLINT EXPECT_EQ(1, a.Perform(make_tuple(UnaryFunctor()))); } // Tests using InvokeArgument with a 5-ary function. TEST(InvokeArgumentTest, Function5) { Action a = // NOLINT InvokeArgument<0>(10000, 2000, 300, 40, 5); EXPECT_EQ(12345, a.Perform(make_tuple(&SumOf5))); } // Tests using InvokeArgument with a 5-ary functor. TEST(InvokeArgumentTest, Functor5) { Action a = // NOLINT InvokeArgument<0>(10000, 2000, 300, 40, 5); EXPECT_EQ(12345, a.Perform(make_tuple(SumOf5Functor()))); } // Tests using InvokeArgument with a 6-ary function. TEST(InvokeArgumentTest, Function6) { Action a = // NOLINT InvokeArgument<0>(100000, 20000, 3000, 400, 50, 6); EXPECT_EQ(123456, a.Perform(make_tuple(&SumOf6))); } // Tests using InvokeArgument with a 6-ary functor. TEST(InvokeArgumentTest, Functor6) { Action a = // NOLINT InvokeArgument<0>(100000, 20000, 3000, 400, 50, 6); EXPECT_EQ(123456, a.Perform(make_tuple(SumOf6Functor()))); } // Tests using InvokeArgument with a 7-ary function. TEST(InvokeArgumentTest, Function7) { Action a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7"); EXPECT_EQ("1234567", a.Perform(make_tuple(&Concat7))); } // Tests using InvokeArgument with a 8-ary function. TEST(InvokeArgumentTest, Function8) { Action a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8"); EXPECT_EQ("12345678", a.Perform(make_tuple(&Concat8))); } // Tests using InvokeArgument with a 9-ary function. TEST(InvokeArgumentTest, Function9) { Action a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8", "9"); EXPECT_EQ("123456789", a.Perform(make_tuple(&Concat9))); } // Tests using InvokeArgument with a 10-ary function. TEST(InvokeArgumentTest, Function10) { Action a = InvokeArgument<0>("1", "2", "3", "4", "5", "6", "7", "8", "9", "0"); EXPECT_EQ("1234567890", a.Perform(make_tuple(&Concat10))); } // Tests using InvokeArgument with a function that takes a pointer argument. TEST(InvokeArgumentTest, ByPointerFunction) { Action a = // NOLINT InvokeArgument<0>(static_cast("Hi"), Short(1)); EXPECT_STREQ("i", a.Perform(make_tuple(&Binary))); } // Tests using InvokeArgument with a function that takes a const char* // by passing it a C-string literal. TEST(InvokeArgumentTest, FunctionWithCStringLiteral) { Action a = // NOLINT InvokeArgument<0>("Hi", Short(1)); EXPECT_STREQ("i", a.Perform(make_tuple(&Binary))); } // Tests using InvokeArgument with a function that takes a const reference. TEST(InvokeArgumentTest, ByConstReferenceFunction) { Action a = // NOLINT InvokeArgument<0>(std::string("Hi")); // When action 'a' is constructed, it makes a copy of the temporary // string object passed to it, so it's OK to use 'a' later, when the // temporary object has already died. EXPECT_TRUE(a.Perform(make_tuple(&ByConstRef))); } // Tests using InvokeArgument with ByRef() and a function that takes a // const reference. TEST(InvokeArgumentTest, ByExplicitConstReferenceFunction) { Action a = // NOLINT InvokeArgument<0>(ByRef(g_double)); // The above line calls ByRef() on a const value. EXPECT_TRUE(a.Perform(make_tuple(&ReferencesGlobalDouble))); double x = 0; a = InvokeArgument<0>(ByRef(x)); // This calls ByRef() on a non-const. EXPECT_FALSE(a.Perform(make_tuple(&ReferencesGlobalDouble))); } // Tests using WithArgs and with an action that takes 1 argument. TEST(WithArgsTest, OneArg) { Action a = WithArgs<1>(Invoke(Unary)); // NOLINT EXPECT_TRUE(a.Perform(make_tuple(1.5, -1))); EXPECT_FALSE(a.Perform(make_tuple(1.5, 1))); } // Tests using WithArgs with an action that takes 2 arguments. TEST(WithArgsTest, TwoArgs) { Action a = WithArgs<0, 2>(Invoke(Binary)); const char s[] = "Hello"; EXPECT_EQ(s + 2, a.Perform(make_tuple(CharPtr(s), 0.5, Short(2)))); } // Tests using WithArgs with an action that takes 3 arguments. TEST(WithArgsTest, ThreeArgs) { Action a = // NOLINT WithArgs<0, 2, 3>(Invoke(Ternary)); EXPECT_EQ(123, a.Perform(make_tuple(100, 6.5, Char(20), Short(3)))); } // Tests using WithArgs with an action that takes 4 arguments. TEST(WithArgsTest, FourArgs) { Action a = WithArgs<4, 3, 1, 0>(Invoke(Concat4)); EXPECT_EQ("4310", a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), 2.5, CharPtr("3"), CharPtr("4")))); } // Tests using WithArgs with an action that takes 5 arguments. TEST(WithArgsTest, FiveArgs) { Action a = WithArgs<4, 3, 2, 1, 0>(Invoke(Concat5)); EXPECT_EQ("43210", a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"), CharPtr("3"), CharPtr("4")))); } // Tests using WithArgs with an action that takes 6 arguments. TEST(WithArgsTest, SixArgs) { Action a = WithArgs<0, 1, 2, 2, 1, 0>(Invoke(Concat6)); EXPECT_EQ("012210", a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2")))); } // Tests using WithArgs with an action that takes 7 arguments. TEST(WithArgsTest, SevenArgs) { Action a = WithArgs<0, 1, 2, 3, 2, 1, 0>(Invoke(Concat7)); EXPECT_EQ("0123210", a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"), CharPtr("3")))); } // Tests using WithArgs with an action that takes 8 arguments. TEST(WithArgsTest, EightArgs) { Action a = WithArgs<0, 1, 2, 3, 0, 1, 2, 3>(Invoke(Concat8)); EXPECT_EQ("01230123", a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"), CharPtr("3")))); } // Tests using WithArgs with an action that takes 9 arguments. TEST(WithArgsTest, NineArgs) { Action a = WithArgs<0, 1, 2, 3, 1, 2, 3, 2, 3>(Invoke(Concat9)); EXPECT_EQ("012312323", a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"), CharPtr("3")))); } // Tests using WithArgs with an action that takes 10 arguments. TEST(WithArgsTest, TenArgs) { Action a = WithArgs<0, 1, 2, 3, 2, 1, 0, 1, 2, 3>(Invoke(Concat10)); EXPECT_EQ("0123210123", a.Perform(make_tuple(CharPtr("0"), CharPtr("1"), CharPtr("2"), CharPtr("3")))); } // Tests using WithArgs with an action that is not Invoke(). class SubstractAction : public ActionInterface { // NOLINT public: virtual int Perform(const tuple& args) { return get<0>(args) - get<1>(args); } }; TEST(WithArgsTest, NonInvokeAction) { Action a = // NOLINT WithArgs<2, 1>(MakeAction(new SubstractAction)); tuple dummy = make_tuple(std::string("hi"), 2, 10); EXPECT_EQ(8, a.Perform(dummy)); } // Tests using WithArgs to pass all original arguments in the original order. TEST(WithArgsTest, Identity) { Action a = // NOLINT WithArgs<0, 1, 2>(Invoke(Ternary)); EXPECT_EQ(123, a.Perform(make_tuple(100, Char(20), Short(3)))); } // Tests using WithArgs with repeated arguments. TEST(WithArgsTest, RepeatedArguments) { Action a = // NOLINT WithArgs<1, 1, 1, 1>(Invoke(SumOf4)); EXPECT_EQ(4, a.Perform(make_tuple(false, 1, 10))); } // Tests using WithArgs with reversed argument order. TEST(WithArgsTest, ReversedArgumentOrder) { Action a = // NOLINT WithArgs<1, 0>(Invoke(Binary)); const char s[] = "Hello"; EXPECT_EQ(s + 2, a.Perform(make_tuple(Short(2), CharPtr(s)))); } // Tests using WithArgs with compatible, but not identical, argument types. TEST(WithArgsTest, ArgsOfCompatibleTypes) { Action a = // NOLINT WithArgs<0, 1, 3>(Invoke(Ternary)); EXPECT_EQ(123, a.Perform(make_tuple(Short(100), Char(20), 5.6, Char(3)))); } // Tests using WithArgs with an action that returns void. TEST(WithArgsTest, VoidAction) { Action a = WithArgs<2, 1>(Invoke(VoidBinary)); g_done = false; a.Perform(make_tuple(1.5, 'a', 3)); EXPECT_TRUE(g_done); } // Tests DoAll(a1, a2). TEST(DoAllTest, TwoActions) { int n = 0; Action a = DoAll(SetArgPointee<0>(1), // NOLINT Return(2)); EXPECT_EQ(2, a.Perform(make_tuple(&n))); EXPECT_EQ(1, n); } // Tests DoAll(a1, a2, a3). TEST(DoAllTest, ThreeActions) { int m = 0, n = 0; Action a = DoAll(SetArgPointee<0>(1), // NOLINT SetArgPointee<1>(2), Return(3)); EXPECT_EQ(3, a.Perform(make_tuple(&m, &n))); EXPECT_EQ(1, m); EXPECT_EQ(2, n); } // Tests DoAll(a1, a2, a3, a4). TEST(DoAllTest, FourActions) { int m = 0, n = 0; char ch = '\0'; Action a = // NOLINT DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2), SetArgPointee<2>('a'), Return(3)); EXPECT_EQ(3, a.Perform(make_tuple(&m, &n, &ch))); EXPECT_EQ(1, m); EXPECT_EQ(2, n); EXPECT_EQ('a', ch); } // Tests DoAll(a1, a2, a3, a4, a5). TEST(DoAllTest, FiveActions) { int m = 0, n = 0; char a = '\0', b = '\0'; Action action = // NOLINT DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2), SetArgPointee<2>('a'), SetArgPointee<3>('b'), Return(3)); EXPECT_EQ(3, action.Perform(make_tuple(&m, &n, &a, &b))); EXPECT_EQ(1, m); EXPECT_EQ(2, n); EXPECT_EQ('a', a); EXPECT_EQ('b', b); } // Tests DoAll(a1, a2, ..., a6). TEST(DoAllTest, SixActions) { int m = 0, n = 0; char a = '\0', b = '\0', c = '\0'; Action action = // NOLINT DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2), SetArgPointee<2>('a'), SetArgPointee<3>('b'), SetArgPointee<4>('c'), Return(3)); EXPECT_EQ(3, action.Perform(make_tuple(&m, &n, &a, &b, &c))); EXPECT_EQ(1, m); EXPECT_EQ(2, n); EXPECT_EQ('a', a); EXPECT_EQ('b', b); EXPECT_EQ('c', c); } // Tests DoAll(a1, a2, ..., a7). TEST(DoAllTest, SevenActions) { int m = 0, n = 0; char a = '\0', b = '\0', c = '\0', d = '\0'; Action action = // NOLINT DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2), SetArgPointee<2>('a'), SetArgPointee<3>('b'), SetArgPointee<4>('c'), SetArgPointee<5>('d'), Return(3)); EXPECT_EQ(3, action.Perform(make_tuple(&m, &n, &a, &b, &c, &d))); EXPECT_EQ(1, m); EXPECT_EQ(2, n); EXPECT_EQ('a', a); EXPECT_EQ('b', b); EXPECT_EQ('c', c); EXPECT_EQ('d', d); } // Tests DoAll(a1, a2, ..., a8). TEST(DoAllTest, EightActions) { int m = 0, n = 0; char a = '\0', b = '\0', c = '\0', d = '\0', e = '\0'; Action action = DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2), SetArgPointee<2>('a'), SetArgPointee<3>('b'), SetArgPointee<4>('c'), SetArgPointee<5>('d'), SetArgPointee<6>('e'), Return(3)); EXPECT_EQ(3, action.Perform(make_tuple(&m, &n, &a, &b, &c, &d, &e))); EXPECT_EQ(1, m); EXPECT_EQ(2, n); EXPECT_EQ('a', a); EXPECT_EQ('b', b); EXPECT_EQ('c', c); EXPECT_EQ('d', d); EXPECT_EQ('e', e); } // Tests DoAll(a1, a2, ..., a9). TEST(DoAllTest, NineActions) { int m = 0, n = 0; char a = '\0', b = '\0', c = '\0', d = '\0', e = '\0', f = '\0'; Action action = DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2), SetArgPointee<2>('a'), SetArgPointee<3>('b'), SetArgPointee<4>('c'), SetArgPointee<5>('d'), SetArgPointee<6>('e'), SetArgPointee<7>('f'), Return(3)); EXPECT_EQ(3, action.Perform(make_tuple(&m, &n, &a, &b, &c, &d, &e, &f))); EXPECT_EQ(1, m); EXPECT_EQ(2, n); EXPECT_EQ('a', a); EXPECT_EQ('b', b); EXPECT_EQ('c', c); EXPECT_EQ('d', d); EXPECT_EQ('e', e); EXPECT_EQ('f', f); } // Tests DoAll(a1, a2, ..., a10). TEST(DoAllTest, TenActions) { int m = 0, n = 0; char a = '\0', b = '\0', c = '\0', d = '\0'; char e = '\0', f = '\0', g = '\0'; Action action = DoAll(SetArgPointee<0>(1), SetArgPointee<1>(2), SetArgPointee<2>('a'), SetArgPointee<3>('b'), SetArgPointee<4>('c'), SetArgPointee<5>('d'), SetArgPointee<6>('e'), SetArgPointee<7>('f'), SetArgPointee<8>('g'), Return(3)); EXPECT_EQ(3, action.Perform(make_tuple(&m, &n, &a, &b, &c, &d, &e, &f, &g))); EXPECT_EQ(1, m); EXPECT_EQ(2, n); EXPECT_EQ('a', a); EXPECT_EQ('b', b); EXPECT_EQ('c', c); EXPECT_EQ('d', d); EXPECT_EQ('e', e); EXPECT_EQ('f', f); EXPECT_EQ('g', g); } // The ACTION*() macros trigger warning C4100 (unreferenced formal // parameter) in MSVC with -W4. Unfortunately they cannot be fixed in // the macro definition, as the warnings are generated when the macro // is expanded and macro expansion cannot contain #pragma. Therefore // we suppress them here. #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable:4100) #endif // Tests the ACTION*() macro family. // Tests that ACTION() can define an action that doesn't reference the // mock function arguments. ACTION(Return5) { return 5; } TEST(ActionMacroTest, WorksWhenNotReferencingArguments) { Action a1 = Return5(); EXPECT_DOUBLE_EQ(5, a1.Perform(make_tuple())); Action a2 = Return5(); EXPECT_EQ(5, a2.Perform(make_tuple(1, true))); } // Tests that ACTION() can define an action that returns void. ACTION(IncrementArg1) { (*arg1)++; } TEST(ActionMacroTest, WorksWhenReturningVoid) { Action a1 = IncrementArg1(); int n = 0; a1.Perform(make_tuple(5, &n)); EXPECT_EQ(1, n); } // Tests that the body of ACTION() can reference the type of the // argument. ACTION(IncrementArg2) { StaticAssertTypeEq(); arg2_type temp = arg2; (*temp)++; } TEST(ActionMacroTest, CanReferenceArgumentType) { Action a1 = IncrementArg2(); int n = 0; a1.Perform(make_tuple(5, false, &n)); EXPECT_EQ(1, n); } // Tests that the body of ACTION() can reference the argument tuple // via args_type and args. ACTION(Sum2) { StaticAssertTypeEq, args_type>(); args_type args_copy = args; return get<0>(args_copy) + get<1>(args_copy); } TEST(ActionMacroTest, CanReferenceArgumentTuple) { Action a1 = Sum2(); int dummy = 0; EXPECT_EQ(11, a1.Perform(make_tuple(5, Char(6), &dummy))); } // Tests that the body of ACTION() can reference the mock function // type. int Dummy(bool flag) { return flag? 1 : 0; } ACTION(InvokeDummy) { StaticAssertTypeEq(); function_type* fp = &Dummy; return (*fp)(true); } TEST(ActionMacroTest, CanReferenceMockFunctionType) { Action a1 = InvokeDummy(); EXPECT_EQ(1, a1.Perform(make_tuple(true))); EXPECT_EQ(1, a1.Perform(make_tuple(false))); } // Tests that the body of ACTION() can reference the mock function's // return type. ACTION(InvokeDummy2) { StaticAssertTypeEq(); return_type result = Dummy(true); return result; } TEST(ActionMacroTest, CanReferenceMockFunctionReturnType) { Action a1 = InvokeDummy2(); EXPECT_EQ(1, a1.Perform(make_tuple(true))); EXPECT_EQ(1, a1.Perform(make_tuple(false))); } // Tests that ACTION() works for arguments passed by const reference. ACTION(ReturnAddrOfConstBoolReferenceArg) { StaticAssertTypeEq(); return &arg1; } TEST(ActionMacroTest, WorksForConstReferenceArg) { Action a = ReturnAddrOfConstBoolReferenceArg(); const bool b = false; EXPECT_EQ(&b, a.Perform(tuple(0, b))); } // Tests that ACTION() works for arguments passed by non-const reference. ACTION(ReturnAddrOfIntReferenceArg) { StaticAssertTypeEq(); return &arg0; } TEST(ActionMacroTest, WorksForNonConstReferenceArg) { Action a = ReturnAddrOfIntReferenceArg(); int n = 0; EXPECT_EQ(&n, a.Perform(tuple(n, true, 1))); } // Tests that ACTION() can be used in a namespace. namespace action_test { ACTION(Sum) { return arg0 + arg1; } } // namespace action_test TEST(ActionMacroTest, WorksInNamespace) { Action a1 = action_test::Sum(); EXPECT_EQ(3, a1.Perform(make_tuple(1, 2))); } // Tests that the same ACTION definition works for mock functions with // different argument numbers. ACTION(PlusTwo) { return arg0 + 2; } TEST(ActionMacroTest, WorksForDifferentArgumentNumbers) { Action a1 = PlusTwo(); EXPECT_EQ(4, a1.Perform(make_tuple(2))); Action a2 = PlusTwo(); int dummy; EXPECT_DOUBLE_EQ(6, a2.Perform(make_tuple(4.0f, &dummy))); } // Tests that ACTION_P can define a parameterized action. ACTION_P(Plus, n) { return arg0 + n; } TEST(ActionPMacroTest, DefinesParameterizedAction) { Action a1 = Plus(9); EXPECT_EQ(10, a1.Perform(make_tuple(1, true))); } // Tests that the body of ACTION_P can reference the argument types // and the parameter type. ACTION_P(TypedPlus, n) { arg0_type t1 = arg0; n_type t2 = n; return t1 + t2; } TEST(ActionPMacroTest, CanReferenceArgumentAndParameterTypes) { Action a1 = TypedPlus(9); EXPECT_EQ(10, a1.Perform(make_tuple(Char(1), true))); } // Tests that a parameterized action can be used in any mock function // whose type is compatible. TEST(ActionPMacroTest, WorksInCompatibleMockFunction) { Action a1 = Plus("tail"); const std::string re = "re"; tuple dummy = make_tuple(re); EXPECT_EQ("retail", a1.Perform(dummy)); } // Tests that we can use ACTION*() to define actions overloaded on the // number of parameters. ACTION(OverloadedAction) { return arg0 ? arg1 : "hello"; } ACTION_P(OverloadedAction, default_value) { return arg0 ? arg1 : default_value; } ACTION_P2(OverloadedAction, true_value, false_value) { return arg0 ? true_value : false_value; } TEST(ActionMacroTest, CanDefineOverloadedActions) { typedef Action MyAction; const MyAction a1 = OverloadedAction(); EXPECT_STREQ("hello", a1.Perform(make_tuple(false, CharPtr("world")))); EXPECT_STREQ("world", a1.Perform(make_tuple(true, CharPtr("world")))); const MyAction a2 = OverloadedAction("hi"); EXPECT_STREQ("hi", a2.Perform(make_tuple(false, CharPtr("world")))); EXPECT_STREQ("world", a2.Perform(make_tuple(true, CharPtr("world")))); const MyAction a3 = OverloadedAction("hi", "you"); EXPECT_STREQ("hi", a3.Perform(make_tuple(true, CharPtr("world")))); EXPECT_STREQ("you", a3.Perform(make_tuple(false, CharPtr("world")))); } // Tests ACTION_Pn where n >= 3. ACTION_P3(Plus, m, n, k) { return arg0 + m + n + k; } TEST(ActionPnMacroTest, WorksFor3Parameters) { Action a1 = Plus(100, 20, 3.4); EXPECT_DOUBLE_EQ(3123.4, a1.Perform(make_tuple(3000, true))); Action a2 = Plus("tail", "-", ">"); const std::string re = "re"; EXPECT_EQ("retail->", a2.Perform(make_tuple(re))); } ACTION_P4(Plus, p0, p1, p2, p3) { return arg0 + p0 + p1 + p2 + p3; } TEST(ActionPnMacroTest, WorksFor4Parameters) { Action a1 = Plus(1, 2, 3, 4); EXPECT_EQ(10 + 1 + 2 + 3 + 4, a1.Perform(make_tuple(10))); } ACTION_P5(Plus, p0, p1, p2, p3, p4) { return arg0 + p0 + p1 + p2 + p3 + p4; } TEST(ActionPnMacroTest, WorksFor5Parameters) { Action a1 = Plus(1, 2, 3, 4, 5); EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5, a1.Perform(make_tuple(10))); } ACTION_P6(Plus, p0, p1, p2, p3, p4, p5) { return arg0 + p0 + p1 + p2 + p3 + p4 + p5; } TEST(ActionPnMacroTest, WorksFor6Parameters) { Action a1 = Plus(1, 2, 3, 4, 5, 6); EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6, a1.Perform(make_tuple(10))); } ACTION_P7(Plus, p0, p1, p2, p3, p4, p5, p6) { return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6; } TEST(ActionPnMacroTest, WorksFor7Parameters) { Action a1 = Plus(1, 2, 3, 4, 5, 6, 7); EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7, a1.Perform(make_tuple(10))); } ACTION_P8(Plus, p0, p1, p2, p3, p4, p5, p6, p7) { return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7; } TEST(ActionPnMacroTest, WorksFor8Parameters) { Action a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8); EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8, a1.Perform(make_tuple(10))); } ACTION_P9(Plus, p0, p1, p2, p3, p4, p5, p6, p7, p8) { return arg0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8; } TEST(ActionPnMacroTest, WorksFor9Parameters) { Action a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8, 9); EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9, a1.Perform(make_tuple(10))); } ACTION_P10(Plus, p0, p1, p2, p3, p4, p5, p6, p7, p8, last_param) { arg0_type t0 = arg0; last_param_type t9 = last_param; return t0 + p0 + p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + t9; } TEST(ActionPnMacroTest, WorksFor10Parameters) { Action a1 = Plus(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); EXPECT_EQ(10 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10, a1.Perform(make_tuple(10))); } // Tests that the action body can promote the parameter types. ACTION_P2(PadArgument, prefix, suffix) { // The following lines promote the two parameters to desired types. std::string prefix_str(prefix); char suffix_char = static_cast(suffix); return prefix_str + arg0 + suffix_char; } TEST(ActionPnMacroTest, SimpleTypePromotion) { Action no_promo = PadArgument(std::string("foo"), 'r'); Action promo = PadArgument("foo", static_cast('r')); EXPECT_EQ("foobar", no_promo.Perform(make_tuple(CharPtr("ba")))); EXPECT_EQ("foobar", promo.Perform(make_tuple(CharPtr("ba")))); } // Tests that we can partially restrict parameter types using a // straight-forward pattern. // Defines a generic action that doesn't restrict the types of its // parameters. ACTION_P3(ConcatImpl, a, b, c) { std::stringstream ss; ss << a << b << c; return ss.str(); } // Next, we try to restrict that either the first parameter is a // string, or the second parameter is an int. // Defines a partially specialized wrapper that restricts the first // parameter to std::string. template // ConcatImplActionP3 is the class template ACTION_P3 uses to // implement ConcatImpl. We shouldn't change the name as this // pattern requires the user to use it directly. ConcatImplActionP3 Concat(const std::string& a, T1 b, T2 c) { GTEST_INTENTIONAL_CONST_COND_PUSH_() if (true) { GTEST_INTENTIONAL_CONST_COND_POP_() // This branch verifies that ConcatImpl() can be invoked without // explicit template arguments. return ConcatImpl(a, b, c); } else { // This branch verifies that ConcatImpl() can also be invoked with // explicit template arguments. It doesn't really need to be // executed as this is a compile-time verification. return ConcatImpl(a, b, c); } } // Defines another partially specialized wrapper that restricts the // second parameter to int. template ConcatImplActionP3 Concat(T1 a, int b, T2 c) { return ConcatImpl(a, b, c); } TEST(ActionPnMacroTest, CanPartiallyRestrictParameterTypes) { Action a1 = Concat("Hello", "1", 2); EXPECT_EQ("Hello12", a1.Perform(make_tuple())); a1 = Concat(1, 2, 3); EXPECT_EQ("123", a1.Perform(make_tuple())); } // Verifies the type of an ACTION*. ACTION(DoFoo) {} ACTION_P(DoFoo, p) {} ACTION_P2(DoFoo, p0, p1) {} TEST(ActionPnMacroTest, TypesAreCorrect) { // DoFoo() must be assignable to a DoFooAction variable. DoFooAction a0 = DoFoo(); // DoFoo(1) must be assignable to a DoFooActionP variable. DoFooActionP a1 = DoFoo(1); // DoFoo(p1, ..., pk) must be assignable to a DoFooActionPk // variable, and so on. DoFooActionP2 a2 = DoFoo(1, '2'); PlusActionP3 a3 = Plus(1, 2, '3'); PlusActionP4 a4 = Plus(1, 2, 3, '4'); PlusActionP5 a5 = Plus(1, 2, 3, 4, '5'); PlusActionP6 a6 = Plus(1, 2, 3, 4, 5, '6'); PlusActionP7 a7 = Plus(1, 2, 3, 4, 5, 6, '7'); PlusActionP8 a8 = Plus(1, 2, 3, 4, 5, 6, 7, '8'); PlusActionP9 a9 = Plus(1, 2, 3, 4, 5, 6, 7, 8, '9'); PlusActionP10 a10 = Plus(1, 2, 3, 4, 5, 6, 7, 8, 9, '0'); // Avoid "unused variable" warnings. (void)a0; (void)a1; (void)a2; (void)a3; (void)a4; (void)a5; (void)a6; (void)a7; (void)a8; (void)a9; (void)a10; } // Tests that an ACTION_P*() action can be explicitly instantiated // with reference-typed parameters. ACTION_P(Plus1, x) { return x; } ACTION_P2(Plus2, x, y) { return x + y; } ACTION_P3(Plus3, x, y, z) { return x + y + z; } ACTION_P10(Plus10, a0, a1, a2, a3, a4, a5, a6, a7, a8, a9) { return a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9; } TEST(ActionPnMacroTest, CanExplicitlyInstantiateWithReferenceTypes) { int x = 1, y = 2, z = 3; const tuple<> empty = make_tuple(); Action a = Plus1(x); EXPECT_EQ(1, a.Perform(empty)); a = Plus2(x, y); EXPECT_EQ(3, a.Perform(empty)); a = Plus3(x, y, z); EXPECT_EQ(6, a.Perform(empty)); int n[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; a = Plus10(n[0], n[1], n[2], n[3], n[4], n[5], n[6], n[7], n[8], n[9]); EXPECT_EQ(55, a.Perform(empty)); } class NullaryConstructorClass { public: NullaryConstructorClass() : value_(123) {} int value_; }; // Tests using ReturnNew() with a nullary constructor. TEST(ReturnNewTest, NoArgs) { Action a = ReturnNew(); NullaryConstructorClass* c = a.Perform(make_tuple()); EXPECT_EQ(123, c->value_); delete c; } class UnaryConstructorClass { public: explicit UnaryConstructorClass(int value) : value_(value) {} int value_; }; // Tests using ReturnNew() with a unary constructor. TEST(ReturnNewTest, Unary) { Action a = ReturnNew(4000); UnaryConstructorClass* c = a.Perform(make_tuple()); EXPECT_EQ(4000, c->value_); delete c; } TEST(ReturnNewTest, UnaryWorksWhenMockMethodHasArgs) { Action a = ReturnNew(4000); UnaryConstructorClass* c = a.Perform(make_tuple(false, 5)); EXPECT_EQ(4000, c->value_); delete c; } TEST(ReturnNewTest, UnaryWorksWhenMockMethodReturnsPointerToConst) { Action a = ReturnNew(4000); const UnaryConstructorClass* c = a.Perform(make_tuple()); EXPECT_EQ(4000, c->value_); delete c; } class TenArgConstructorClass { public: TenArgConstructorClass(int a1, int a2, int a3, int a4, int a5, int a6, int a7, int a8, int a9, int a10) : value_(a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 + a10) { } int value_; }; // Tests using ReturnNew() with a 10-argument constructor. TEST(ReturnNewTest, ConstructorThatTakes10Arguments) { Action a = ReturnNew(1000000000, 200000000, 30000000, 4000000, 500000, 60000, 7000, 800, 90, 0); TenArgConstructorClass* c = a.Perform(make_tuple()); EXPECT_EQ(1234567890, c->value_); delete c; } // Tests that ACTION_TEMPLATE works when there is no value parameter. ACTION_TEMPLATE(CreateNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_0_VALUE_PARAMS()) { return new T; } TEST(ActionTemplateTest, WorksWithoutValueParam) { const Action a = CreateNew(); int* p = a.Perform(make_tuple()); delete p; } // Tests that ACTION_TEMPLATE works when there are value parameters. ACTION_TEMPLATE(CreateNew, HAS_1_TEMPLATE_PARAMS(typename, T), AND_1_VALUE_PARAMS(a0)) { return new T(a0); } TEST(ActionTemplateTest, WorksWithValueParams) { const Action a = CreateNew(42); int* p = a.Perform(make_tuple()); EXPECT_EQ(42, *p); delete p; } // Tests that ACTION_TEMPLATE works for integral template parameters. ACTION_TEMPLATE(MyDeleteArg, HAS_1_TEMPLATE_PARAMS(int, k), AND_0_VALUE_PARAMS()) { delete get(args); } // Resets a bool variable in the destructor. class BoolResetter { public: explicit BoolResetter(bool* value) : value_(value) {} ~BoolResetter() { *value_ = false; } private: bool* value_; }; TEST(ActionTemplateTest, WorksForIntegralTemplateParams) { const Action a = MyDeleteArg<1>(); int n = 0; bool b = true; BoolResetter* resetter = new BoolResetter(&b); a.Perform(make_tuple(&n, resetter)); EXPECT_FALSE(b); // Verifies that resetter is deleted. } // Tests that ACTION_TEMPLATES works for template template parameters. ACTION_TEMPLATE(ReturnSmartPointer, HAS_1_TEMPLATE_PARAMS(template class, Pointer), AND_1_VALUE_PARAMS(pointee)) { return Pointer(new pointee_type(pointee)); } TEST(ActionTemplateTest, WorksForTemplateTemplateParameters) { using ::testing::internal::linked_ptr; const Action()> a = ReturnSmartPointer(42); linked_ptr p = a.Perform(make_tuple()); EXPECT_EQ(42, *p); } // Tests that ACTION_TEMPLATE works for 10 template parameters. template struct GiantTemplate { public: explicit GiantTemplate(int a_value) : value(a_value) {} int value; }; ACTION_TEMPLATE(ReturnGiant, HAS_10_TEMPLATE_PARAMS( typename, T1, typename, T2, typename, T3, int, k4, bool, k5, unsigned int, k6, class, T7, class, T8, class, T9, template class, T10), AND_1_VALUE_PARAMS(value)) { return GiantTemplate, T2, T3, k4, k5, k6, T7, T8, T9>(value); } TEST(ActionTemplateTest, WorksFor10TemplateParameters) { using ::testing::internal::linked_ptr; typedef GiantTemplate, bool, double, 5, true, 6, char, unsigned, int> Giant; const Action a = ReturnGiant< int, bool, double, 5, true, 6, char, unsigned, int, linked_ptr>(42); Giant giant = a.Perform(make_tuple()); EXPECT_EQ(42, giant.value); } // Tests that ACTION_TEMPLATE works for 10 value parameters. ACTION_TEMPLATE(ReturnSum, HAS_1_TEMPLATE_PARAMS(typename, Number), AND_10_VALUE_PARAMS(v1, v2, v3, v4, v5, v6, v7, v8, v9, v10)) { return static_cast(v1) + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10; } TEST(ActionTemplateTest, WorksFor10ValueParameters) { const Action a = ReturnSum(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); EXPECT_EQ(55, a.Perform(make_tuple())); } // Tests that ACTION_TEMPLATE and ACTION/ACTION_P* can be overloaded // on the number of value parameters. ACTION(ReturnSum) { return 0; } ACTION_P(ReturnSum, x) { return x; } ACTION_TEMPLATE(ReturnSum, HAS_1_TEMPLATE_PARAMS(typename, Number), AND_2_VALUE_PARAMS(v1, v2)) { return static_cast(v1) + v2; } ACTION_TEMPLATE(ReturnSum, HAS_1_TEMPLATE_PARAMS(typename, Number), AND_3_VALUE_PARAMS(v1, v2, v3)) { return static_cast(v1) + v2 + v3; } ACTION_TEMPLATE(ReturnSum, HAS_2_TEMPLATE_PARAMS(typename, Number, int, k), AND_4_VALUE_PARAMS(v1, v2, v3, v4)) { return static_cast(v1) + v2 + v3 + v4 + k; } TEST(ActionTemplateTest, CanBeOverloadedOnNumberOfValueParameters) { const Action a0 = ReturnSum(); const Action a1 = ReturnSum(1); const Action a2 = ReturnSum(1, 2); const Action a3 = ReturnSum(1, 2, 3); const Action a4 = ReturnSum(2000, 300, 40, 5); EXPECT_EQ(0, a0.Perform(make_tuple())); EXPECT_EQ(1, a1.Perform(make_tuple())); EXPECT_EQ(3, a2.Perform(make_tuple())); EXPECT_EQ(6, a3.Perform(make_tuple())); EXPECT_EQ(12345, a4.Perform(make_tuple())); } #ifdef _MSC_VER # pragma warning(pop) #endif } // namespace gmock_generated_actions_test } // namespace testing